linuxdebug/drivers/media/platform/ti/cal/cal.c

1376 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI Camera Access Layer (CAL) - Driver
*
* Copyright (c) 2015-2020 Texas Instruments Inc.
*
* Authors:
* Benoit Parrot <bparrot@ti.com>
* Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/media-device.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-device.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include "cal.h"
#include "cal_regs.h"
MODULE_DESCRIPTION("TI CAL driver");
MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.1.0");
int cal_video_nr = -1;
module_param_named(video_nr, cal_video_nr, uint, 0644);
MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect");
unsigned int cal_debug;
module_param_named(debug, cal_debug, uint, 0644);
MODULE_PARM_DESC(debug, "activates debug info");
#ifdef CONFIG_VIDEO_TI_CAL_MC
#define CAL_MC_API_DEFAULT 1
#else
#define CAL_MC_API_DEFAULT 0
#endif
bool cal_mc_api = CAL_MC_API_DEFAULT;
module_param_named(mc_api, cal_mc_api, bool, 0444);
MODULE_PARM_DESC(mc_api, "activates the MC API");
/* ------------------------------------------------------------------
* Format Handling
* ------------------------------------------------------------------
*/
const struct cal_format_info cal_formats[] = {
{
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB565_2X8_BE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
.code = MEDIA_BUS_FMT_RGB888_2X12_LE,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
.code = MEDIA_BUS_FMT_RGB888_2X12_BE,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_RGB32, /* argb */
.code = MEDIA_BUS_FMT_ARGB8888_1X32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.bpp = 12,
},
};
const unsigned int cal_num_formats = ARRAY_SIZE(cal_formats);
const struct cal_format_info *cal_format_by_fourcc(u32 fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) {
if (cal_formats[i].fourcc == fourcc)
return &cal_formats[i];
}
return NULL;
}
const struct cal_format_info *cal_format_by_code(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) {
if (cal_formats[i].code == code)
return &cal_formats[i];
}
return NULL;
}
/* ------------------------------------------------------------------
* Platform Data
* ------------------------------------------------------------------
*/
static const struct cal_camerarx_data dra72x_cal_camerarx[] = {
{
.fields = {
[F_CTRLCLKEN] = { 10, 10 },
[F_CAMMODE] = { 11, 12 },
[F_LANEENABLE] = { 13, 16 },
[F_CSI_MODE] = { 17, 17 },
},
.num_lanes = 4,
},
{
.fields = {
[F_CTRLCLKEN] = { 0, 0 },
[F_CAMMODE] = { 1, 2 },
[F_LANEENABLE] = { 3, 4 },
[F_CSI_MODE] = { 5, 5 },
},
.num_lanes = 2,
},
};
static const struct cal_data dra72x_cal_data = {
.camerarx = dra72x_cal_camerarx,
.num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
};
static const struct cal_data dra72x_es1_cal_data = {
.camerarx = dra72x_cal_camerarx,
.num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
.flags = DRA72_CAL_PRE_ES2_LDO_DISABLE,
};
static const struct cal_camerarx_data dra76x_cal_csi_phy[] = {
{
.fields = {
[F_CTRLCLKEN] = { 8, 8 },
[F_CAMMODE] = { 9, 10 },
[F_CSI_MODE] = { 11, 11 },
[F_LANEENABLE] = { 27, 31 },
},
.num_lanes = 5,
},
{
.fields = {
[F_CTRLCLKEN] = { 0, 0 },
[F_CAMMODE] = { 1, 2 },
[F_CSI_MODE] = { 3, 3 },
[F_LANEENABLE] = { 24, 26 },
},
.num_lanes = 3,
},
};
static const struct cal_data dra76x_cal_data = {
.camerarx = dra76x_cal_csi_phy,
.num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy),
};
static const struct cal_camerarx_data am654_cal_csi_phy[] = {
{
.fields = {
[F_CTRLCLKEN] = { 15, 15 },
[F_CAMMODE] = { 24, 25 },
[F_LANEENABLE] = { 0, 4 },
},
.num_lanes = 5,
},
};
static const struct cal_data am654_cal_data = {
.camerarx = am654_cal_csi_phy,
.num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy),
};
/* ------------------------------------------------------------------
* I/O Register Accessors
* ------------------------------------------------------------------
*/
void cal_quickdump_regs(struct cal_dev *cal)
{
unsigned int i;
cal_info(cal, "CAL Registers @ 0x%pa:\n", &cal->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)cal->base,
resource_size(cal->res), false);
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
struct cal_camerarx *phy = cal->phy[i];
cal_info(cal, "CSI2 Core %u Registers @ %pa:\n", i,
&phy->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)phy->base,
resource_size(phy->res),
false);
}
}
/* ------------------------------------------------------------------
