llvm-for-llvmta/include/llvm/CodeGen/MachineOperand.h

996 lines
38 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- llvm/CodeGen/MachineOperand.h - MachineOperand class ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineOperand class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEOPERAND_H
#define LLVM_CODEGEN_MACHINEOPERAND_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
namespace llvm {
class BlockAddress;
class Constant;
class ConstantFP;
class ConstantInt;
class GlobalValue;
class MachineBasicBlock;
class MachineInstr;
class MachineRegisterInfo;
class MCCFIInstruction;
class MDNode;
class ModuleSlotTracker;
class TargetIntrinsicInfo;
class TargetRegisterInfo;
class hash_code;
class raw_ostream;
class MCSymbol;
/// MachineOperand class - Representation of each machine instruction operand.
///
/// This class isn't a POD type because it has a private constructor, but its
/// destructor must be trivial. Functions like MachineInstr::addOperand(),
/// MachineRegisterInfo::moveOperands(), and MF::DeleteMachineInstr() depend on
/// not having to call the MachineOperand destructor.
///
class MachineOperand {
public:
enum MachineOperandType : unsigned char {
MO_Register, ///< Register operand.
MO_Immediate, ///< Immediate operand
MO_CImmediate, ///< Immediate >64bit operand
MO_FPImmediate, ///< Floating-point immediate operand
MO_MachineBasicBlock, ///< MachineBasicBlock reference
MO_FrameIndex, ///< Abstract Stack Frame Index
MO_ConstantPoolIndex, ///< Address of indexed Constant in Constant Pool
MO_TargetIndex, ///< Target-dependent index+offset operand.
MO_JumpTableIndex, ///< Address of indexed Jump Table for switch
MO_ExternalSymbol, ///< Name of external global symbol
MO_GlobalAddress, ///< Address of a global value
MO_BlockAddress, ///< Address of a basic block
MO_RegisterMask, ///< Mask of preserved registers.
MO_RegisterLiveOut, ///< Mask of live-out registers.
MO_Metadata, ///< Metadata reference (for debug info)
MO_MCSymbol, ///< MCSymbol reference (for debug/eh info)
MO_CFIIndex, ///< MCCFIInstruction index.
MO_IntrinsicID, ///< Intrinsic ID for ISel
MO_Predicate, ///< Generic predicate for ISel
MO_ShuffleMask, ///< Other IR Constant for ISel (shuffle masks)
MO_Last = MO_ShuffleMask
};
private:
/// OpKind - Specify what kind of operand this is. This discriminates the
/// union.
unsigned OpKind : 8;
/// Subregister number for MO_Register. A value of 0 indicates the
/// MO_Register has no subReg.
///
/// For all other kinds of operands, this field holds target-specific flags.
unsigned SubReg_TargetFlags : 12;
/// TiedTo - Non-zero when this register operand is tied to another register
/// operand. The encoding of this field is described in the block comment
/// before MachineInstr::tieOperands().
unsigned TiedTo : 4;
/// IsDef - True if this is a def, false if this is a use of the register.
/// This is only valid on register operands.
///
unsigned IsDef : 1;
/// IsImp - True if this is an implicit def or use, false if it is explicit.
/// This is only valid on register opderands.
///
unsigned IsImp : 1;
/// IsDeadOrKill
/// For uses: IsKill - True if this instruction is the last use of the
/// register on this path through the function.
/// For defs: IsDead - True if this register is never used by a subsequent
/// instruction.
/// This is only valid on register operands.
unsigned IsDeadOrKill : 1;
/// See isRenamable().
unsigned IsRenamable : 1;
/// IsUndef - True if this register operand reads an "undef" value, i.e. the
/// read value doesn't matter. This flag can be set on both use and def
/// operands. On a sub-register def operand, it refers to the part of the
/// register that isn't written. On a full-register def operand, it is a
/// noop. See readsReg().
///
/// This is only valid on registers.
///
/// Note that an instruction may have multiple <undef> operands referring to
/// the same register. In that case, the instruction may depend on those
/// operands reading the same dont-care value. For example:
///
/// %1 = XOR undef %2, undef %2
///
/// Any register can be used for %2, and its value doesn't matter, but
/// the two operands must be the same register.
///
unsigned IsUndef : 1;
/// IsInternalRead - True if this operand reads a value that was defined
/// inside the same instruction or bundle. This flag can be set on both use
/// and def operands. On a sub-register def operand, it refers to the part
/// of the register that isn't written. On a full-register def operand, it
/// is a noop.
