//===--- X86DomainReassignment.cpp - Selectively switch register classes---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass attempts to find instruction chains (closures) in one domain, // and convert them to equivalent instructions in a different domain, // if profitable. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Printable.h" #include using namespace llvm; #define DEBUG_TYPE "x86-domain-reassignment" STATISTIC(NumClosuresConverted, "Number of closures converted by the pass"); static cl::opt DisableX86DomainReassignment( "disable-x86-domain-reassignment", cl::Hidden, cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false)); namespace { enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains }; static bool isGPR(const TargetRegisterClass *RC) { return X86::GR64RegClass.hasSubClassEq(RC) || X86::GR32RegClass.hasSubClassEq(RC) || X86::GR16RegClass.hasSubClassEq(RC) || X86::GR8RegClass.hasSubClassEq(RC); } static bool isMask(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) { return X86::VK16RegClass.hasSubClassEq(RC); } static RegDomain getDomain(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) { if (isGPR(RC)) return GPRDomain; if (isMask(RC, TRI)) return MaskDomain; return OtherDomain; } /// Return a register class equivalent to \p SrcRC, in \p Domain. static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC, RegDomain Domain) { assert(Domain == MaskDomain && "add domain"); if (X86::GR8RegClass.hasSubClassEq(SrcRC)) return &X86::VK8RegClass; if (X86::GR16RegClass.hasSubClassEq(SrcRC)) return &X86::VK16RegClass; if (X86::GR32RegClass.hasSubClassEq(SrcRC)) return &X86::VK32RegClass; if (X86::GR64RegClass.hasSubClassEq(SrcRC)) return &X86::VK64RegClass; llvm_unreachable("add register class"); return nullptr; } /// Abstract Instruction Converter class. class InstrConverterBase { protected: unsigned SrcOpcode; public: InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {} virtual ~InstrConverterBase() {} /// \returns true if \p MI is legal to convert. virtual bool isLegal(const MachineInstr *MI, const TargetInstrInfo *TII) const { assert(MI->getOpcode() == SrcOpcode && "Wrong instruction passed to converter"); return true; } /// Applies conversion to \p MI. /// /// \returns true if \p MI is no longer need, and can be deleted. virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, MachineRegisterInfo *MRI) const = 0; /// \returns the cost increment incurred by converting \p MI. virtual double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const = 0; }; /// An Instruction Converter which ignores the given instruction. /// For example, PHI instructions can be safely ignored since only the registers /// need to change. class InstrIgnore : public InstrConverterBase { public: InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {} bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, MachineRegisterInfo *MRI) const override { assert(isLegal(MI, TII) && "Cannot convert instruction"); return false; } double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const override { return 0; } }; /// An Instruction Converter which replaces an instruction with another. class InstrReplacer : public InstrConverterBase { public: /// Opcode of the destination instruction. unsigned DstOpcode; InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode) : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} bool isLegal(const MachineInstr *MI, const TargetInstrInfo *TII) const override { if (!InstrConverterBase::isLegal(MI, TII)) return false; // It's illegal to replace an instruction that implicitly defines a register // with an instruction that doesn't, unless that register dead. for (const auto &MO : MI->implicit_operands()) if (MO.isReg() && MO.isDef() && !MO.isDead() && !