// SPDX-License-Identifier: GPL-2.0-only /* * TI Camera Access Layer (CAL) - Driver * * Copyright (c) 2015-2020 Texas Instruments Inc. * * Authors: * Benoit Parrot * Laurent Pinchart */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cal.h" #include "cal_regs.h" MODULE_DESCRIPTION("TI CAL driver"); MODULE_AUTHOR("Benoit Parrot, "); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.1.0"); int cal_video_nr = -1; module_param_named(video_nr, cal_video_nr, uint, 0644); MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect"); unsigned int cal_debug; module_param_named(debug, cal_debug, uint, 0644); MODULE_PARM_DESC(debug, "activates debug info"); #ifdef CONFIG_VIDEO_TI_CAL_MC #define CAL_MC_API_DEFAULT 1 #else #define CAL_MC_API_DEFAULT 0 #endif bool cal_mc_api = CAL_MC_API_DEFAULT; module_param_named(mc_api, cal_mc_api, bool, 0444); MODULE_PARM_DESC(mc_api, "activates the MC API"); /* ------------------------------------------------------------------ * Format Handling * ------------------------------------------------------------------ */ const struct cal_format_info cal_formats[] = { { .fourcc = V4L2_PIX_FMT_YUYV, .code = MEDIA_BUS_FMT_YUYV8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_UYVY, .code = MEDIA_BUS_FMT_UYVY8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_YVYU, .code = MEDIA_BUS_FMT_YVYU8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_VYUY, .code = MEDIA_BUS_FMT_VYUY8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */ .code = MEDIA_BUS_FMT_RGB565_2X8_LE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB565_2X8_BE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */ .code = MEDIA_BUS_FMT_RGB888_2X12_LE, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */ .code = MEDIA_BUS_FMT_RGB888_2X12_BE, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_RGB32, /* argb */ .code = MEDIA_BUS_FMT_ARGB8888_1X32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_SBGGR8, .code = MEDIA_BUS_FMT_SBGGR8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .code = MEDIA_BUS_FMT_SGBRG8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .code = MEDIA_BUS_FMT_SGRBG8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .code = MEDIA_BUS_FMT_SRGGB8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SBGGR10, .code = MEDIA_BUS_FMT_SBGGR10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SGBRG10, .code = MEDIA_BUS_FMT_SGBRG10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SGRBG10, .code = MEDIA_BUS_FMT_SGRBG10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SRGGB10, .code = MEDIA_BUS_FMT_SRGGB10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SBGGR12, .code = MEDIA_BUS_FMT_SBGGR12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SGBRG12, .code = MEDIA_BUS_FMT_SGBRG12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SGRBG12, .code = MEDIA_BUS_FMT_SGRBG12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SRGGB12, .code = MEDIA_BUS_FMT_SRGGB12_1X12, .bpp = 12, }, }; const unsigned int cal_num_formats = ARRAY_SIZE(cal_formats); const struct cal_format_info *cal_format_by_fourcc(u32 fourcc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) { if (cal_formats[i].fourcc == fourcc) return &cal_formats[i]; } return NULL; } const struct cal_format_info *cal_format_by_code(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(cal_formats); ++i) { if (cal_formats[i].code == code) return &cal_formats[i]; } return NULL; } /* ------------------------------------------------------------------ * Platform Data * ------------------------------------------------------------------ */ static const struct cal_camerarx_data dra72x_cal_camerarx[] = { { .fields = { [F_CTRLCLKEN] = { 10, 10 }, [F_CAMMODE] = { 11, 12 }, [F_LANEENABLE] = { 13, 16 }, [F_CSI_MODE] = { 17, 17 }, }, .num_lanes = 4, }, { .fields = { [F_CTRLCLKEN] = { 0, 0 }, [F_CAMMODE] = { 1, 2 }, [F_LANEENABLE] = { 3, 4 }, [F_CSI_MODE] = { 5, 5 }, }, .num_lanes = 2, }, }; static const struct cal_data dra72x_cal_data = { .camerarx = dra72x_cal_camerarx, .