794 lines
26 KiB
C++
794 lines
26 KiB
C++
//===--- X86DomainReassignment.cpp - Selectively switch register classes---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass attempts to find instruction chains (closures) in one domain,
|
|
// and convert them to equivalent instructions in a different domain,
|
|
// if profitable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Printable.h"
|
|
#include <bitset>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-domain-reassignment"
|
|
|
|
STATISTIC(NumClosuresConverted, "Number of closures converted by the pass");
|
|
|
|
static cl::opt<bool> DisableX86DomainReassignment(
|
|
"disable-x86-domain-reassignment", cl::Hidden,
|
|
cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false));
|
|
|
|
namespace {
|
|
enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains };
|
|
|
|
static bool isGPR(const TargetRegisterClass *RC) {
|
|
return X86::GR64RegClass.hasSubClassEq(RC) ||
|
|
X86::GR32RegClass.hasSubClassEq(RC) ||
|
|
X86::GR16RegClass.hasSubClassEq(RC) ||
|
|
X86::GR8RegClass.hasSubClassEq(RC);
|
|
}
|
|
|
|
static bool isMask(const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) {
|
|
return X86::VK16RegClass.hasSubClassEq(RC);
|
|
}
|
|
|
|
static RegDomain getDomain(const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (isGPR(RC))
|
|
return GPRDomain;
|
|
if (isMask(RC, TRI))
|
|
return MaskDomain;
|
|
return OtherDomain;
|
|
}
|
|
|
|
/// Return a register class equivalent to \p SrcRC, in \p Domain.
|
|
static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC,
|
|
RegDomain Domain) {
|
|
assert(Domain == MaskDomain && "add domain");
|
|
if (X86::GR8RegClass.hasSubClassEq(SrcRC))
|
|
return &X86::VK8RegClass;
|
|
if (X86::GR16RegClass.hasSubClassEq(SrcRC))
|
|
return &X86::VK16RegClass;
|
|
if (X86::GR32RegClass.hasSubClassEq(SrcRC))
|
|
return &X86::VK32RegClass;
|
|
if (X86::GR64RegClass.hasSubClassEq(SrcRC))
|
|
return &X86::VK64RegClass;
|
|
llvm_unreachable("add register class");
|
|
return nullptr;
|
|
}
|
|
|
|
/// Abstract Instruction Converter class.
|
|
class InstrConverterBase {
|
|
protected:
|
|
unsigned SrcOpcode;
|
|
|
|
public:
|
|
InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {}
|
|
|
|
virtual ~InstrConverterBase() {}
|
|
|
|
/// \returns true if \p MI is legal to convert.
|
|
virtual bool isLegal(const MachineInstr *MI,
|
|
const TargetInstrInfo *TII) const {
|
|
assert(MI->getOpcode() == SrcOpcode &&
|
|
"Wrong instruction passed to converter");
|
|
return true;
|
|
}
|
|
|
|
/// Applies conversion to \p MI.
|
|
///
|
|
/// \returns true if \p MI is no longer need, and can be deleted.
|
|
virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
|
|
MachineRegisterInfo *MRI) const = 0;
|
|
|
|
/// \returns the cost increment incurred by converting \p MI.
|
|
virtual double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const = 0;
|
|
};
|
|
|
|
/// An Instruction Converter which ignores the given instruction.
|
|
/// For example, PHI instructions can be safely ignored since only the registers
|
|
/// need to change.
|
|
class InstrIgnore : public InstrConverterBase {
|
|
public:
|
|
InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {}
|
|
|
|
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
|
|
MachineRegisterInfo *MRI) const override {
|
|
assert(isLegal(MI, TII) && "Cannot convert instruction");
|
|
return false;
|
|
}
|
|
|
|
double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const override {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// An Instruction Converter which replaces an instruction with another.
|
|
class InstrReplacer : public InstrConverterBase {
|
|
public:
|
|
/// Opcode of the destination instruction.