* Context Management
* ------------------------------------------------------------------
*/
#define CAL_MAX_PIX_PROC 4
static int cal_reserve_pix_proc(struct cal_dev *cal)
{
unsigned long ret;
spin_lock(&cal->v4l2_dev.lock);
ret = find_first_zero_bit(&cal->reserved_pix_proc_mask, CAL_MAX_PIX_PROC);
if (ret == CAL_MAX_PIX_PROC) {
spin_unlock(&cal->v4l2_dev.lock);
return -ENOSPC;
}
cal->reserved_pix_proc_mask |= BIT(ret);
spin_unlock(&cal->v4l2_dev.lock);
return ret;
}
static void cal_release_pix_proc(struct cal_dev *cal, unsigned int pix_proc_num)
{
spin_lock(&cal->v4l2_dev.lock);
cal->reserved_pix_proc_mask &= ~BIT(pix_proc_num);
spin_unlock(&cal->v4l2_dev.lock);
}
static void cal_ctx_csi2_config(struct cal_ctx *ctx)
{
u32 val;
val = cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx));
cal_set_field(&val, ctx->cport, CAL_CSI2_CTX_CPORT_MASK);
/*
* DT type: MIPI CSI-2 Specs
* 0x1: All - DT filter is disabled
* 0x24: RGB888 1 pixel = 3 bytes
* 0x2B: RAW10 4 pixels = 5 bytes
* 0x2A: RAW8 1 pixel = 1 byte
* 0x1E: YUV422 2 pixels = 4 bytes
*/
cal_set_field(&val, ctx->datatype, CAL_CSI2_CTX_DT_MASK);
cal_set_field(&val, ctx->vc, CAL_CSI2_CTX_VC_MASK);
cal_set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_CSI2_CTX_LINES_MASK);
cal_set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK);
cal_set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE,
CAL_CSI2_CTX_PACK_MODE_MASK);
cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), val);
ctx_dbg(3, ctx, "CAL_CSI2_CTX(%u, %u) = 0x%08x\n",
ctx->phy->instance, ctx->csi2_ctx,
cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx)));
}
static void cal_ctx_pix_proc_config(struct cal_ctx *ctx)
{
u32 val, extract, pack;
switch (ctx->fmtinfo->bpp) {
case 8:
extract = CAL_PIX_PROC_EXTRACT_B8;
pack = CAL_PIX_PROC_PACK_B8;
break;
case 10:
extract = CAL_PIX_PROC_EXTRACT_B10_MIPI;
pack = CAL_PIX_PROC_PACK_B16;
break;
case 12:
extract = CAL_PIX_PROC_EXTRACT_B12_MIPI;
pack = CAL_PIX_PROC_PACK_B16;
break;
case 16:
extract = CAL_PIX_PROC_EXTRACT_B16_LE;
pack = CAL_PIX_PROC_PACK_B16;
break;
default:
/*
* If you see this warning then it means that you added
* some new entry in the cal_formats[] array with a different
* bit per pixel values then the one supported below.
* Either add support for the new bpp value below or adjust
* the new entry to use one of the value below.
*
* Instead of failing here just use 8 bpp as a default.
*/
dev_warn_once(ctx->cal->dev,
"%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n",
__FILE__, __LINE__, __func__, ctx->fmtinfo->bpp);
extract = CAL_PIX_PROC_EXTRACT_B8;
pack = CAL_PIX_PROC_PACK_B8;
break;
}
val = cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc));
cal_set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK);
cal_set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK);
cal_set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK);
cal_set_field(&val, pack, CAL_PIX_PROC_PACK_MASK);
cal_set_field(&val, ctx->cport, CAL_PIX_PROC_CPORT_MASK);
cal_set_field(&val, 1, CAL_PIX_PROC_EN_MASK);
cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), val);
ctx_dbg(3, ctx, "CAL_PIX_PROC(%u) = 0x%08x\n", ctx->pix_proc,
cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc)));
}
static void cal_ctx_wr_dma_config(struct cal_ctx *ctx)
{
unsigned int stride = ctx->v_fmt.fmt.pix.bytesperline;
u32 val;
val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
cal_set_field(&val, ctx->cport, CAL_WR_DMA_CTRL_CPORT_MASK);
cal_set_field(&val, ctx->v_fmt.fmt.pix.height,
CAL_WR_DMA_CTRL_YSIZE_MASK);
cal_set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT,
CAL_WR_DMA_CTRL_DTAG_MASK);
cal_set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR,
CAL_WR_DMA_CTRL_PATTERN_MASK);
cal_set_field(&val, 1, CAL_WR_DMA_CTRL_STALL_RD_MASK);
cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->dma_ctx,
cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)));
cal_write_field(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx),
stride / 16, CAL_WR_DMA_OFST_MASK);
ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->dma_ctx,
cal_read(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx)));
val = cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx));
/* 64 bit word means no skipping */
cal_set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK);
/*
* The XSIZE field is expressed in 64-bit units and prevents overflows
* in case of synchronization issues by limiting the number of bytes
* written per line.