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx), }; static const struct cal_data dra72x_es1_cal_data = { .camerarx = dra72x_cal_camerarx, .num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx), .flags = DRA72_CAL_PRE_ES2_LDO_DISABLE, }; static const struct cal_camerarx_data dra76x_cal_csi_phy[] = { { .fields = { [F_CTRLCLKEN] = { 8, 8 }, [F_CAMMODE] = { 9, 10 }, [F_CSI_MODE] = { 11, 11 }, [F_LANEENABLE] = { 27, 31 }, }, .num_lanes = 5, }, { .fields = { [F_CTRLCLKEN] = { 0, 0 }, [F_CAMMODE] = { 1, 2 }, [F_CSI_MODE] = { 3, 3 }, [F_LANEENABLE] = { 24, 26 }, }, .num_lanes = 3, }, }; static const struct cal_data dra76x_cal_data = { .camerarx = dra76x_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy), }; static const struct cal_camerarx_data am654_cal_csi_phy[] = { { .fields = { [F_CTRLCLKEN] = { 15, 15 }, [F_CAMMODE] = { 24, 25 }, [F_LANEENABLE] = { 0, 4 }, }, .num_lanes = 5, }, }; static const struct cal_data am654_cal_data = { .camerarx = am654_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy), }; /* ------------------------------------------------------------------ * I/O Register Accessors * ------------------------------------------------------------------ */ void cal_quickdump_regs(struct cal_dev *cal) { unsigned int i; cal_info(cal, "CAL Registers @ 0x%pa:\n", &cal->res->start); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, (__force const void *)cal->base, resource_size(cal->res), false); for (i = 0; i < cal->data->num_csi2_phy; ++i) { struct cal_camerarx *phy = cal->phy[i]; cal_info(cal, "CSI2 Core %u Registers @ %pa:\n", i, &phy->res->start); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, (__force const void *)phy->base, resource_size(phy->res), false); } } /* ------------------------------------------------------------------ * Context Management * ------------------------------------------------------------------ */ #define CAL_MAX_PIX_PROC 4 static int cal_reserve_pix_proc(struct cal_dev *cal) { unsigned long ret; spin_lock(&cal->v4l2_dev.lock); ret = find_first_zero_bit(&cal->reserved_pix_proc_mask, CAL_MAX_PIX_PROC); if (ret == CAL_MAX_PIX_PROC) { spin_unlock(&cal->v4l2_dev.lock); return -ENOSPC; } cal->reserved_pix_proc_mask |= BIT(ret); spin_unlock(&cal->v4l2_dev.lock); return ret; } static void cal_release_pix_proc(struct cal_dev *cal, unsigned int pix_proc_num) { spin_lock(&cal->v4l2_dev.lock); cal->reserved_pix_proc_mask &= ~BIT(pix_proc_num); spin_unlock(&cal->v4l2_dev.lock); } static void cal_ctx_csi2_config(struct cal_ctx *ctx) { u32 val; val = cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx)); cal_set_field(&val, ctx->cport, CAL_CSI2_CTX_CPORT_MASK); /* * DT type: MIPI CSI-2 Specs * 0x1: All - DT filter is disabled * 0x24: RGB888 1 pixel = 3 bytes * 0x2B: RAW10 4 pixels = 5 bytes * 0x2A: RAW8 1 pixel = 1 byte * 0x1E: YUV422 2 pixels = 4 bytes */ cal_set_field(&val, ctx->datatype, CAL_CSI2_CTX_DT_MASK); cal_set_field(&val, ctx->vc, CAL_CSI2_CTX_VC_MASK); cal_set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_CSI2_CTX_LINES_MASK); cal_set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK); cal_set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE, CAL_CSI2_CTX_PACK_MODE_MASK); cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), val); ctx_dbg(3, ctx, "CAL_CSI2_CTX(%u, %u) = 0x%08x\n", ctx->phy->instance, ctx->csi2_ctx, cal_read(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx))); } static void cal_ctx_pix_proc_config(struct cal_ctx *ctx) { u32 val, extract, pack; switch (ctx->fmtinfo->bpp) { case 8: extract = CAL_PIX_PROC_EXTRACT_B8; pack = CAL_PIX_PROC_PACK_B8; break; case 10: extract = CAL_PIX_PROC_EXTRACT_B10_MIPI; pack = CAL_PIX_PROC_PACK_B16; break; case 12: extract = CAL_PIX_PROC_EXTRACT_B12_MIPI; pack = CAL_PIX_PROC_PACK_B16; break; case 16: extract = CAL_PIX_PROC_EXTRACT_B16_LE; pack = CAL_PIX_PROC_PACK_B16; break; default: /* * If you see this warning then it means that you added * some new entry in the