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg())) return false; return true; } bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, MachineRegisterInfo *MRI) const override { assert(isLegal(MI, TII) && "Cannot convert instruction"); MachineInstrBuilder Bld = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode)); // Transfer explicit operands from original instruction. Implicit operands // are handled by BuildMI. for (auto &Op : MI->explicit_operands()) Bld.add(Op); return true; } double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const override { // Assuming instructions have the same cost. return 0; } }; /// An Instruction Converter which replaces an instruction with another, and /// adds a COPY from the new instruction's destination to the old one's. class InstrReplacerDstCOPY : public InstrConverterBase { public: unsigned DstOpcode; InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode) : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {} bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, MachineRegisterInfo *MRI) const override { assert(isLegal(MI, TII) && "Cannot convert instruction"); MachineBasicBlock *MBB = MI->getParent(); const DebugLoc &DL = MI->getDebugLoc(); Register Reg = MRI->createVirtualRegister( TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(), *MBB->getParent())); MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg); for (unsigned Idx = 1, End = MI->getNumOperands(); Idx < End; ++Idx) Bld.add(MI->getOperand(Idx)); BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY)) .add(MI->getOperand(0)) .addReg(Reg); return true; } double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const override { // Assuming instructions have the same cost, and that COPY is in the same // domain so it will be eliminated. return 0; } }; /// An Instruction Converter for replacing COPY instructions. class InstrCOPYReplacer : public InstrReplacer { public: RegDomain DstDomain; InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode) : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {} bool isLegal(const MachineInstr *MI, const TargetInstrInfo *TII) const override { if (!InstrConverterBase::isLegal(MI, TII)) return false; // Don't allow copies to/flow GR8/GR16 physical registers. // FIXME: Is there some better way to support this? Register DstReg = MI->getOperand(0).getReg(); if (DstReg.isPhysical() && (X86::GR8RegClass.contains(DstReg) || X86::GR16RegClass.contains(DstReg))) return false; Register SrcReg = MI->getOperand(1).getReg(); if (SrcReg.isPhysical() && (X86::GR8RegClass.contains(SrcReg) || X86::GR16RegClass.contains(SrcReg))) return false; return true; } double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const override { assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY"); for (const auto &MO : MI->operands()) { // Physical registers will not be converted. Assume that converting the // COPY to the destination domain will eventually result in a actual // instruction. if (Register::isPhysicalRegister(MO.getReg())) return 1; RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()), MRI->getTargetRegisterInfo()); // Converting a cross domain COPY to a same domain COPY should eliminate // an insturction if (OpDomain == DstDomain) return -1; } return 0; } }; /// An Instruction Converter which replaces an instruction with a COPY. class InstrReplaceWithCopy : public InstrConverterBase { public: // Source instruction operand Index, to be used as the COPY source. unsigned SrcOpIdx; InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx) : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {} bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII, MachineRegisterInfo *MRI) const override { assert(isLegal(MI, TII) && "Cannot convert instruction"); BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY)) .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)}); return true; } double getExtraCost(const MachineInstr *MI, MachineRegisterInfo *MRI) const override { return 0; } }; // Key type to be used by the Instruction Converters map. // A converter is identified by typedef std::pair InstrConverterBaseKeyTy; typedef DenseMap> InstrConverterBaseMap; /// A closure is a set of virtual register representing all of the edges in /// the closure, as well as all of the instructions connected by those edges. /// /// A closure may encompass virtual registers in the same register bank that /// have different widths. For example, it may contain 32-bit GPRs as well as /// 64-bit GPRs. /// /// A closure that computes an address (i.e. defines a virtual register that is /// used in a memory operand) excludes the instructions that contain memory /// operands using the address. Such an instruction will be included in a /// different closure that manipulates the loaded or stored value. class Closure { private: /// Virtual registers in the closure. DenseSet Edges; /// Instructions in the closure. SmallVector Instrs; /// Domains which this closure can legally be