*/
cal_set_field(&val, stride / 8, CAL_WR_DMA_XSIZE_MASK);
cal_write(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->dma_ctx,
cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx)));
}
void cal_ctx_set_dma_addr(struct cal_ctx *ctx, dma_addr_t addr)
{
cal_write(ctx->cal, CAL_WR_DMA_ADDR(ctx->dma_ctx), addr);
}
static void cal_ctx_wr_dma_enable(struct cal_ctx *ctx)
{
u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST,
CAL_WR_DMA_CTRL_MODE_MASK);
cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
}
static void cal_ctx_wr_dma_disable(struct cal_ctx *ctx)
{
u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx));
cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_DIS,
CAL_WR_DMA_CTRL_MODE_MASK);
cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val);
}
static bool cal_ctx_wr_dma_stopped(struct cal_ctx *ctx)
{
bool stopped;
spin_lock_irq(&ctx->dma.lock);
stopped = ctx->dma.state == CAL_DMA_STOPPED;
spin_unlock_irq(&ctx->dma.lock);
return stopped;
}
static int
cal_get_remote_frame_desc_entry(struct cal_camerarx *phy,
struct v4l2_mbus_frame_desc_entry *entry)
{
struct v4l2_mbus_frame_desc fd;
int ret;
ret = cal_camerarx_get_remote_frame_desc(phy, &fd);
if (ret) {
if (ret != -ENOIOCTLCMD)
dev_err(phy->cal->dev,
"Failed to get remote frame desc: %d\n", ret);
return ret;
}
if (fd.num_entries == 0) {
dev_err(phy->cal->dev,
"No streams found in the remote frame descriptor\n");
return -ENODEV;
}
if (fd.num_entries > 1)
dev_dbg(phy->cal->dev,
"Multiple streams not supported in remote frame descriptor, using the first one\n");
*entry = fd.entry[0];
return 0;
}
int cal_ctx_prepare(struct cal_ctx *ctx)
{
struct v4l2_mbus_frame_desc_entry entry;
int ret;
ret = cal_get_remote_frame_desc_entry(ctx->phy, &entry);
if (ret == -ENOIOCTLCMD) {
ctx->vc = 0;
ctx->datatype = CAL_CSI2_CTX_DT_ANY;
} else if (!ret) {
ctx_dbg(2, ctx, "Framedesc: len %u, vc %u, dt %#x\n",
entry.length, entry.bus.csi2.vc, entry.bus.csi2.dt);
ctx->vc = entry.bus.csi2.vc;
ctx->datatype = entry.bus.csi2.dt;
} else {
return ret;
}
ctx->use_pix_proc = !ctx->fmtinfo->meta;
if (ctx->use_pix_proc) {
ret = cal_reserve_pix_proc(ctx->cal);
if (ret < 0) {
ctx_err(ctx, "Failed to reserve pix proc: %d\n", ret);
return ret;
}
ctx->pix_proc = ret;
}
return 0;
}
void cal_ctx_unprepare(struct cal_ctx *ctx)
{
if (ctx->use_pix_proc)
cal_release_pix_proc(ctx->cal, ctx->pix_proc);
}
void cal_ctx_start(struct cal_ctx *ctx)
{
struct cal_camerarx *phy = ctx->phy;
/*
* Reset the frame number & sequence number, but only if the
* virtual channel is not already in use.