|
|
unsigned DstOpcode;
|
|
|
|
InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode)
|
|
: InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
|
|
|
|
bool isLegal(const MachineInstr *MI,
|
|
const TargetInstrInfo *TII) const override {
|
|
if (!InstrConverterBase::isLegal(MI, TII))
|
|
return false;
|
|
// It's illegal to replace an instruction that implicitly defines a register
|
|
// with an instruction that doesn't, unless that register dead.
|
|
for (const auto &MO : MI->implicit_operands())
|
|
if (MO.isReg() && MO.isDef() && !MO.isDead() &&
|
|
!TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
|
|
MachineRegisterInfo *MRI) const override {
|
|
assert(isLegal(MI, TII) && "Cannot convert instruction");
|
|
MachineInstrBuilder Bld =
|
|
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode));
|
|
// Transfer explicit operands from original instruction. Implicit operands
|
|
// are handled by BuildMI.
|
|
for (auto &Op : MI->explicit_operands())
|
|
Bld.add(Op);
|
|
return true;
|
|
}
|
|
|
|
double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const override {
|
|
// Assuming instructions have the same cost.
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// An Instruction Converter which replaces an instruction with another, and
|
|
/// adds a COPY from the new instruction's destination to the old one's.
|
|
class InstrReplacerDstCOPY : public InstrConverterBase {
|
|
public:
|
|
unsigned DstOpcode;
|
|
|
|
InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode)
|
|
: InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
|
|
|
|
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
|
|
MachineRegisterInfo *MRI) const override {
|
|
assert(isLegal(MI, TII) && "Cannot convert instruction");
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
const DebugLoc &DL = MI->getDebugLoc();
|
|
|
|
Register Reg = MRI->createVirtualRegister(
|
|
TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(),
|
|
*MBB->getParent()));
|
|
MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg);
|
|
for (unsigned Idx = 1, End = MI->getNumOperands(); Idx < End; ++Idx)
|
|
Bld.add(MI->getOperand(Idx));
|
|
|
|
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY))
|
|
.add(MI->getOperand(0))
|
|
.addReg(Reg);
|
|
|
|
return true;
|
|
}
|
|
|
|
double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const override {
|
|
// Assuming instructions have the same cost, and that COPY is in the same
|
|
// domain so it will be eliminated.
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// An Instruction Converter for replacing COPY instructions.
|
|
class InstrCOPYReplacer : public InstrReplacer {
|
|
public:
|
|
RegDomain DstDomain;
|
|
|
|
InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode)
|
|
: InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {}
|
|
|
|
bool isLegal(const MachineInstr *MI,
|
|
const TargetInstrInfo *TII) const override {
|
|
if (!InstrConverterBase::isLegal(MI, TII))
|
|
return false;
|
|
|
|
// Don't allow copies to/flow GR8/GR16 physical registers.
|
|
// FIXME: Is there some better way to support this?
|
|
Register DstReg = MI->getOperand(0).getReg();
|
|
if (DstReg.isPhysical() && (X86::GR8RegClass.contains(DstReg) ||
|
|
X86::GR16RegClass.contains(DstReg)))
|
|
return false;
|
|
Register SrcReg = MI->getOperand(1).getReg();
|
|
if (SrcReg.isPhysical() && (X86::GR8RegClass.contains(SrcReg) ||
|
|
X86::GR16RegClass.contains(SrcReg)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const override {
|
|
assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY");
|
|
|
|
for (const auto &MO : MI->operands()) {
|
|
// Physical registers will not be converted. Assume that converting the
|
|
// COPY to the destination domain will eventually result in a actual
|
|
// instruction.
|
|
if (Register::isPhysicalRegister(MO.getReg()))
|
|
return 1;
|
|
|
|
RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()),
|
|
MRI->getTargetRegisterInfo());
|
|
// Converting a cross domain COPY to a same domain COPY should eliminate
|
|
// an insturction
|
|
if (OpDomain == DstDomain)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// An Instruction Converter which replaces an instruction with a COPY.
|
|
class InstrReplaceWithCopy : public InstrConverterBase {
|
|
public:
|
|
// Source instruction operand Index, to be used as the COPY source.