reassigned to. std::bitset LegalDstDomains; /// An ID to uniquely identify this closure, even when it gets /// moved around unsigned ID; public: Closure(unsigned ID, std::initializer_list LegalDstDomainList) : ID(ID) { for (RegDomain D : LegalDstDomainList) LegalDstDomains.set(D); } /// Mark this closure as illegal for reassignment to all domains. void setAllIllegal() { LegalDstDomains.reset(); } /// \returns true if this closure has domains which are legal to reassign to. bool hasLegalDstDomain() const { return LegalDstDomains.any(); } /// \returns true if is legal to reassign this closure to domain \p RD. bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; } /// Mark this closure as illegal for reassignment to domain \p RD. void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; } bool empty() const { return Edges.empty(); } bool insertEdge(Register Reg) { return Edges.insert(Reg).second; } using const_edge_iterator = DenseSet::const_iterator; iterator_range edges() const { return iterator_range(Edges.begin(), Edges.end()); } void addInstruction(MachineInstr *I) { Instrs.push_back(I); } ArrayRef instructions() const { return Instrs; } LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const { dbgs() << "Registers: "; bool First = true; for (Register Reg : Edges) { if (!First) dbgs() << ", "; First = false; dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI); } dbgs() << "\n" << "Instructions:"; for (MachineInstr *MI : Instrs) { dbgs() << "\n "; MI->print(dbgs()); } dbgs() << "\n"; } unsigned getID() const { return ID; } }; class X86DomainReassignment : public MachineFunctionPass { const X86Subtarget *STI = nullptr; MachineRegisterInfo *MRI = nullptr; const X86InstrInfo *TII = nullptr; /// All edges that are included in some closure DenseSet EnclosedEdges; /// All instructions that are included in some closure. DenseMap EnclosedInstrs; public: static char ID; X86DomainReassignment() : MachineFunctionPass(ID) { } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return "X86 Domain Reassignment Pass"; } private: /// A map of available Instruction Converters. InstrConverterBaseMap Converters; /// Initialize Converters map. void initConverters(); /// Starting from \Reg, expand the closure as much as possible. void buildClosure(Closure &, Register Reg); /// Enqueue \p Reg to be considered for addition to the closure. void visitRegister(Closure &, Register Reg, RegDomain &Domain, SmallVectorImpl &Worklist); /// Reassign the closure to \p Domain. void reassign(const Closure &C, RegDomain Domain) const; /// Add \p MI to the closure. void encloseInstr(Closure &C, MachineInstr *MI); /// /returns true if it is profitable to reassign the closure to \p Domain. bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const; /// Calculate the total cost of reassigning the closure to \p Domain. double calculateCost(const Closure &C, RegDomain Domain) const; }; char X86DomainReassignment::ID = 0; } // End anonymous namespace. void X86DomainReassignment::visitRegister(Closure &C, Register Reg, RegDomain &Domain, SmallVectorImpl &Worklist) { if (EnclosedEdges.count(Reg)) return; if (!Reg.isVirtual()) return; if (!MRI->hasOneDef(Reg)) return; RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo()); // First edge in closure sets the domain. if (Domain == NoDomain) Domain = RD; if (Domain != RD) return; Worklist.push_back(Reg); } void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) { auto I = EnclosedInstrs.find(MI); if (I != EnclosedInstrs.end()) { if (I->second != C.getID()) // Instruction already belongs to another closure, avoid conflicts between // closure and mark this closure as illegal. C.setAllIllegal(); return; } EnclosedInstrs[MI] = C.getID(); C.addInstruction(MI); // Mark closure as illegal for reassignment to domains, if there is no // converter for the instruction or if the converter cannot convert the // instruction. for (int i = 0; i != NumDomains; ++i) { if (C.isLegal((RegDomain)i)) { auto I = Converters.find({i, MI->getOpcode()}); if (I == Converters.end() || !I->second->isLegal(MI, TII)) C.setIllegal((RegDomain)i); } } } double X86DomainReassignment::calculateCost(const Closure &C, RegDomain DstDomain) const { assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure"); double Cost = 0.0; for (auto *MI : C.instructions()) Cost += Converters.find({DstDomain, MI->getOpcode()}) ->second->getExtraCost(MI, MRI); return