*/
spin_lock(&phy->vc_lock);
if (phy->vc_enable_count[ctx->vc]++ == 0) {
phy->vc_frame_number[ctx->vc] = 0;
phy->vc_sequence[ctx->vc] = 0;
}
spin_unlock(&phy->vc_lock);
ctx->dma.state = CAL_DMA_RUNNING;
/* Configure the CSI-2, pixel processing and write DMA contexts. */
cal_ctx_csi2_config(ctx);
if (ctx->use_pix_proc)
cal_ctx_pix_proc_config(ctx);
cal_ctx_wr_dma_config(ctx);
/* Enable IRQ_WDMA_END and IRQ_WDMA_START. */
cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(1),
CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx));
cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(2),
CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx));
cal_ctx_wr_dma_enable(ctx);
}
void cal_ctx_stop(struct cal_ctx *ctx)
{
struct cal_camerarx *phy = ctx->phy;
long timeout;
WARN_ON(phy->vc_enable_count[ctx->vc] == 0);
spin_lock(&phy->vc_lock);
phy->vc_enable_count[ctx->vc]--;
spin_unlock(&phy->vc_lock);
/*
* Request DMA stop and wait until it completes. If completion times
* out, forcefully disable the DMA.
*/
spin_lock_irq(&ctx->dma.lock);
ctx->dma.state = CAL_DMA_STOP_REQUESTED;
spin_unlock_irq(&ctx->dma.lock);
timeout = wait_event_timeout(ctx->dma.wait, cal_ctx_wr_dma_stopped(ctx),
msecs_to_jiffies(500));
if (!timeout) {
ctx_err(ctx, "failed to disable dma cleanly\n");
cal_ctx_wr_dma_disable(ctx);
}
/* Disable IRQ_WDMA_END and IRQ_WDMA_START. */
cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(1),
CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx));
cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(2),
CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx));
ctx->dma.state = CAL_DMA_STOPPED;
/* Disable CSI2 context */
cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), 0);
/* Disable pix proc */
if (ctx->use_pix_proc)
cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), 0);
}
/* ------------------------------------------------------------------
* IRQ Handling
* ------------------------------------------------------------------
*/
/*
* Track a sequence number for each virtual channel, which is shared by
* all contexts using the same virtual channel. This is done using the
* CSI-2 frame number as a base.
*/
static void cal_update_seq_number(struct cal_ctx *ctx)
{
struct cal_dev *cal = ctx->cal;
struct cal_camerarx *phy = ctx->phy;
u16 prev_frame_num, frame_num;
u8 vc = ctx->vc;
frame_num =
cal_read(cal, CAL_CSI2_STATUS(phy->instance, ctx->csi2_ctx)) &
0xffff;
if (phy->vc_frame_number[vc] != frame_num) {
prev_frame_num = phy->vc_frame_number[vc];
if (prev_frame_num >= frame_num)
phy->vc_sequence[vc] += 1;
else
phy->vc_sequence[vc] += frame_num - prev_frame_num;
phy->vc_frame_number[vc] = frame_num;
}
}
static inline void cal_irq_wdma_start(struct cal_ctx *ctx)
{
spin_lock(&ctx->dma.lock);
if (ctx->dma.state == CAL_DMA_STOP_REQUESTED) {
/*
* If a stop is requested, disable the write DMA context
* immediately. The CAL_WR_DMA_CTRL_j.MODE field is shadowed,
* the current frame will complete and the DMA will then stop.
*/
cal_ctx_wr_dma_disable(ctx);
ctx->dma.state = CAL_DMA_STOP_PENDING;
} else if (!list_empty(&ctx->dma.queue) && !ctx->dma.pending) {
/*
* Otherwise, if a new buffer is available, queue it to the
* hardware.
*/
struct cal_buffer *buf;
dma_addr_t addr;
buf = list_first_entry(&ctx->dma.queue, struct cal_buffer,
list);
addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
cal_ctx_set_dma_addr(ctx, addr);
ctx->dma.pending = buf;
list_del(&buf->list);
}
spin_unlock(&ctx->dma.lock);
cal_update_seq_number(ctx);
}
static inline void cal_irq_wdma_end(struct cal_ctx *ctx)
{
struct cal_buffer *buf = NULL;
spin_lock(&ctx->dma.lock);
/* If the DMA context was stopping, it is now stopped. */
if (ctx->dma.state == CAL_DMA_STOP_PENDING) {
ctx->dma.state = CAL_DMA_STOPPED;
wake_up(&ctx->dma.wait);
}
/* If a new buffer was queued, complete the current buffer. */
if (ctx->dma.pending) {
buf = ctx->dma.active;
ctx->dma.active = ctx->dma.pending;
ctx->dma.pending = NULL;
}
spin_unlock(&ctx->dma.lock);
if (buf) {
buf->vb.vb2_buf.timestamp = ktime_get_ns();
buf->vb.field = ctx->v_fmt.fmt.pix.field;
buf->vb.sequence = ctx->phy->vc_sequence[ctx->vc];
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
}
}
static void cal_irq_handle_wdma(struct cal_ctx *ctx, bool start, bool end)
{
/*
* CAL HW interrupts are inherently racy. If we get both start and end
* interrupts, we don't know what has happened: did the DMA for a single
* frame start and end, or did one frame end and a new frame start?