cal_formats[] array with a different * bit per pixel values then the one supported below. * Either add support for the new bpp value below or adjust * the new entry to use one of the value below. * * Instead of failing here just use 8 bpp as a default. */ dev_warn_once(ctx->cal->dev, "%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n", __FILE__, __LINE__, __func__, ctx->fmtinfo->bpp); extract = CAL_PIX_PROC_EXTRACT_B8; pack = CAL_PIX_PROC_PACK_B8; break; } val = cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc)); cal_set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK); cal_set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK); cal_set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK); cal_set_field(&val, pack, CAL_PIX_PROC_PACK_MASK); cal_set_field(&val, ctx->cport, CAL_PIX_PROC_CPORT_MASK); cal_set_field(&val, 1, CAL_PIX_PROC_EN_MASK); cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), val); ctx_dbg(3, ctx, "CAL_PIX_PROC(%u) = 0x%08x\n", ctx->pix_proc, cal_read(ctx->cal, CAL_PIX_PROC(ctx->pix_proc))); } static void cal_ctx_wr_dma_config(struct cal_ctx *ctx) { unsigned int stride = ctx->v_fmt.fmt.pix.bytesperline; u32 val; val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); cal_set_field(&val, ctx->cport, CAL_WR_DMA_CTRL_CPORT_MASK); cal_set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_WR_DMA_CTRL_YSIZE_MASK); cal_set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT, CAL_WR_DMA_CTRL_DTAG_MASK); cal_set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR, CAL_WR_DMA_CTRL_PATTERN_MASK); cal_set_field(&val, 1, CAL_WR_DMA_CTRL_STALL_RD_MASK); cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->dma_ctx, cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx))); cal_write_field(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx), stride / 16, CAL_WR_DMA_OFST_MASK); ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->dma_ctx, cal_read(ctx->cal, CAL_WR_DMA_OFST(ctx->dma_ctx))); val = cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx)); /* 64 bit word means no skipping */ cal_set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK); /* * The XSIZE field is expressed in 64-bit units and prevents overflows * in case of synchronization issues by limiting the number of bytes * written per line. */ cal_set_field(&val, stride / 8, CAL_WR_DMA_XSIZE_MASK); cal_write(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx), val); ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->dma_ctx, cal_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->dma_ctx))); } void cal_ctx_set_dma_addr(struct cal_ctx *ctx, dma_addr_t addr) { cal_write(ctx->cal, CAL_WR_DMA_ADDR(ctx->dma_ctx), addr); } static void cal_ctx_wr_dma_enable(struct cal_ctx *ctx) { u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST, CAL_WR_DMA_CTRL_MODE_MASK); cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); } static void cal_ctx_wr_dma_disable(struct cal_ctx *ctx) { u32 val = cal_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx)); cal_set_field(&val, CAL_WR_DMA_CTRL_MODE_DIS, CAL_WR_DMA_CTRL_MODE_MASK); cal_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->dma_ctx), val); } static bool cal_ctx_wr_dma_stopped(struct cal_ctx *ctx) { bool stopped; spin_lock_irq(&ctx->dma.lock); stopped = ctx->dma.state == CAL_DMA_STOPPED; spin_unlock_irq(&ctx->dma.lock); return stopped; } static int cal_get_remote_frame_desc_entry(struct cal_camerarx *phy, struct v4l2_mbus_frame_desc_entry *entry) { struct v4l2_mbus_frame_desc fd; int ret; ret = cal_camerarx_get_remote_frame_desc(phy, &fd); if (ret) { if (ret != -ENOIOCTLCMD) dev_err(phy->cal->dev, "Failed to get remote frame desc: %d\n", ret); return ret; } if (fd.num_entries == 0) { dev_err(phy->cal->dev, "No streams found in the remote frame descriptor\n"); return -ENODEV; } if (fd.num_entries > 1) dev_dbg(phy->cal->dev, "Multiple streams not supported in remote frame descriptor, using the first one\n"); *entry = fd.entry[0]; return 0; } int