///
/// When this flag is set, the instruction bundle must contain at least one
/// other def of the register. If multiple instructions in the bundle define
/// the register, the meaning is target-defined.
unsigned IsInternalRead : 1;
/// IsEarlyClobber - True if this MO_Register 'def' operand is written to
/// by the MachineInstr before all input registers are read. This is used to
/// model the GCC inline asm '&' constraint modifier.
unsigned IsEarlyClobber : 1;
/// IsDebug - True if this MO_Register 'use' operand is in a debug pseudo,
/// not a real instruction. Such uses should be ignored during codegen.
unsigned IsDebug : 1;
/// SmallContents - This really should be part of the Contents union, but
/// lives out here so we can get a better packed struct.
/// MO_Register: Register number.
/// OffsetedInfo: Low bits of offset.
union {
unsigned RegNo; // For MO_Register.
unsigned OffsetLo; // Matches Contents.OffsetedInfo.OffsetHi.
} SmallContents;
/// ParentMI - This is the instruction that this operand is embedded into.
/// This is valid for all operand types, when the operand is in an instr.
MachineInstr *ParentMI;
/// Contents union - This contains the payload for the various operand types.
union ContentsUnion {
ContentsUnion() {}
MachineBasicBlock *MBB; // For MO_MachineBasicBlock.
const ConstantFP *CFP; // For MO_FPImmediate.
const ConstantInt *CI; // For MO_CImmediate. Integers > 64bit.
int64_t ImmVal; // For MO_Immediate.
const uint32_t *RegMask; // For MO_RegisterMask and MO_RegisterLiveOut.
const MDNode *MD; // For MO_Metadata.
MCSymbol *Sym; // For MO_MCSymbol.
unsigned CFIIndex; // For MO_CFI.
Intrinsic::ID IntrinsicID; // For MO_IntrinsicID.
unsigned Pred; // For MO_Predicate
ArrayRef<int> ShuffleMask; // For MO_ShuffleMask
struct { // For MO_Register.
// Register number is in SmallContents.RegNo.
MachineOperand *Prev; // Access list for register. See MRI.
MachineOperand *Next;
} Reg;
/// OffsetedInfo - This struct contains the offset and an object identifier.
/// this represent the object as with an optional offset from it.
struct {
union {
int Index; // For MO_*Index - The index itself.
const char *SymbolName; // For MO_ExternalSymbol.
const GlobalValue *GV; // For MO_GlobalAddress.
const BlockAddress *BA; // For MO_BlockAddress.
} Val;
// Low bits of offset are in SmallContents.OffsetLo.
int OffsetHi; // An offset from the object, high 32 bits.
} OffsetedInfo;
} Contents;
explicit MachineOperand(MachineOperandType K)
: OpKind(K), SubReg_TargetFlags(0), ParentMI(nullptr) {
// Assert that the layout is what we expect. It's easy to grow this object.
static_assert(alignof(MachineOperand) <= alignof(int64_t),
"MachineOperand shouldn't be more than 8 byte aligned");
static_assert(sizeof(Contents) <= 2 * sizeof(void *),
"Contents should be at most two pointers");
static_assert(sizeof(MachineOperand) <=
alignTo<alignof(int64_t)>(2 * sizeof(unsigned) +
3 * sizeof(void *)),
"MachineOperand too big. Should be Kind, SmallContents, "
"ParentMI, and Contents");
}
public:
/// getType - Returns the MachineOperandType for this operand.
///
MachineOperandType getType() const { return (MachineOperandType)OpKind; }
unsigned getTargetFlags() const {
return isReg() ? 0 : SubReg_TargetFlags;
}
void setTargetFlags(unsigned F) {
assert(!isReg() && "Register operands can't have target flags");
SubReg_TargetFlags = F;
assert(SubReg_TargetFlags == F && "Target flags out of range");
}
void addTargetFlag(unsigned F) {
assert(!isReg() && "Register operands can't have target flags");
SubReg_TargetFlags |= F;
assert((SubReg_TargetFlags & F) && "Target flags out of range");
}
/// getParent - Return the instruction that this operand belongs to.
///
MachineInstr *getParent() { return ParentMI; }
const MachineInstr *getParent() const { return ParentMI; }
/// clearParent - Reset the parent pointer.
///
/// The MachineOperand copy constructor also copies ParentMI, expecting the
/// original to be deleted. If a MachineOperand is ever stored outside a
/// MachineInstr, the parent pointer must be cleared.
///
/// Never call clearParent() on an operand in a MachineInstr.