*
* Usually for normal pixel frames we get the interrupts separately. If
* we do get both, we have to guess. The assumption in the code below is
* that the active vertical area is larger than the blanking vertical
* area, and thus it is more likely that we get the end of the old frame
* and the start of a new frame.
*
* However, for embedded data, which is only a few lines high, we always
* get both interrupts. Here the assumption is that we get both for the
* same frame.
*/
if (ctx->v_fmt.fmt.pix.height < 10) {
if (start)
cal_irq_wdma_start(ctx);
if (end)
cal_irq_wdma_end(ctx);
} else {
if (end)
cal_irq_wdma_end(ctx);
if (start)
cal_irq_wdma_start(ctx);
}
}
static irqreturn_t cal_irq(int irq_cal, void *data)
{
struct cal_dev *cal = data;
u32 status[3];
unsigned int i;
for (i = 0; i < 3; ++i) {
status[i] = cal_read(cal, CAL_HL_IRQSTATUS(i));
if (status[i])
cal_write(cal, CAL_HL_IRQSTATUS(i), status[i]);
}
if (status[0]) {
if (status[0] & CAL_HL_IRQ_OCPO_ERR_MASK)
dev_err_ratelimited(cal->dev, "OCPO ERROR\n");
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
if (status[0] & CAL_HL_IRQ_CIO_MASK(i)) {
u32 cio_stat = cal_read(cal,
CAL_CSI2_COMPLEXIO_IRQSTATUS(i));
dev_err_ratelimited(cal->dev,
"CIO%u error: %#08x\n", i, cio_stat);
cal_write(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i),
cio_stat);
}
if (status[0] & CAL_HL_IRQ_VC_MASK(i)) {
u32 vc_stat = cal_read(cal, CAL_CSI2_VC_IRQSTATUS(i));
dev_err_ratelimited(cal->dev,
"CIO%u VC error: %#08x\n",
i, vc_stat);
cal_write(cal, CAL_CSI2_VC_IRQSTATUS(i), vc_stat);
}
}
}
for (i = 0; i < cal->num_contexts; ++i) {
bool end = !!(status[1] & CAL_HL_IRQ_WDMA_END_MASK(i));
bool start = !!(status[2] & CAL_HL_IRQ_WDMA_START_MASK(i));
if (start || end)
cal_irq_handle_wdma(cal->ctx[i], start, end);
}
return IRQ_HANDLED;
}
/* ------------------------------------------------------------------
* Asynchronous V4L2 subdev binding
* ------------------------------------------------------------------
*/
struct cal_v4l2_async_subdev {
struct v4l2_async_subdev asd; /* Must be first */
struct cal_camerarx *phy;
};
static inline struct cal_v4l2_async_subdev *
to_cal_asd(struct v4l2_async_subdev *asd)
{
return container_of(asd, struct cal_v4l2_async_subdev, asd);
}
static int cal_async_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct cal_camerarx *phy = to_cal_asd(asd)->phy;
int pad;
int ret;
if (phy->source) {
phy_info(phy, "Rejecting subdev %s (Already set!!)",
subdev->name);
return 0;
}
phy->source = subdev;
phy_dbg(1, phy, "Using source %s for capture\n", subdev->name);
pad = media_entity_get_fwnode_pad(&subdev->entity,
of_fwnode_handle(phy->source_ep_node),
MEDIA_PAD_FL_SOURCE);
if (pad < 0) {
phy_err(phy, "Source %s has no connected source pad\n",
subdev->name);
return pad;
}
ret = media_create_pad_link(&subdev->entity, pad,
&phy->subdev.entity, CAL_CAMERARX_PAD_SINK,
MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
if (ret) {
phy_err(phy, "Failed to create media link for source %s\n",
subdev->name);
return ret;
}
return 0;
}
static int cal_async_notifier_complete(struct v4l2_async_notifier *notifier)
{
struct cal_dev *cal = container_of(notifier, struct cal_dev, notifier);
unsigned int i;
int ret;
for (i = 0; i < cal->num_contexts; ++i) {
ret = cal_ctx_v4l2_register(cal->ctx[i]);
if (ret)
goto err_ctx_unreg;
}
if (!cal_mc_api)
return 0;