cal_ctx_prepare(struct cal_ctx *ctx) { struct v4l2_mbus_frame_desc_entry entry; int ret; ret = cal_get_remote_frame_desc_entry(ctx->phy, &entry); if (ret == -ENOIOCTLCMD) { ctx->vc = 0; ctx->datatype = CAL_CSI2_CTX_DT_ANY; } else if (!ret) { ctx_dbg(2, ctx, "Framedesc: len %u, vc %u, dt %#x\n", entry.length, entry.bus.csi2.vc, entry.bus.csi2.dt); ctx->vc = entry.bus.csi2.vc; ctx->datatype = entry.bus.csi2.dt; } else { return ret; } ctx->use_pix_proc = !ctx->fmtinfo->meta; if (ctx->use_pix_proc) { ret = cal_reserve_pix_proc(ctx->cal); if (ret < 0) { ctx_err(ctx, "Failed to reserve pix proc: %d\n", ret); return ret; } ctx->pix_proc = ret; } return 0; } void cal_ctx_unprepare(struct cal_ctx *ctx) { if (ctx->use_pix_proc) cal_release_pix_proc(ctx->cal, ctx->pix_proc); } void cal_ctx_start(struct cal_ctx *ctx) { struct cal_camerarx *phy = ctx->phy; /* * Reset the frame number & sequence number, but only if the * virtual channel is not already in use. */ spin_lock(&phy->vc_lock); if (phy->vc_enable_count[ctx->vc]++ == 0) { phy->vc_frame_number[ctx->vc] = 0; phy->vc_sequence[ctx->vc] = 0; } spin_unlock(&phy->vc_lock); ctx->dma.state = CAL_DMA_RUNNING; /* Configure the CSI-2, pixel processing and write DMA contexts. */ cal_ctx_csi2_config(ctx); if (ctx->use_pix_proc) cal_ctx_pix_proc_config(ctx); cal_ctx_wr_dma_config(ctx); /* Enable IRQ_WDMA_END and IRQ_WDMA_START. */ cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(1), CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx)); cal_write(ctx->cal, CAL_HL_IRQENABLE_SET(2), CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx)); cal_ctx_wr_dma_enable(ctx); } void cal_ctx_stop(struct cal_ctx *ctx) { struct cal_camerarx *phy = ctx->phy; long timeout; WARN_ON(phy->vc_enable_count[ctx->vc] == 0); spin_lock(&phy->vc_lock); phy->vc_enable_count[ctx->vc]--; spin_unlock(&phy->vc_lock); /* * Request DMA stop and wait until it completes. If completion times * out, forcefully disable the DMA. */ spin_lock_irq(&ctx->dma.lock); ctx->dma.state = CAL_DMA_STOP_REQUESTED; spin_unlock_irq(&ctx->dma.lock); timeout = wait_event_timeout(ctx->dma.wait, cal_ctx_wr_dma_stopped(ctx), msecs_to_jiffies(500)); if (!timeout) { ctx_err(ctx, "failed to disable dma cleanly\n"); cal_ctx_wr_dma_disable(ctx); } /* Disable IRQ_WDMA_END and IRQ_WDMA_START. */ cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(1), CAL_HL_IRQ_WDMA_END_MASK(ctx->dma_ctx)); cal_write(ctx->cal, CAL_HL_IRQENABLE_CLR(2), CAL_HL_IRQ_WDMA_START_MASK(ctx->dma_ctx)); ctx->dma.state = CAL_DMA_STOPPED; /* Disable CSI2 context */ cal_write(ctx->cal, CAL_CSI2_CTX(ctx->phy->instance, ctx->csi2_ctx), 0); /* Disable pix proc */ if (ctx->use_pix_proc) cal_write(ctx->cal, CAL_PIX_PROC(ctx->pix_proc), 0); } /* ------------------------------------------------------------------ * IRQ Handling * ------------------------------------------------------------------ */ /* * Track a sequence number for each virtual channel, which is shared by * all contexts using the same virtual channel. This is done using the * CSI-2 frame number as a base. */ static void cal_update_seq_number(struct cal_ctx *ctx) { struct cal_dev *cal = ctx->cal; struct cal_camerarx *phy = ctx->phy; u16 prev_frame_num, frame_num; u8 vc = ctx->vc; frame_num = cal_read(cal, CAL_CSI2_STATUS(phy->instance, ctx->csi2_ctx)) & 0xffff; if (phy->vc_frame_number[vc] != frame_num) { prev_frame_num = phy->vc_frame_number[vc]; if (prev_frame_num >= frame_num) phy->vc_sequence[vc] += 1; else phy->vc_sequence[vc] += frame_num - prev_frame_num; phy->vc_frame_number[vc] = frame_num; } } static inline void cal_irq_wdma_start(struct cal_ctx *ctx) { spin_lock(&ctx->dma.lock); if (ctx->dma.state == CAL_DMA_STOP_REQUESTED) { /* * If a stop is requested, disable the write DMA context * immediately. The CAL_WR_DMA_CTRL_j.MODE field is shadowed, * the current frame will complete and the DMA will then stop. */ cal_ctx_wr_dma_disable(ctx); ctx->dma.state = CAL_DMA_STOP_PENDING; } else if (!list_empty(&ctx->dma.queue) && !ctx->dma.pending) { /* * Otherwise, if a new buffer is available, queue it to the * hardware. */ struct cal_buffer *buf; dma_addr_t addr; buf = list_first_entry(&ctx->dma.queue, struct cal_buffer, list); addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); cal_ctx_set_dma_addr(ctx, addr); ctx->dma.pending = buf; list_del(&buf->list); } spin_unlock(&ctx->dma.lock); cal_update_seq_number(ctx); } static inline void cal_irq_wdma_end(struct cal_ctx *ctx) { struct cal_buffer *buf = NULL; spin_lock(&ctx->dma.lock); /* If the DMA context was stopping, it is now stopped. */ if (ctx->dma.state == CAL_DMA_STOP_PENDING) { ctx->dma.state = CAL_DMA_STOPPED; wake_up(&ctx->dma.wait); } /* If a new buffer was queued, complete the current buffer. */ if (ctx->dma.pending) { buf = ctx->dma.active; ctx->dma.active = ctx->dma.pending; ctx->dma.pending = NULL; } spin_unlock(&ctx->dma.lock); if (buf) { buf->vb.vb2_buf.timestamp = ktime_get_ns(); buf->vb.field = ctx->v_fmt.fmt.pix.field; buf->vb.sequence = ctx->phy->vc_sequence[ctx->vc]; vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); } } static void cal_irq_handle_wdma(struct cal_ctx *ctx, bool start, bool end) { /* * CAL HW interrupts are inherently racy. If we get both start and end * interrupts, we don't know what has happened: did the DMA for a single * frame start and end, or did one frame end and a new frame start? * * Usually for normal pixel frames we get the interrupts separately. If * we do get both, we have to guess. The assumption in the code below is * that the active vertical area is larger than the blanking vertical * area, and thus it is more likely that we get the end of the old frame * and the start of a new frame. * * However, for embedded data, which is only a few lines high, we always * get both interrupts. Here the assumption is that we get both for the * same frame. */ if (ctx->v_fmt.fmt.pix.height < 10) { if (start) cal_irq_wdma_start(ctx); if (end) cal_irq_wdma_end(ctx); } else { if (end) cal_irq_wdma_end(ctx); if (start) cal_irq_wdma_start(ctx); } } static irqreturn_t cal_irq(int irq_cal, void *data) { struct cal_dev *cal = data; u32 status[3]; unsigned int i; for (i = 0; i < 3; ++i) { status[i] = cal_read(cal, CAL_HL_IRQSTATUS(i)); if (status[i]) cal_write(cal, CAL_HL_IRQSTATUS(i), status[i]); } if (status[0]) { if (status[0] & CAL_HL_IRQ_OCPO_ERR_MASK) dev_err_ratelimited(cal->dev, "OCPO ERROR\n"); for (i = 0; i < cal->data->num_csi2_phy; ++i) { if (status[0] & CAL_HL_IRQ_CIO_MASK(i)) { u32 cio_stat = cal_read(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i)); dev_err_ratelimited(cal->dev, "CIO%u error: %#08x\n", i, cio_stat); cal_write(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i), cio_stat); } if (status[0] & CAL_HL_IRQ_VC_MASK(i)) { u32 vc_stat = cal_read(cal, CAL_CSI2_VC_IRQSTATUS(i)); dev_err_ratelimited(cal->dev, "CIO%u VC error: %#08x\n", i, vc_stat); cal_write(cal, CAL_CSI2_VC_IRQSTATUS(i), vc_stat); } } } for (i = 0; i < cal->num_contexts; ++i) { bool end = !!(status[1] & CAL_HL_IRQ_WDMA_END_MASK(i)); bool start = !!(status[2] & CAL_HL_IRQ_WDMA_START_MASK(i)); if (start || end) cal_irq_handle_wdma(cal->ctx[i], start, end); } return IRQ_HANDLED; } /* ------------------------------------------------------------------ * Asynchronous V4L2 subdev binding * ------------------------------------------------------------------ */ struct cal_v4l2_async_subdev { struct v4l2_async_subdev asd; /* Must be first */ struct cal_camerarx *phy; }; static inline struct cal_v4l2_async_subdev * to_cal_asd(struct v4l2_async_subdev *asd) { return container_of(asd, struct cal_v4l2_async_subdev, asd); } static int cal_async_notifier_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct cal_camerarx *phy = to_cal_asd(asd)->phy; int pad; int ret; if (phy->source) { phy_info(phy, "Rejecting subdev %s (Already set!!)", subdev->name); return 0; } phy->source = subdev; phy_dbg(1, phy, "Using source %s for capture\n", subdev->name); pad = media_entity_get_fwnode_pad(&subdev->entity, of_fwnode_handle(phy->source_ep_node), MEDIA_PAD_FL_SOURCE); if (pad < 0) { phy_err(phy, "Source %s has no connected source pad\n", subdev->name); return pad; } ret = media_create_pad_link(&subdev->entity, pad, &phy->subdev.entity, CAL_CAMERARX_PAD_SINK, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) { phy_err(phy, "Failed to create media link for source %s\n", subdev->name); return ret; } return 0; } static int cal_async_notifier_complete(struct v4l2_async_notifier *notifier) { struct cal_dev *cal = container_of(notifier, struct cal_dev, notifier); unsigned int i; int ret; for (i = 0; i < cal->num_contexts; ++i) { ret = cal_ctx_v4l2_register(cal->ctx[i]); if (ret) goto err_ctx_unreg; } if (!cal_mc_api) return 0; ret = v4l2_device_register_subdev_nodes(&cal->v4l2_dev); if (ret) goto err_ctx_unreg; return 0; err_ctx_unreg: for (; i > 0; --i) { if (!cal->ctx[i - 1]) continue; cal_ctx_v4l2_unregister(cal->ctx[i - 1]); } return ret; } static const struct v4l2_async_notifier_operations cal_async_notifier_ops = { .bound = cal_async_notifier_bound, .complete = cal_async_notifier_complete, }; static int cal_async_notifier_register(struct cal_dev *cal) { unsigned int i; int ret; v4l2_async_nf_init(&cal->notifier); cal->notifier.ops = &cal_async_notifier_ops; for (i = 0; i < cal->data->num_csi2_phy; ++i) { struct cal_camerarx *phy = cal->phy[i]; struct cal_v4l2_async_subdev *casd; struct fwnode_handle *fwnode; if (!phy->source_node) continue; fwnode = of_fwnode_handle(phy->source_node); casd = v4l2_async_nf_add_fwnode(&cal->notifier, fwnode, struct cal_v4l2_async_subdev); if (IS_ERR(casd)) { phy_err(phy, "Failed to add subdev to notifier\n"); ret = PTR_ERR(casd); goto error; } casd->phy = phy; } ret = v4l2_async_nf_register(&cal->v4l2_dev, &cal->notifier); if (ret) { cal_err(cal, "Error registering async notifier\n"); goto error; } return 0; error: v4l2_async_nf_cleanup(&cal->notifier); return ret; } static void cal_async_notifier_unregister(struct cal_dev *cal) { v4l2_async_nf_unregister(&cal->notifier); v4l2_async_nf_cleanup(&cal->notifier); } /* ------------------------------------------------------------------ * Media and V4L2 device handling * ------------------------------------------------------------------ */ /* * Register user-facing devices. To be called at the end of the probe function * when all resources are initialized and ready. */ static int cal_media_register(struct cal_dev *cal) { int ret; ret = media_device_register(&cal->mdev); if (ret) { cal_err(cal, "Failed to register media device\n"); return ret; } /* * Register the async notifier. This may trigger registration of the * V4L2 video devices if all subdevs are ready. */ ret = cal_async_notifier_register(cal); if (ret) { media_device_unregister(&cal->mdev); return ret; } return 0; } /* * Unregister the user-facing devices, but don't free memory yet. To be called * at the beginning of the remove function, to disallow access from userspace. */ static void cal_media_unregister(struct cal_dev *cal) { unsigned int i; /* Unregister all the V4L2 video devices. */ for (i = 0; i < cal->num_contexts; i++) cal_ctx_v4l2_unregister(cal->ctx[i]); cal_async_notifier_unregister(cal); media_device_unregister(&cal->mdev); } /* * Initialize the in-kernel objects. To be called at the beginning of the probe * function, before the V4L2 device is used by the driver. */ static int cal_media_init(struct cal_dev *cal) { struct media_device *mdev = &cal->mdev; int ret; mdev->dev = cal->dev; mdev->hw_revision = cal->revision; strscpy(mdev->model, "CAL", sizeof(mdev->model)); media_device_init(mdev); /* * Initialize the V4L2 device (despite the function name, this performs * initialization, not registration). */ cal->v4l2_dev.mdev = mdev; ret = v4l2_device_register(cal->dev, &cal->v4l2_dev); if (ret) { cal_err(cal, "Failed to register V4L2 device\n"); return ret; } vb2_dma_contig_set_max_seg_size(cal->dev, DMA_BIT_MASK(32)); return 