|
|
unsigned SrcOpIdx;
|
|
|
|
InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx)
|
|
: InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {}
|
|
|
|
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
|
|
MachineRegisterInfo *MRI) const override {
|
|
assert(isLegal(MI, TII) && "Cannot convert instruction");
|
|
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY))
|
|
.add({MI->getOperand(0), MI->getOperand(SrcOpIdx)});
|
|
return true;
|
|
}
|
|
|
|
double getExtraCost(const MachineInstr *MI,
|
|
MachineRegisterInfo *MRI) const override {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// Key type to be used by the Instruction Converters map.
|
|
// A converter is identified by <destination domain, source opcode>
|
|
typedef std::pair<int, unsigned> InstrConverterBaseKeyTy;
|
|
|
|
typedef DenseMap<InstrConverterBaseKeyTy, std::unique_ptr<InstrConverterBase>>
|
|
InstrConverterBaseMap;
|
|
|
|
/// A closure is a set of virtual register representing all of the edges in
|
|
/// the closure, as well as all of the instructions connected by those edges.
|
|
///
|
|
/// A closure may encompass virtual registers in the same register bank that
|
|
/// have different widths. For example, it may contain 32-bit GPRs as well as
|
|
/// 64-bit GPRs.
|
|
///
|
|
/// A closure that computes an address (i.e. defines a virtual register that is
|
|
/// used in a memory operand) excludes the instructions that contain memory
|
|
/// operands using the address. Such an instruction will be included in a
|
|
/// different closure that manipulates the loaded or stored value.
|
|
class Closure {
|
|
private:
|
|
/// Virtual registers in the closure.
|
|
DenseSet<Register> Edges;
|
|
|
|
/// Instructions in the closure.
|
|
SmallVector<MachineInstr *, 8> Instrs;
|
|
|
|
/// Domains which this closure can legally be reassigned to.
|
|
std::bitset<NumDomains> LegalDstDomains;
|
|
|
|
/// An ID to uniquely identify this closure, even when it gets
|
|
/// moved around
|
|
unsigned ID;
|
|
|
|
public:
|
|
Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) {
|
|
for (RegDomain D : LegalDstDomainList)
|
|
LegalDstDomains.set(D);
|
|
}
|
|
|
|
/// Mark this closure as illegal for reassignment to all domains.
|
|
void setAllIllegal() { LegalDstDomains.reset(); }
|
|
|
|
/// \returns true if this closure has domains which are legal to reassign to.
|
|
bool hasLegalDstDomain() const { return LegalDstDomains.any(); }
|
|
|
|
/// \returns true if is legal to reassign this closure to domain \p RD.
|
|
bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; }
|
|
|
|
/// Mark this closure as illegal for reassignment to domain \p RD.
|
|
void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; }
|
|
|
|
bool empty() const { return Edges.empty(); }
|
|
|
|
bool insertEdge(Register Reg) { return Edges.insert(Reg).second; }
|
|
|
|
using const_edge_iterator = DenseSet<Register>::const_iterator;
|
|
iterator_range<const_edge_iterator> edges() const {
|
|
return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end());
|
|
}
|
|
|
|
void addInstruction(MachineInstr *I) {
|
|
Instrs.push_back(I);
|
|
}
|
|
|
|
ArrayRef<MachineInstr *> instructions() const {
|
|
return Instrs;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const {
|
|
dbgs() << "Registers: ";
|
|
bool First = true;
|
|
for (Register Reg : Edges) {
|
|
if (!First)
|
|
dbgs() << ", ";
|
|
First = false;
|
|
dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI);
|
|
}
|
|
dbgs() << "\n" << "Instructions:";
|
|
for (MachineInstr *MI : Instrs) {
|
|
dbgs() << "\n ";
|
|
MI->print(dbgs());
|
|
}
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
unsigned getID() const {
|
|
return ID;
|
|
}
|
|
|
|
};
|
|
|
|
class X86DomainReassignment : public MachineFunctionPass {
|
|
const X86Subtarget *STI = nullptr;
|
|
MachineRegisterInfo *MRI = nullptr;
|
|
const X86InstrInfo *TII = nullptr;
|
|
|
|
/// All edges that are included in some closure
|
|
DenseSet<unsigned> EnclosedEdges;
|
|
|
|
/// All instructions that are included in some closure.