///
void clearParent() { ParentMI = nullptr; }
/// Print a subreg index operand.
/// MO_Immediate operands can also be subreg idices. If it's the case, the
/// subreg index name will be printed. MachineInstr::isOperandSubregIdx can be
/// called to check this.
static void printSubRegIdx(raw_ostream &OS, uint64_t Index,
const TargetRegisterInfo *TRI);
/// Print operand target flags.
static void printTargetFlags(raw_ostream& OS, const MachineOperand &Op);
/// Print a MCSymbol as an operand.
static void printSymbol(raw_ostream &OS, MCSymbol &Sym);
/// Print a stack object reference.
static void printStackObjectReference(raw_ostream &OS, unsigned FrameIndex,
bool IsFixed, StringRef Name);
/// Print the offset with explicit +/- signs.
static void printOperandOffset(raw_ostream &OS, int64_t Offset);
/// Print an IRSlotNumber.
static void printIRSlotNumber(raw_ostream &OS, int Slot);
/// Print the MachineOperand to \p os.
/// Providing a valid \p TRI and \p IntrinsicInfo results in a more
/// target-specific printing. If \p TRI and \p IntrinsicInfo are null, the
/// function will try to pick it up from the parent.
void print(raw_ostream &os, const TargetRegisterInfo *TRI = nullptr,
const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const;
/// More complex way of printing a MachineOperand.
/// \param TypeToPrint specifies the generic type to be printed on uses and
/// defs. It can be determined using MachineInstr::getTypeToPrint.
/// \param OpIdx - specifies the index of the operand in machine instruction.
/// This will be used by target dependent MIR formatter. Could be None if the
/// index is unknown, e.g. called by dump().
/// \param PrintDef - whether we want to print `def` on an operand which
/// isDef. Sometimes, if the operand is printed before '=', we don't print
/// `def`.
/// \param IsStandalone - whether we want a verbose output of the MO. This
/// prints extra information that can be easily inferred when printing the
/// whole function, but not when printing only a fragment of it.
/// \param ShouldPrintRegisterTies - whether we want to print register ties.
/// Sometimes they are easily determined by the instruction's descriptor
/// (MachineInstr::hasComplexRegiterTies can determine if it's needed).
/// \param TiedOperandIdx - if we need to print register ties this needs to
/// provide the index of the tied register. If not, it will be ignored.
/// \param TRI - provide more target-specific information to the printer.
/// Unlike the previous function, this one will not try and get the
/// information from it's parent.
/// \param IntrinsicInfo - same as \p TRI.
void print(raw_ostream &os, ModuleSlotTracker &MST, LLT TypeToPrint,
Optional<unsigned> OpIdx, bool PrintDef, bool IsStandalone,
bool ShouldPrintRegisterTies, unsigned TiedOperandIdx,
const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const;
/// Same as print(os, TRI, IntrinsicInfo), but allows to specify the low-level
/// type to be printed the same way the full version of print(...) does it.
void print(raw_ostream &os, LLT TypeToPrint,
const TargetRegisterInfo *TRI = nullptr,
const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const;
void dump() const;
//===--------------------------------------------------------------------===//
// Accessors that tell you what kind of MachineOperand you're looking at.
//===--------------------------------------------------------------------===//
/// isReg - Tests if this is a MO_Register operand.
bool isReg() const { return OpKind == MO_Register; }
/// isImm - Tests if this is a MO_Immediate operand.
bool isImm() const { return OpKind == MO_Immediate; }
/// isCImm - Test if this is a MO_CImmediate operand.
bool isCImm() const { return OpKind == MO_CImmediate; }
/// isFPImm - Tests if this is a MO_FPImmediate operand.
bool isFPImm() const { return OpKind == MO_FPImmediate; }
/// isMBB - Tests if this is a MO_MachineBasicBlock operand.
bool isMBB() const { return OpKind == MO_MachineBasicBlock; }
/// isFI - Tests if this is a MO_FrameIndex operand.
bool isFI() const { return OpKind == MO_FrameIndex; }
/// isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isCPI() const { return OpKind == MO_ConstantPoolIndex; }
/// isTargetIndex - Tests if this is a MO_TargetIndex operand.
bool isTargetIndex() const { return OpKind == MO_TargetIndex; }
/// isJTI - Tests if this is a MO_JumpTableIndex operand.
bool isJTI() const { return OpKind == MO_JumpTableIndex; }
/// isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isGlobal() const { return OpKind == MO_GlobalAddress; }
/// isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isSymbol() const { return OpKind == MO_ExternalSymbol; }
/// isBlockAddress - Tests if this is a MO_BlockAddress operand.