0; } /* * Cleanup the in-kernel objects, freeing memory. To be called at the very end * of the remove sequence, when nothing (including userspace) can access the * objects anymore. */ static void cal_media_cleanup(struct cal_dev *cal) { v4l2_device_unregister(&cal->v4l2_dev); media_device_cleanup(&cal->mdev); vb2_dma_contig_clear_max_seg_size(cal->dev); } /* ------------------------------------------------------------------ * Initialization and module stuff * ------------------------------------------------------------------ */ static struct cal_ctx *cal_ctx_create(struct cal_dev *cal, int inst) { struct cal_ctx *ctx; int ret; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; ctx->cal = cal; ctx->phy = cal->phy[inst]; ctx->dma_ctx = inst; ctx->csi2_ctx = inst; ctx->cport = inst; ret = cal_ctx_v4l2_init(ctx); if (ret) { kfree(ctx); return NULL; } return ctx; } static void cal_ctx_destroy(struct cal_ctx *ctx) { cal_ctx_v4l2_cleanup(ctx); kfree(ctx); } static const struct of_device_id cal_of_match[] = { { .compatible = "ti,dra72-cal", .data = (void *)&dra72x_cal_data, }, { .compatible = "ti,dra72-pre-es2-cal", .data = (void *)&dra72x_es1_cal_data, }, { .compatible = "ti,dra76-cal", .data = (void *)&dra76x_cal_data, }, { .compatible = "ti,am654-cal", .data = (void *)&am654_cal_data, }, {}, }; MODULE_DEVICE_TABLE(of, cal_of_match); /* Get hardware revision and info. */ #define CAL_HL_HWINFO_VALUE 0xa3c90469 static void cal_get_hwinfo(struct cal_dev *cal) { u32 hwinfo; cal->revision = cal_read(cal, CAL_HL_REVISION); switch (FIELD_GET(CAL_HL_REVISION_SCHEME_MASK, cal->revision)) { case CAL_HL_REVISION_SCHEME_H08: cal_dbg(3, cal, "CAL HW revision %lu.%lu.%lu (0x%08x)\n", FIELD_GET(CAL_HL_REVISION_MAJOR_MASK, cal->revision), FIELD_GET(CAL_HL_REVISION_MINOR_MASK, cal->revision), FIELD_GET(CAL_HL_REVISION_RTL_MASK, cal->revision), cal->revision); break; case CAL_HL_REVISION_SCHEME_LEGACY: default: cal_info(cal, "Unexpected CAL HW revision 0x%08x\n", cal->revision); break; } hwinfo = cal_read(cal, CAL_HL_HWINFO); if (hwinfo != CAL_HL_HWINFO_VALUE) cal_info(cal, "CAL_HL_HWINFO = 0x%08x, expected 0x%08x\n", hwinfo, CAL_HL_HWINFO_VALUE); } static int cal_init_camerarx_regmap(struct cal_dev *cal) { struct platform_device *pdev = to_platform_device(cal->dev); struct device_node *np = cal->dev->of_node; struct regmap_config config = { }; struct regmap *syscon; struct resource *res; unsigned int offset; void __iomem *base; syscon = syscon_regmap_lookup_by_phandle_args(np, "ti,camerrx-control", 1, &offset); if (!IS_ERR(syscon)) { cal->syscon_camerrx = syscon; cal->syscon_camerrx_offset = offset; return 0; } dev_warn(cal->dev, "failed to get ti,camerrx-control: %ld\n", PTR_ERR(syscon)); /* * Backward DTS compatibility. If syscon entry is not present then * check if the camerrx_control resource is present. */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "camerrx_control"); base = devm_ioremap_resource(cal->dev, res); if (IS_ERR(base)) { cal_err(cal, "failed to ioremap camerrx_control\n"); return PTR_ERR(base); } cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", res->name, &res->start, &res->end); config.reg_bits = 32; config.reg_stride = 4; config.val_bits = 32; config.max_register = resource_size(res) - 4; syscon = regmap_init_mmio(NULL, base, &config); if (IS_ERR(syscon)) { pr_err("regmap init failed\n"); return PTR_ERR(syscon); } /* * In this case the base already point to the direct CM register so no * need for an offset. */ cal->syscon_camerrx = syscon; cal->syscon_camerrx_offset = 0; return 0; } static int cal_probe(struct platform_device *pdev) { struct cal_dev *cal; bool connected = false; unsigned int i; int ret; int irq; cal = devm_kzalloc(&pdev->dev, sizeof(*cal), GFP_KERNEL); if (!cal) return -ENOMEM; cal->data = of_device_get_match_data(&pdev->dev); if (!cal->data) { dev_err(&pdev->dev, "Could not get feature data based on compatible version\n"); return -ENODEV; } cal->dev = &pdev->dev; platform_set_drvdata(pdev, cal); /* Acquire