|
|
DenseMap<MachineInstr *, unsigned> EnclosedInstrs;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
X86DomainReassignment() : MachineFunctionPass(ID) { }
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "X86 Domain Reassignment Pass";
|
|
}
|
|
|
|
private:
|
|
/// A map of available Instruction Converters.
|
|
InstrConverterBaseMap Converters;
|
|
|
|
/// Initialize Converters map.
|
|
void initConverters();
|
|
|
|
/// Starting from \Reg, expand the closure as much as possible.
|
|
void buildClosure(Closure &, Register Reg);
|
|
|
|
/// Enqueue \p Reg to be considered for addition to the closure.
|
|
void visitRegister(Closure &, Register Reg, RegDomain &Domain,
|
|
SmallVectorImpl<unsigned> &Worklist);
|
|
|
|
/// Reassign the closure to \p Domain.
|
|
void reassign(const Closure &C, RegDomain Domain) const;
|
|
|
|
/// Add \p MI to the closure.
|
|
void encloseInstr(Closure &C, MachineInstr *MI);
|
|
|
|
/// /returns true if it is profitable to reassign the closure to \p Domain.
|
|
bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const;
|
|
|
|
/// Calculate the total cost of reassigning the closure to \p Domain.
|
|
double calculateCost(const Closure &C, RegDomain Domain) const;
|
|
};
|
|
|
|
char X86DomainReassignment::ID = 0;
|
|
|
|
} // End anonymous namespace.
|
|
|
|
void X86DomainReassignment::visitRegister(Closure &C, Register Reg,
|
|
RegDomain &Domain,
|
|
SmallVectorImpl<unsigned> &Worklist) {
|
|
if (EnclosedEdges.count(Reg))
|
|
return;
|
|
|
|
if (!Reg.isVirtual())
|
|
return;
|
|
|
|
if (!MRI->hasOneDef(Reg))
|
|
return;
|
|
|
|
RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo());
|
|
// First edge in closure sets the domain.
|
|
if (Domain == NoDomain)
|
|
Domain = RD;
|
|
|
|
if (Domain != RD)
|
|
return;
|
|
|
|
Worklist.push_back(Reg);
|
|
}
|
|
|
|
void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) {
|
|
auto I = EnclosedInstrs.find(MI);
|
|
if (I != EnclosedInstrs.end()) {
|
|
if (I->second != C.getID())
|
|
// Instruction already belongs to another closure, avoid conflicts between
|
|
// closure and mark this closure as illegal.
|
|
C.setAllIllegal();
|
|
return;
|
|
}
|
|
|
|
EnclosedInstrs[MI] = C.getID();
|
|
C.addInstruction(MI);
|
|
|
|
// Mark closure as illegal for reassignment to domains, if there is no
|
|
// converter for the instruction or if the converter cannot convert the
|
|
// instruction.
|
|
for (int i = 0; i != NumDomains; ++i) {
|
|
if (C.isLegal((RegDomain)i)) {
|
|
auto I = Converters.find({i, MI->getOpcode()});
|
|
if (I == Converters.end() || !I->second->isLegal(MI, TII))
|
|
C.setIllegal((RegDomain)i);
|
|
}
|
|
}
|
|
}
|
|
|
|
double X86DomainReassignment::calculateCost(const Closure &C,
|
|
RegDomain DstDomain) const {
|
|
assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure");
|
|
|
|
double Cost = 0.0;
|
|
for (auto *MI : C.instructions())
|
|
Cost += Converters.find({DstDomain, MI->getOpcode()})
|
|
->second->getExtraCost(MI, MRI);
|
|
return Cost;
|
|
}
|
|
|
|
bool X86DomainReassignment::isReassignmentProfitable(const Closure &C,
|
|
RegDomain Domain) const {
|
|
return calculateCost(C, Domain) < 0.0;
|
|
}
|
|
|
|
void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const {
|
|
assert(C.isLegal(Domain) && "Cannot convert illegal closure");
|
|
|
|
// Iterate all instructions in the closure, convert each one using the
|
|
// appropriate converter.
