3.0 KiB
3.0 KiB
1 | index | title | chapter | who | name | note1 | note2 | |
---|---|---|---|---|---|---|---|---|
2 | 1 | Why do we care about IML? | 3.1-3.3 | Daniel | daniel.wilmes@cs.uni-dortmund.de | 1 | e.g. Is IML required? | {null} |
3 | 2 | How to do IML research? | 3.4-3.6 | Daniel | daniel.wilmes@cs.uni-dortmund.de | 2 | e.g. How to evaluate Interpretability | {null} |
4 | 3 | Linear Models | 5.1-5.3 | Jelle | jelle.huentelmann@cs.tu-dortmund.de | 3 | Simple Models are simple to explain | Programming task: Do a linear regression on a simple dataset! |
5 | 4 | Decision Trees | 5.4 | Jelle | jelle.huentelmann@cs.tu-dortmund.de | 4 | Programming task: Train a decision Tree on a simple dataset! | Could be combined with 5 |
6 | 5 | Rule Based Methods | 5.5-5.6 | Jelle | jelle.huentelmann@cs.tu-dortmund.de | 5 | {null} | Could be combined with 4 |
7 | 6 | Partial Dependence Plot | 8.1 | Carina | carina.newen@cs.uni-dortmund.de | 6 | How much does chainging a feature change the output? | Could be combined with 7 |
8 | 7 | Accumulated Local Effects | 8.2 | Carina | carina.newen@cs.uni-dortmund.de | 7 | How much effect does changing a feature have on the average prediction | Could be combined with 6 |
9 | 8 | Feature Interactions | 8.3 | Carina | carina.newen@cs.uni-dortmund.de | 8 | In general features are not independent | Measure the effect of interactions between them |
10 | 9 | Functional Decomposition | 8.4 | Daniel | daniel.wilmes@cs.uni-dortmund.de | 9 | Describe a function by feature interactions and their interactions | {null} |
11 | 10 | Permutation Feature Importance | 8.5 | Bin | bin.li@tu-dortmund.de | 10 | How much does a feature change, if we permute its values | {null} |
12 | 11 | Global Surrogates | 8.6 | Bin | bin.li@tu-dortmund.de | 11 | Replace a complicated model by an interpretable one | {null} |
13 | 12 | Prototypes | 8.7 | Bin | bin.li@tu-dortmund.de | 12 | Represent some model output by well fitting data instances | {null} |
14 | 13 | Individual Conditional Expectation | 9.1-9.2 | Chiara | chiara.balestra@cs.uni-dortmund.de | 13 | Show the effect one feature has on the prediction | {null} |
15 | 14 | Counterfactual Explanations | 9.3-9.4 | Chiara | chiara.balestra@cs.uni-dortmund.de | 14 | What to do to change a prediction? | {null} |
16 | 15 | Shapley Values | 9.5-9.6 | Chiara | chiara.balestra@cs.uni-dortmund.de | 15 | Use game theory to explain the output of a model | {null} |
17 | 16 | Learned Features | 10.1 | Benedikt | benedikt.boeing@cs.tu-dortmund.de | 16 | Conv. NN contain Intepretable Features | Programming task: Visualise your own classifier! |
18 | 17 | Saliency Maps | 10.2 | Simon | simon.kluettermann@cs.uni-dortmund.de | 17 | Different parts of an image have different effect/importance on the classification of an image | Programming task: Generate one Saliency Map yourself! |
19 | 18 | Concept Detection | 10.3 | Simon | simon.kluettermann@cs.uni-dortmund.de | 18 | Replace Features by Concepts | {null} |
20 | 19 | Adversarials | 10.4 | Benedikt | benedikt.boeing@cs.tu-dortmund.de | 19 | Slight changes in a neural network can change its output drastically | {null} |
21 | 20 | Influential Instances | 10.5 | Simon | simon.kluettermann@cs.uni-dortmund.de | 20 | Single examples can change the output of a NN drastically | {null} |