resources: clocks, CAMERARX regmap, I/O memory and IRQ. */ cal->fclk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(cal->fclk)) { dev_err(&pdev->dev, "cannot get CAL fclk\n"); return PTR_ERR(cal->fclk); } ret = cal_init_camerarx_regmap(cal); if (ret < 0) return ret; cal->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cal_top"); cal->base = devm_ioremap_resource(&pdev->dev, cal->res); if (IS_ERR(cal->base)) return PTR_ERR(cal->base); cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", cal->res->name, &cal->res->start, &cal->res->end); irq = platform_get_irq(pdev, 0); cal_dbg(1, cal, "got irq# %d\n", irq); ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME, cal); if (ret) return ret; /* Read the revision and hardware info to verify hardware access. */ pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret) goto error_pm_runtime; cal_get_hwinfo(cal); pm_runtime_put_sync(&pdev->dev); /* Initialize the media device. */ ret = cal_media_init(cal); if (ret < 0) goto error_pm_runtime; /* Create CAMERARX PHYs. */ for (i = 0; i < cal->data->num_csi2_phy; ++i) { cal->phy[i] = cal_camerarx_create(cal, i); if (IS_ERR(cal->phy[i])) { ret = PTR_ERR(cal->phy[i]); cal->phy[i] = NULL; goto error_camerarx; } if (cal->phy[i]->source_node) connected = true; } if (!connected) { cal_err(cal, "Neither port is configured, no point in staying up\n"); ret = -ENODEV; goto error_camerarx; } /* Create contexts. */ for (i = 0; i < cal->data->num_csi2_phy; ++i) { if (!cal->phy[i]->source_node) continue; cal->ctx[cal->num_contexts] = cal_ctx_create(cal, i); if (!cal->ctx[cal->num_contexts]) { cal_err(cal, "Failed to create context %u\n", cal->num_contexts); ret = -ENODEV; goto error_context; } cal->num_contexts++; } /* Register the media device. */ ret = cal_media_register(cal); if (ret) goto error_context; return 0; error_context: for (i = 0; i < cal->num_contexts; i++) cal_ctx_destroy(cal->ctx[i]); error_camerarx: for (i = 0; i < cal->data->num_csi2_phy; i++) cal_camerarx_destroy(cal->phy[i]); cal_media_cleanup(cal); error_pm_runtime: pm_runtime_disable(&pdev->dev); return ret; } static int cal_remove(struct platform_device *pdev) { struct cal_dev *cal = platform_get_drvdata(pdev); unsigned int i; int ret; cal_dbg(1, cal, "Removing %s\n", CAL_MODULE_NAME); ret = pm_runtime_resume_and_get(&pdev->dev); cal_media_unregister(cal); for (i = 0; i < cal->data->num_csi2_phy; i++) cal_camerarx_disable(cal->phy[i]); for (i = 0; i < cal->num_contexts; i++) cal_ctx_destroy(cal->ctx[i]); for (i = 0; i < cal->data->num_csi2_phy; i++) cal_camerarx_destroy(cal->phy[i]); cal_media_cleanup(cal); if (ret >= 0) pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } static int cal_runtime_resume(struct device *dev) { struct cal_dev *cal = dev_get_drvdata(dev); unsigned int i; u32 val; if (cal->data->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) { /* * Apply errata on both port everytime we (re-)enable * the clock */ for (i = 0; i < cal->data->num_csi2_phy; i++) cal_camerarx_i913_errata(cal->phy[i]); } /* * Enable global interrupts that are not related to a particular * CAMERARAX or context. */ cal_write(cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK); val = cal_read(cal, CAL_CTRL); cal_set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, CAL_CTRL_BURSTSIZE_MASK); cal_set_field(&val, 0xf, CAL_CTRL_TAGCNT_MASK); cal_set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED, CAL_CTRL_POSTED_WRITES_MASK); cal_set_field(&val, 0xff, CAL_CTRL_MFLAGL_MASK); cal_set_field(&val, 0xff, CAL_CTRL_MFLAGH_MASK); cal_write(cal, CAL_CTRL, val); cal_dbg(3, cal, "CAL_CTRL = 0x%08x\n", cal_read(cal, CAL_CTRL)); return 0; } static const struct dev_pm_ops cal_pm_ops = { .runtime_resume = cal_runtime_resume, }; static struct platform_driver cal_pdrv = { .probe = cal_probe, .remove = cal_remove, .driver = { .name = CAL_MODULE_NAME, .pm = &cal_pm_ops, .of_match_table = cal_of_match, }, }; module_platform_driver(cal_pdrv);