|
|
SmallVector<MachineInstr *, 8> ToErase;
|
|
for (auto *MI : C.instructions())
|
|
if (Converters.find({Domain, MI->getOpcode()})
|
|
->second->convertInstr(MI, TII, MRI))
|
|
ToErase.push_back(MI);
|
|
|
|
// Iterate all registers in the closure, replace them with registers in the
|
|
// destination domain.
|
|
for (Register Reg : C.edges()) {
|
|
MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain));
|
|
for (auto &MO : MRI->use_operands(Reg)) {
|
|
if (MO.isReg())
|
|
// Remove all subregister references as they are not valid in the
|
|
// destination domain.
|
|
MO.setSubReg(0);
|
|
}
|
|
}
|
|
|
|
for (auto *MI : ToErase)
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
/// \returns true when \p Reg is used as part of an address calculation in \p
|
|
/// MI.
|
|
static bool usedAsAddr(const MachineInstr &MI, Register Reg,
|
|
const TargetInstrInfo *TII) {
|
|
if (!MI.mayLoadOrStore())
|
|
return false;
|
|
|
|
const MCInstrDesc &Desc = TII->get(MI.getOpcode());
|
|
int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (MemOpStart == -1)
|
|
return false;
|
|
|
|
MemOpStart += X86II::getOperandBias(Desc);
|
|
for (unsigned MemOpIdx = MemOpStart,
|
|
MemOpEnd = MemOpStart + X86::AddrNumOperands;
|
|
MemOpIdx < MemOpEnd; ++MemOpIdx) {
|
|
const MachineOperand &Op = MI.getOperand(MemOpIdx);
|
|
if (Op.isReg() && Op.getReg() == Reg)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void X86DomainReassignment::buildClosure(Closure &C, Register Reg) {
|
|
SmallVector<unsigned, 4> Worklist;
|
|
RegDomain Domain = NoDomain;
|
|
visitRegister(C, Reg, Domain, Worklist);
|
|
while (!Worklist.empty()) {
|
|
unsigned CurReg = Worklist.pop_back_val();
|
|
|
|
// Register already in this closure.
|
|
if (!C.insertEdge(CurReg))
|
|
continue;
|
|
EnclosedEdges.insert(Reg);
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(CurReg);
|
|
encloseInstr(C, DefMI);
|
|
|
|
// Add register used by the defining MI to the worklist.
|
|
// Do not add registers which are used in address calculation, they will be
|
|
// added to a different closure.
|
|
int OpEnd = DefMI->getNumOperands();
|
|
const MCInstrDesc &Desc = DefMI->getDesc();
|
|
int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags);
|
|
if (MemOp != -1)
|
|
MemOp += X86II::getOperandBias(Desc);
|
|
for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) {
|
|
if (OpIdx == MemOp) {
|
|
// skip address calculation.
|
|
OpIdx += (X86::AddrNumOperands - 1);
|
|
continue;
|
|
}
|
|
auto &Op = DefMI->getOperand(OpIdx);
|
|
if (!Op.isReg() || !Op.isUse())
|
|
continue;
|
|
visitRegister(C, Op.getReg(), Domain, Worklist);
|
|
}
|
|
|
|
// Expand closure through register uses.
|
|
for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) {
|
|
// We would like to avoid converting closures which calculare addresses,
|
|
// as this should remain in GPRs.