bool isBlockAddress() const { return OpKind == MO_BlockAddress; }
/// isRegMask - Tests if this is a MO_RegisterMask operand.
bool isRegMask() const { return OpKind == MO_RegisterMask; }
/// isRegLiveOut - Tests if this is a MO_RegisterLiveOut operand.
bool isRegLiveOut() const { return OpKind == MO_RegisterLiveOut; }
/// isMetadata - Tests if this is a MO_Metadata operand.
bool isMetadata() const { return OpKind == MO_Metadata; }
bool isMCSymbol() const { return OpKind == MO_MCSymbol; }
bool isCFIIndex() const { return OpKind == MO_CFIIndex; }
bool isIntrinsicID() const { return OpKind == MO_IntrinsicID; }
bool isPredicate() const { return OpKind == MO_Predicate; }
bool isShuffleMask() const { return OpKind == MO_ShuffleMask; }
//===--------------------------------------------------------------------===//
// Accessors for Register Operands
//===--------------------------------------------------------------------===//
/// getReg - Returns the register number.
Register getReg() const {
assert(isReg() && "This is not a register operand!");
return Register(SmallContents.RegNo);
}
unsigned getSubReg() const {
assert(isReg() && "Wrong MachineOperand accessor");
return SubReg_TargetFlags;
}
bool isUse() const {
assert(isReg() && "Wrong MachineOperand accessor");
return !IsDef;
}
bool isDef() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDef;
}
bool isImplicit() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsImp;
}
bool isDead() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDeadOrKill & IsDef;
}
bool isKill() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDeadOrKill & !IsDef;
}
bool isUndef() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsUndef;
}
/// isRenamable - Returns true if this register may be renamed, i.e. it does
/// not generate a value that is somehow read in a way that is not represented
/// by the Machine IR (e.g. to meet an ABI or ISA requirement). This is only
/// valid on physical register operands. Virtual registers are assumed to
/// always be renamable regardless of the value of this field.
///
/// Operands that are renamable can freely be changed to any other register
/// that is a member of the register class returned by
/// MI->getRegClassConstraint().
///
/// isRenamable can return false for several different reasons:
///
/// - ABI constraints (since liveness is not always precisely modeled). We
/// conservatively handle these cases by setting all physical register
/// operands that didnt start out as virtual regs to not be renamable.
/// Also any physical register operands created after register allocation or
/// whose register is changed after register allocation will not be
/// renamable. This state is tracked in the MachineOperand::IsRenamable
/// bit.
///
/// - Opcode/target constraints: for opcodes that have complex register class
/// requirements (e.g. that depend on other operands/instructions), we set
/// hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq in the machine opcode
/// description. Operands belonging to instructions with opcodes that are
/// marked hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq return false from
/// isRenamable(). Additionally, the AllowRegisterRenaming target property
/// prevents any operands from being marked renamable for targets that don't
/// have detailed opcode hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
/// values.
bool isRenamable() const;
bool isInternalRead() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsInternalRead;
}
bool isEarlyClobber() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsEarlyClobber;
}
bool isTied() const {
assert(isReg() && "Wrong MachineOperand accessor");
return TiedTo;
}
bool isDebug() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDebug;
}
/// readsReg - Returns true if this operand reads the previous value of its
/// register. A use operand with the <undef> flag set doesn't read its
/// register. A sub-register def implicitly reads the other parts of the
/// register being redefined unless the <undef> flag is set.
///
/// This refers to reading the register value from before the current
/// instruction or bundle. Internal bundle reads are not included.
bool readsReg() const {
assert(isReg() && "Wrong MachineOperand accessor");
return !isUndef() && !isInternalRead() && (isUse() || getSubReg());
}
//===--------------------------------------------------------------------===//
// Mutators for Register Operands
//===--------------------------------------------------------------------===//
/// Change the register this operand corresponds to.
///
void setReg(Register Reg);
void setSubReg(unsigned subReg) {
assert(isReg() && "Wrong MachineOperand mutator");
SubReg_TargetFlags = subReg;
assert(SubReg_TargetFlags == subReg && "SubReg out of range");
}
/// substVirtReg - Substitute the current register with the virtual
/// subregister Reg:SubReg. Take any existing SubReg index into account,
/// using TargetRegisterInfo to compose the subreg indices if necessary.
/// Reg must be a virtual register, SubIdx can be 0.