ret = v4l2_device_register_subdev_nodes(&cal->v4l2_dev);
if (ret)
goto err_ctx_unreg;
return 0;
err_ctx_unreg:
for (; i > 0; --i) {
if (!cal->ctx[i - 1])
continue;
cal_ctx_v4l2_unregister(cal->ctx[i - 1]);
}
return ret;
}
static const struct v4l2_async_notifier_operations cal_async_notifier_ops = {
.bound = cal_async_notifier_bound,
.complete = cal_async_notifier_complete,
};
static int cal_async_notifier_register(struct cal_dev *cal)
{
unsigned int i;
int ret;
v4l2_async_nf_init(&cal->notifier);
cal->notifier.ops = &cal_async_notifier_ops;
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
struct cal_camerarx *phy = cal->phy[i];
struct cal_v4l2_async_subdev *casd;
struct fwnode_handle *fwnode;
if (!phy->source_node)
continue;
fwnode = of_fwnode_handle(phy->source_node);
casd = v4l2_async_nf_add_fwnode(&cal->notifier,
fwnode,
struct cal_v4l2_async_subdev);
if (IS_ERR(casd)) {
phy_err(phy, "Failed to add subdev to notifier\n");
ret = PTR_ERR(casd);
goto error;
}
casd->phy = phy;
}
ret = v4l2_async_nf_register(&cal->v4l2_dev, &cal->notifier);
if (ret) {
cal_err(cal, "Error registering async notifier\n");
goto error;
}
return 0;
error:
v4l2_async_nf_cleanup(&cal->notifier);
return ret;
}
static void cal_async_notifier_unregister(struct cal_dev *cal)
{
v4l2_async_nf_unregister(&cal->notifier);
v4l2_async_nf_cleanup(&cal->notifier);
}
/* ------------------------------------------------------------------
* Media and V4L2 device handling
* ------------------------------------------------------------------
*/
/*
* Register user-facing devices. To be called at the end of the probe function
* when all resources are initialized and ready.
*/
static int cal_media_register(struct cal_dev *cal)
{
int ret;
ret = media_device_register(&cal->mdev);
if (ret) {
cal_err(cal, "Failed to register media device\n");
return ret;
}
/*
* Register the async notifier. This may trigger registration of the
* V4L2 video devices if all subdevs are ready.
*/
ret = cal_async_notifier_register(cal);
if (ret) {
media_device_unregister(&cal->mdev);
return ret;
}
return 0;
}
/*
* Unregister the user-facing devices, but don't free memory yet. To be called
* at the beginning of the remove function, to disallow access from userspace.
*/
static void cal_media_unregister(struct cal_dev *cal)
{
unsigned int i;
/* Unregister all the V4L2 video devices. */
for (i = 0; i < cal->num_contexts; i++)
cal_ctx_v4l2_unregister(cal->ctx[i]);
cal_async_notifier_unregister(cal);
media_device_unregister(&cal->mdev);
}
/*
* Initialize the in-kernel objects. To be called at the beginning of the probe
* function, before the V4L2 device is used by the driver.
*/
static int cal_media_init(struct cal_dev *cal)
{
struct media_device *mdev = &cal->mdev;
int ret;
mdev->dev = cal->dev;
mdev->hw_revision = cal->revision;
strscpy(mdev->model, "CAL", sizeof(mdev->model));
media_device_init(mdev);
/*
* Initialize the V4L2 device (despite the function name, this performs
* initialization, not registration).
*/
cal->v4l2_dev.mdev = mdev;
ret = v4l2_device_register(cal->dev, &cal->v4l2_dev);
if (ret) {
cal_err(cal, "Failed to register V4L2 device\n");
return ret;
}
vb2_dma_contig_set_max_seg_size(cal->dev, DMA_BIT_MASK(32));
return 0;
}
/*
* Cleanup the in-kernel objects, freeing memory. To be called at the very end
* of the remove sequence, when nothing (including userspace) can access the
* objects anymore.