|
|
if (usedAsAddr(UseMI, CurReg, TII)) {
|
|
C.setAllIllegal();
|
|
continue;
|
|
}
|
|
encloseInstr(C, &UseMI);
|
|
|
|
for (auto &DefOp : UseMI.defs()) {
|
|
if (!DefOp.isReg())
|
|
continue;
|
|
|
|
Register DefReg = DefOp.getReg();
|
|
if (!DefReg.isVirtual()) {
|
|
C.setAllIllegal();
|
|
continue;
|
|
}
|
|
visitRegister(C, DefReg, Domain, Worklist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void X86DomainReassignment::initConverters() {
|
|
Converters[{MaskDomain, TargetOpcode::PHI}] =
|
|
std::make_unique<InstrIgnore>(TargetOpcode::PHI);
|
|
|
|
Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] =
|
|
std::make_unique<InstrIgnore>(TargetOpcode::IMPLICIT_DEF);
|
|
|
|
Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] =
|
|
std::make_unique<InstrReplaceWithCopy>(TargetOpcode::INSERT_SUBREG, 2);
|
|
|
|
Converters[{MaskDomain, TargetOpcode::COPY}] =
|
|
std::make_unique<InstrCOPYReplacer>(TargetOpcode::COPY, MaskDomain,
|
|
TargetOpcode::COPY);
|
|
|
|
auto createReplacerDstCOPY = [&](unsigned From, unsigned To) {
|
|
Converters[{MaskDomain, From}] =
|
|
std::make_unique<InstrReplacerDstCOPY>(From, To);
|
|
};
|
|
|
|
createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm);
|
|
createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm);
|
|
|
|
createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk);
|
|
createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk);
|
|
|
|
if (STI->hasDQI()) {
|
|
createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm);
|
|
createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm);
|
|
createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm);
|
|
|
|
createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk);
|
|
createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk);
|
|
createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk);
|
|
}
|
|
|
|
auto createReplacer = [&](unsigned From, unsigned To) {
|
|
Converters[{MaskDomain, From}] = std::make_unique<InstrReplacer>(From, To);
|
|
};
|
|
|
|
createReplacer(X86::MOV16rm, X86::KMOVWkm);
|
|
createReplacer(X86::MOV16mr, X86::KMOVWmk);
|
|
createReplacer(X86::MOV16rr, X86::KMOVWkk);
|
|
createReplacer(X86::SHR16ri, X86::KSHIFTRWri);
|
|
createReplacer(X86::SHL16ri, X86::KSHIFTLWri);
|
|
createReplacer(X86::NOT16r, X86::KNOTWrr);
|
|
createReplacer(X86::OR16rr, X86::KORWrr);
|
|
createReplacer(X86::AND16rr, X86::KANDWrr);
|
|
createReplacer(X86::XOR16rr, X86::KXORWrr);
|
|
|
|
if (STI->hasBWI()) {
|
|
createReplacer(X86::MOV32rm, X86::KMOVDkm);
|
|
createReplacer(X86::MOV64rm, X86::KMOVQkm);
|
|
|
|
createReplacer(X86::MOV32mr, X86::KMOVDmk);
|
|
createReplacer(X86::MOV64mr, X86::KMOVQmk);
|
|
|
|
createReplacer(X86::MOV32rr, X86::KMOVDkk);
|
|
createReplacer(X86::MOV64rr, X86::KMOVQkk);
|
|
|
|
createReplacer(X86::SHR32ri, X86::KSHIFTRDri);
|
|
createReplacer(X86::SHR64ri, X86::KSHIFTRQri);
|
|
|
|
createReplacer(X86::SHL32ri, X86::KSHIFTLDri);
|
|
createReplacer(X86::SHL64ri, X86::KSHIFTLQri);
|
|
|
|
createReplacer(X86::ADD32rr, X86::KADDDrr);
|
|
createReplacer(X86::ADD64rr, X86::KADDQrr);
|
|
|
|
createReplacer(X86::NOT32r, X86::KNOTDrr);
|
|
createReplacer(X86::NOT64r, X86::KNOTQrr);
|
|
|
|
createReplacer(X86::OR32rr, X86::KORDrr);
|
|
createReplacer(X86::OR64rr, X86::KORQrr);
|
|
|
|
createReplacer(X86::AND32rr, X86::KANDDrr);
|
|
createReplacer(X86::AND64rr, X86::KANDQrr);
|
|
|
|
createReplacer(X86::ANDN32rr, X86::KANDNDrr);
|
|
createReplacer(X86::ANDN64rr, X86::KANDNQrr);
|
|
|
|
createReplacer(X86::XOR32rr, X86::KXORDrr);
|
|
createReplacer(X86::XOR64rr, X86::KXORQrr);
|
|
|
|
// TODO: KTEST is not a replacement for TEST due to flag differences. Need
|
|
// to prove only Z flag is used.