Cost; } bool X86DomainReassignment::isReassignmentProfitable(const Closure &C, RegDomain Domain) const { return calculateCost(C, Domain) < 0.0; } void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const { assert(C.isLegal(Domain) && "Cannot convert illegal closure"); // Iterate all instructions in the closure, convert each one using the // appropriate converter. SmallVector ToErase; for (auto *MI : C.instructions()) if (Converters.find({Domain, MI->getOpcode()}) ->second->convertInstr(MI, TII, MRI)) ToErase.push_back(MI); // Iterate all registers in the closure, replace them with registers in the // destination domain. for (Register Reg : C.edges()) { MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain)); for (auto &MO : MRI->use_operands(Reg)) { if (MO.isReg()) // Remove all subregister references as they are not valid in the // destination domain. MO.setSubReg(0); } } for (auto *MI : ToErase) MI->eraseFromParent(); } /// \returns true when \p Reg is used as part of an address calculation in \p /// MI. static bool usedAsAddr(const MachineInstr &MI, Register Reg, const TargetInstrInfo *TII) { if (!MI.mayLoadOrStore()) return false; const MCInstrDesc &Desc = TII->get(MI.getOpcode()); int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemOpStart == -1) return false; MemOpStart += X86II::getOperandBias(Desc); for (unsigned MemOpIdx = MemOpStart, MemOpEnd = MemOpStart + X86::AddrNumOperands; MemOpIdx < MemOpEnd; ++MemOpIdx) { const MachineOperand &Op = MI.getOperand(MemOpIdx); if (Op.isReg() && Op.getReg() == Reg) return true; } return false; } void X86DomainReassignment::buildClosure(Closure &C, Register Reg) { SmallVector Worklist; RegDomain Domain = NoDomain; visitRegister(C, Reg, Domain, Worklist); while (!Worklist.empty()) { unsigned CurReg = Worklist.pop_back_val(); // Register already in this closure. if (!C.insertEdge(CurReg)) continue; EnclosedEdges.insert(Reg); MachineInstr *DefMI = MRI->getVRegDef(CurReg); encloseInstr(C, DefMI); // Add register used by the defining MI to the worklist. // Do not add registers which are used in address calculation, they will be // added to a different closure. int OpEnd = DefMI->getNumOperands(); const MCInstrDesc &Desc = DefMI->getDesc(); int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemOp != -1) MemOp += X86II::getOperandBias(Desc); for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) { if (OpIdx == MemOp) { // skip address calculation. OpIdx += (X86::AddrNumOperands - 1); continue; } auto &Op = DefMI->getOperand(OpIdx); if (!Op.isReg() || !Op.isUse()) continue; visitRegister(C, Op.getReg(), Domain, Worklist); } // Expand closure through register uses. for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) { // We would like to avoid converting closures which calculare addresses, // as this should remain in GPRs. if (usedAsAddr(UseMI, CurReg, TII)) { C.setAllIllegal(); continue; } encloseInstr(C, &UseMI); for (auto &DefOp : UseMI.defs()) { if (!DefOp.isReg()) continue; Register DefReg = DefOp.getReg(); if (!DefReg.isVirtual()) { C.setAllIllegal(); continue; } visitRegister(C, DefReg, Domain, Worklist); } } } } void X86DomainReassignment::initConverters() { Converters[{MaskDomain, TargetOpcode::PHI}] = std::make_unique(TargetOpcode::PHI); Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] = std::make_unique(TargetOpcode::IMPLICIT_DEF); Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] = std::make_unique(TargetOpcode::INSERT_SUBREG, 2); Converters[{MaskDomain, TargetOpcode::COPY}] = std::make_unique(TargetOpcode::COPY, MaskDomain, TargetOpcode::COPY); auto createReplacerDstCOPY = [&](unsigned From, unsigned To) { Converters[{MaskDomain, From}] = std::make_unique(From, To); }; createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm); createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm); createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk); createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk); if (STI->hasDQI()) { createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm); createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm); createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm); createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk); createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk); createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk); } auto