*/
static void cal_media_cleanup(struct cal_dev *cal)
{
v4l2_device_unregister(&cal->v4l2_dev);
media_device_cleanup(&cal->mdev);
vb2_dma_contig_clear_max_seg_size(cal->dev);
}
/* ------------------------------------------------------------------
* Initialization and module stuff
* ------------------------------------------------------------------
*/
static struct cal_ctx *cal_ctx_create(struct cal_dev *cal, int inst)
{
struct cal_ctx *ctx;
int ret;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
ctx->cal = cal;
ctx->phy = cal->phy[inst];
ctx->dma_ctx = inst;
ctx->csi2_ctx = inst;
ctx->cport = inst;
ret = cal_ctx_v4l2_init(ctx);
if (ret) {
kfree(ctx);
return NULL;
}
return ctx;
}
static void cal_ctx_destroy(struct cal_ctx *ctx)
{
cal_ctx_v4l2_cleanup(ctx);
kfree(ctx);
}
static const struct of_device_id cal_of_match[] = {
{
.compatible = "ti,dra72-cal",
.data = (void *)&dra72x_cal_data,
},
{
.compatible = "ti,dra72-pre-es2-cal",
.data = (void *)&dra72x_es1_cal_data,
},
{
.compatible = "ti,dra76-cal",
.data = (void *)&dra76x_cal_data,
},
{
.compatible = "ti,am654-cal",
.data = (void *)&am654_cal_data,
},
{},
};
MODULE_DEVICE_TABLE(of, cal_of_match);
/* Get hardware revision and info. */
#define CAL_HL_HWINFO_VALUE 0xa3c90469
static void cal_get_hwinfo(struct cal_dev *cal)
{
u32 hwinfo;
cal->revision = cal_read(cal, CAL_HL_REVISION);
switch (FIELD_GET(CAL_HL_REVISION_SCHEME_MASK, cal->revision)) {
case CAL_HL_REVISION_SCHEME_H08:
cal_dbg(3, cal, "CAL HW revision %lu.%lu.%lu (0x%08x)\n",
FIELD_GET(CAL_HL_REVISION_MAJOR_MASK, cal->revision),
FIELD_GET(CAL_HL_REVISION_MINOR_MASK, cal->revision),
FIELD_GET(CAL_HL_REVISION_RTL_MASK, cal->revision),
cal->revision);
break;
case CAL_HL_REVISION_SCHEME_LEGACY:
default:
cal_info(cal, "Unexpected CAL HW revision 0x%08x\n",
cal->revision);
break;
}
hwinfo = cal_read(cal, CAL_HL_HWINFO);
if (hwinfo != CAL_HL_HWINFO_VALUE)
cal_info(cal, "CAL_HL_HWINFO = 0x%08x, expected 0x%08x\n",
hwinfo, CAL_HL_HWINFO_VALUE);
}
static int cal_init_camerarx_regmap(struct cal_dev *cal)
{
struct platform_device *pdev = to_platform_device(cal->dev);
struct device_node *np = cal->dev->of_node;
struct regmap_config config = { };
struct regmap *syscon;
struct resource *res;
unsigned int offset;
void __iomem *base;
syscon = syscon_regmap_lookup_by_phandle_args(np, "ti,camerrx-control",
1, &offset);
if (!IS_ERR(syscon)) {
cal->syscon_camerrx = syscon;
cal->syscon_camerrx_offset = offset;
return 0;
}
dev_warn(cal->dev, "failed to get ti,camerrx-control: %ld\n",
PTR_ERR(syscon));
/*
* Backward DTS compatibility. If syscon entry is not present then
* check if the camerrx_control resource is present.
*/
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"camerrx_control");
base = devm_ioremap_resource(cal->dev, res);
if (IS_ERR(base)) {
cal_err(cal, "failed to ioremap camerrx_control\n");
return PTR_ERR(base);
}
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
res->name, &res->start, &res->end);
config.reg_bits = 32;
config.reg_stride = 4;
config.val_bits = 32;
config.max_register = resource_size(res) - 4;
syscon = regmap_init_mmio(NULL, base, &config);
if (IS_ERR(syscon)) {
pr_err("regmap init failed\n");
return PTR_ERR(syscon);
}
/*
* In this case the base already point to the direct CM register so no
* need for an offset.