|
|
//createReplacer(X86::TEST32rr, X86::KTESTDrr);
|
|
//createReplacer(X86::TEST64rr, X86::KTESTQrr);
|
|
}
|
|
|
|
if (STI->hasDQI()) {
|
|
createReplacer(X86::ADD8rr, X86::KADDBrr);
|
|
createReplacer(X86::ADD16rr, X86::KADDWrr);
|
|
|
|
createReplacer(X86::AND8rr, X86::KANDBrr);
|
|
|
|
createReplacer(X86::MOV8rm, X86::KMOVBkm);
|
|
createReplacer(X86::MOV8mr, X86::KMOVBmk);
|
|
createReplacer(X86::MOV8rr, X86::KMOVBkk);
|
|
|
|
createReplacer(X86::NOT8r, X86::KNOTBrr);
|
|
|
|
createReplacer(X86::OR8rr, X86::KORBrr);
|
|
|
|
createReplacer(X86::SHR8ri, X86::KSHIFTRBri);
|
|
createReplacer(X86::SHL8ri, X86::KSHIFTLBri);
|
|
|
|
// TODO: KTEST is not a replacement for TEST due to flag differences. Need
|
|
// to prove only Z flag is used.
|
|
//createReplacer(X86::TEST8rr, X86::KTESTBrr);
|
|
//createReplacer(X86::TEST16rr, X86::KTESTWrr);
|
|
|
|
createReplacer(X86::XOR8rr, X86::KXORBrr);
|
|
}
|
|
}
|
|
|
|
bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
if (DisableX86DomainReassignment)
|
|
return false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "***** Machine Function before Domain Reassignment *****\n");
|
|
LLVM_DEBUG(MF.print(dbgs()));
|
|
|
|
STI = &MF.getSubtarget<X86Subtarget>();
|
|
// GPR->K is the only transformation currently supported, bail out early if no
|
|
// AVX512.
|
|
// TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and
|
|
// VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register
|
|
// coalescer doesn't clean it up and we generate a spill we will crash.
|
|
if (!STI->hasAVX512() || !STI->hasBWI())
|
|
return false;
|
|
|
|
MRI = &MF.getRegInfo();
|
|
assert(MRI->isSSA() && "Expected MIR to be in SSA form");
|
|
|
|
TII = STI->getInstrInfo();
|
|
initConverters();
|
|
bool Changed = false;
|
|
|
|
EnclosedEdges.clear();
|
|
EnclosedInstrs.clear();
|
|
|
|
std::vector<Closure> Closures;
|
|
|
|
// Go over all virtual registers and calculate a closure.
|
|
unsigned ClosureID = 0;
|
|
for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) {
|
|
Register Reg = Register::index2VirtReg(Idx);
|
|
|
|
// GPR only current source domain supported.
|
|
if (!isGPR(MRI->getRegClass(Reg)))
|
|
continue;
|
|
|
|
// Register already in closure.
|
|
if (EnclosedEdges.count(Reg))
|
|
continue;
|
|
|
|
// Calculate closure starting with Reg.
|
|
Closure C(ClosureID++, {MaskDomain});
|
|
buildClosure(C, Reg);
|
|
|
|
// Collect all closures that can potentially be converted.
|
|
if (!C.empty() && C.isLegal(MaskDomain))
|
|
Closures.push_back(std::move(C));
|
|
}
|
|
|
|
for (Closure &C : Closures) {
|
|
LLVM_DEBUG(C.dump(MRI));
|
|
if (isReassignmentProfitable(C, MaskDomain)) {
|
|
reassign(C, MaskDomain);
|
|
++NumClosuresConverted;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "***** Machine Function after Domain Reassignment *****\n");
|
|
LLVM_DEBUG(MF.print(dbgs()));
|
|
|
|
return Changed;
|
|
}
|
|
|
|
INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment",
|
|
"X86 Domain Reassignment Pass", false, false)
|
|
|
|
/// Returns an instance of the Domain Reassignment pass.
|
|
FunctionPass *llvm::createX86DomainReassignmentPass() {
|
|
return new X86DomainReassignment();
|
|
}
|