createReplacer = [&](unsigned From, unsigned To) { Converters[{MaskDomain, From}] = std::make_unique(From, To); }; createReplacer(X86::MOV16rm, X86::KMOVWkm); createReplacer(X86::MOV16mr, X86::KMOVWmk); createReplacer(X86::MOV16rr, X86::KMOVWkk); createReplacer(X86::SHR16ri, X86::KSHIFTRWri); createReplacer(X86::SHL16ri, X86::KSHIFTLWri); createReplacer(X86::NOT16r, X86::KNOTWrr); createReplacer(X86::OR16rr, X86::KORWrr); createReplacer(X86::AND16rr, X86::KANDWrr); createReplacer(X86::XOR16rr, X86::KXORWrr); if (STI->hasBWI()) { createReplacer(X86::MOV32rm, X86::KMOVDkm); createReplacer(X86::MOV64rm, X86::KMOVQkm); createReplacer(X86::MOV32mr, X86::KMOVDmk); createReplacer(X86::MOV64mr, X86::KMOVQmk); createReplacer(X86::MOV32rr, X86::KMOVDkk); createReplacer(X86::MOV64rr, X86::KMOVQkk); createReplacer(X86::SHR32ri, X86::KSHIFTRDri); createReplacer(X86::SHR64ri, X86::KSHIFTRQri); createReplacer(X86::SHL32ri, X86::KSHIFTLDri); createReplacer(X86::SHL64ri, X86::KSHIFTLQri); createReplacer(X86::ADD32rr, X86::KADDDrr); createReplacer(X86::ADD64rr, X86::KADDQrr); createReplacer(X86::NOT32r, X86::KNOTDrr); createReplacer(X86::NOT64r, X86::KNOTQrr); createReplacer(X86::OR32rr, X86::KORDrr); createReplacer(X86::OR64rr, X86::KORQrr); createReplacer(X86::AND32rr, X86::KANDDrr); createReplacer(X86::AND64rr, X86::KANDQrr); createReplacer(X86::ANDN32rr, X86::KANDNDrr); createReplacer(X86::ANDN64rr, X86::KANDNQrr); createReplacer(X86::XOR32rr, X86::KXORDrr); createReplacer(X86::XOR64rr, X86::KXORQrr); // TODO: KTEST is not a replacement for TEST due to flag differences. Need // to prove only Z flag is used. //createReplacer(X86::TEST32rr, X86::KTESTDrr); //createReplacer(X86::TEST64rr, X86::KTESTQrr); } if (STI->hasDQI()) { createReplacer(X86::ADD8rr, X86::KADDBrr); createReplacer(X86::ADD16rr, X86::KADDWrr); createReplacer(X86::AND8rr, X86::KANDBrr); createReplacer(X86::MOV8rm, X86::KMOVBkm); createReplacer(X86::MOV8mr, X86::KMOVBmk); createReplacer(X86::MOV8rr, X86::KMOVBkk); createReplacer(X86::NOT8r, X86::KNOTBrr); createReplacer(X86::OR8rr, X86::KORBrr); createReplacer(X86::SHR8ri, X86::KSHIFTRBri); createReplacer(X86::SHL8ri, X86::KSHIFTLBri); // TODO: KTEST is not a replacement for TEST due to flag differences. Need // to prove only Z flag is used. //createReplacer(X86::TEST8rr, X86::KTESTBrr); //createReplacer(X86::TEST16rr, X86::KTESTWrr); createReplacer(X86::XOR8rr, X86::KXORBrr); } } bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; if (DisableX86DomainReassignment) return false; LLVM_DEBUG( dbgs() << "***** Machine Function before Domain Reassignment *****\n"); LLVM_DEBUG(MF.print(dbgs())); STI = &MF.getSubtarget(); // GPR->K is the only transformation currently supported, bail out early if no // AVX512. // TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and // VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register // coalescer doesn't clean it up and we generate a spill we will crash. if (!STI->hasAVX512() || !STI->hasBWI()) return false; MRI = &MF.getRegInfo(); assert(MRI->isSSA() && "Expected MIR to be in SSA form"); TII = STI->getInstrInfo(); initConverters(); bool Changed = false; EnclosedEdges.clear(); EnclosedInstrs.clear(); std::vector Closures; // Go over all virtual registers and calculate a closure. unsigned ClosureID = 0; for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) { Register Reg = Register::index2VirtReg(Idx); // GPR only current source domain supported. if (!isGPR(MRI->getRegClass(Reg))) continue; // Register already in closure. if (EnclosedEdges.count(Reg)) continue; // Calculate closure starting with Reg. Closure C(ClosureID++, {MaskDomain}); buildClosure(C, Reg); // Collect all closures that can potentially be converted. if (!C.empty() && C.isLegal(MaskDomain)) Closures.push_back(std::move(C)); } for (Closure &C : Closures) { LLVM_DEBUG(C.dump(MRI)); if (isReassignmentProfitable(C, MaskDomain)) { reassign(C, MaskDomain); ++NumClosuresConverted; Changed = true; } } LLVM_DEBUG( dbgs() << "***** Machine Function after Domain Reassignment *****\n"); LLVM_DEBUG(MF.print(dbgs())); return Changed; } INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment", "X86 Domain Reassignment Pass", false, false) /// Returns an instance of the Domain Reassignment pass. FunctionPass *llvm::createX86DomainReassignmentPass() { return new X86DomainReassignment(); }