*/
cal->syscon_camerrx = syscon;
cal->syscon_camerrx_offset = 0;
return 0;
}
static int cal_probe(struct platform_device *pdev)
{
struct cal_dev *cal;
bool connected = false;
unsigned int i;
int ret;
int irq;
cal = devm_kzalloc(&pdev->dev, sizeof(*cal), GFP_KERNEL);
if (!cal)
return -ENOMEM;
cal->data = of_device_get_match_data(&pdev->dev);
if (!cal->data) {
dev_err(&pdev->dev, "Could not get feature data based on compatible version\n");
return -ENODEV;
}
cal->dev = &pdev->dev;
platform_set_drvdata(pdev, cal);
/* Acquire resources: clocks, CAMERARX regmap, I/O memory and IRQ. */
cal->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(cal->fclk)) {
dev_err(&pdev->dev, "cannot get CAL fclk\n");
return PTR_ERR(cal->fclk);
}
ret = cal_init_camerarx_regmap(cal);
if (ret < 0)
return ret;
cal->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cal_top");
cal->base = devm_ioremap_resource(&pdev->dev, cal->res);
if (IS_ERR(cal->base))
return PTR_ERR(cal->base);
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
cal->res->name, &cal->res->start, &cal->res->end);
irq = platform_get_irq(pdev, 0);
cal_dbg(1, cal, "got irq# %d\n", irq);
ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME,
cal);
if (ret)
return ret;
/* Read the revision and hardware info to verify hardware access. */
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret)
goto error_pm_runtime;
cal_get_hwinfo(cal);
pm_runtime_put_sync(&pdev->dev);
/* Initialize the media device. */
ret = cal_media_init(cal);
if (ret < 0)
goto error_pm_runtime;
/* Create CAMERARX PHYs. */
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
cal->phy[i] = cal_camerarx_create(cal, i);
if (IS_ERR(cal->phy[i])) {
ret = PTR_ERR(cal->phy[i]);
cal->phy[i] = NULL;
goto error_camerarx;
}
if (cal->phy[i]->source_node)
connected = true;
}
if (!connected) {
cal_err(cal, "Neither port is configured, no point in staying up\n");
ret = -ENODEV;
goto error_camerarx;
}
/* Create contexts. */
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
if (!cal->phy[i]->source_node)
continue;
cal->ctx[cal->num_contexts] = cal_ctx_create(cal, i);
if (!cal->ctx[cal->num_contexts]) {
cal_err(cal, "Failed to create context %u\n", cal->num_contexts);
ret = -ENODEV;
goto error_context;
}
cal->num_contexts++;
}
/* Register the media device. */
ret = cal_media_register(cal);
if (ret)
goto error_context;
return 0;
error_context:
for (i = 0; i < cal->num_contexts; i++)
cal_ctx_destroy(cal->ctx[i]);
error_camerarx:
for (i = 0; i < cal->data->num_csi2_phy; i++)
cal_camerarx_destroy(cal->phy[i]);
cal_media_cleanup(cal);
error_pm_runtime:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int cal_remove(struct platform_device *pdev)
{
struct cal_dev *cal = platform_get_drvdata(pdev);
unsigned int i;
int ret;
cal_dbg(1, cal, "Removing %s\n", CAL_MODULE_NAME);
ret = pm_runtime_resume_and_get(&pdev->dev);
cal_media_unregister(cal);
for (i = 0; i < cal->data->num_csi2_phy; i++)
cal_camerarx_disable(cal->phy[i]);
for (i = 0; i < cal->num_contexts; i++)
cal_ctx_destroy(cal->ctx[i]);
for (i = 0; i < cal->data->num_csi2_phy; i++)
cal_camerarx_destroy(cal->phy[i]);
cal_media_cleanup(cal);
if (ret >= 0)
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int cal_runtime_resume(struct device *dev)
{
struct cal_dev *cal = dev_get_drvdata(dev);
unsigned int i;
u32 val;
if (cal->data->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) {
/*
* Apply errata on both port everytime we (re-)enable
* the clock
*/
for (i = 0; i < cal->data->num_csi2_phy; i++)
cal_camerarx_i913_errata(cal->phy[i]);
}
/*
* Enable global interrupts that are not related to a particular
* CAMERARAX or context.
*/
cal_write(cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK);
val = cal_read(cal, CAL_CTRL);
cal_set_field(&val, CAL_CTRL_BURSTSIZE_BURST128,
CAL_CTRL_BURSTSIZE_MASK);
cal_set_field(&val, 0xf, CAL_CTRL_TAGCNT_MASK);
cal_set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED,
CAL_CTRL_POSTED_WRITES_MASK);
cal_set_field(&val, 0xff, CAL_CTRL_MFLAGL_MASK);
cal_set_field(&val, 0xff, CAL_CTRL_MFLAGH_MASK);
cal_write(cal, CAL_CTRL, val);
cal_dbg(3, cal, "CAL_CTRL = 0x%08x\n", cal_read(cal, CAL_CTRL));
return 0;
}
static const struct dev_pm_ops cal_pm_ops = {
.runtime_resume = cal_runtime_resume,
};
static struct platform_driver cal_pdrv = {
.probe = cal_probe,
.remove = cal_remove,
.driver = {
.name = CAL_MODULE_NAME,
.pm = &cal_pm_ops,
.of_match_table = cal_of_match,
},
};
module_platform_driver(cal_pdrv);