///
void substVirtReg(Register Reg, unsigned SubIdx, const TargetRegisterInfo&);
/// substPhysReg - Substitute the current register with the physical register
/// Reg, taking any existing SubReg into account. For instance,
/// substPhysReg(%eax) will change %reg1024:sub_8bit to %al.
///
void substPhysReg(MCRegister Reg, const TargetRegisterInfo&);
void setIsUse(bool Val = true) { setIsDef(!Val); }
/// Change a def to a use, or a use to a def.
void setIsDef(bool Val = true);
void setImplicit(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsImp = Val;
}
void setIsKill(bool Val = true) {
assert(isReg() && !IsDef && "Wrong MachineOperand mutator");
assert((!Val || !isDebug()) && "Marking a debug operation as kill");
IsDeadOrKill = Val;
}
void setIsDead(bool Val = true) {
assert(isReg() && IsDef && "Wrong MachineOperand mutator");
IsDeadOrKill = Val;
}
void setIsUndef(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsUndef = Val;
}
void setIsRenamable(bool Val = true);
void setIsInternalRead(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsInternalRead = Val;
}
void setIsEarlyClobber(bool Val = true) {
assert(isReg() && IsDef && "Wrong MachineOperand mutator");
IsEarlyClobber = Val;
}
void setIsDebug(bool Val = true) {
assert(isReg() && !IsDef && "Wrong MachineOperand mutator");
IsDebug = Val;
}
//===--------------------------------------------------------------------===//
// Accessors for various operand types.
//===--------------------------------------------------------------------===//
int64_t getImm() const {
assert(isImm() && "Wrong MachineOperand accessor");
return Contents.ImmVal;
}
const ConstantInt *getCImm() const {
assert(isCImm() && "Wrong MachineOperand accessor");
return Contents.CI;
}
const ConstantFP *getFPImm() const {
assert(isFPImm() && "Wrong MachineOperand accessor");
return Contents.CFP;
}
MachineBasicBlock *getMBB() const {
assert(isMBB() && "Wrong MachineOperand accessor");
return Contents.MBB;
}
int getIndex() const {
assert((isFI() || isCPI() || isTargetIndex() || isJTI()) &&
"Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.Index;
}
const GlobalValue *getGlobal() const {
assert(isGlobal() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.GV;
}
const BlockAddress *getBlockAddress() const {
assert(isBlockAddress() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.BA;
}
MCSymbol *getMCSymbol() const {
assert(isMCSymbol() && "Wrong MachineOperand accessor");
return Contents.Sym;
}
unsigned getCFIIndex() const {
assert(isCFIIndex() && "Wrong MachineOperand accessor");
return Contents.CFIIndex;
}
Intrinsic::ID getIntrinsicID() const {
assert(isIntrinsicID() && "Wrong MachineOperand accessor");
return Contents.IntrinsicID;
}
unsigned getPredicate() const {
assert(isPredicate() && "Wrong MachineOperand accessor");
return Contents.Pred;
}
ArrayRef<int> getShuffleMask() const {
assert(isShuffleMask() && "Wrong MachineOperand accessor");
return Contents.ShuffleMask;
}
/// Return the offset from the symbol in this operand. This always returns 0
/// for ExternalSymbol operands.
int64_t getOffset() const {
assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() ||
isTargetIndex() || isBlockAddress()) &&
"Wrong MachineOperand accessor");
return int64_t(uint64_t(Contents.OffsetedInfo.OffsetHi) << 32) |
SmallContents.OffsetLo;
}
const char *getSymbolName() const {
assert(isSymbol() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.SymbolName;
}
/// clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
/// It is sometimes necessary to detach the register mask pointer from its
/// machine operand. This static method can be used for such detached bit
/// mask pointers.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg) {
// See TargetRegisterInfo.h.
assert(PhysReg < (1u << 30) && "Not a physical register");
return !(RegMask[PhysReg / 32] & (1u << PhysReg % 32));
}
/// clobbersPhysReg - Returns true if this RegMask operand clobbers PhysReg.
bool clobbersPhysReg(MCRegister PhysReg) const {
return clobbersPhysReg(getRegMask(), PhysReg);
}
/// getRegMask - Returns a bit mask of registers preserved by this RegMask
/// operand.
const uint32_t *getRegMask() const {
assert(isRegMask() && "Wrong MachineOperand accessor");
return Contents.RegMask;
}
/// Returns number of elements needed for a regmask array.
static unsigned getRegMaskSize(unsigned NumRegs) {
return (NumRegs + 31) / 32;
}
/// getRegLiveOut - Returns a bit mask of live-out registers.
const uint32_t *getRegLiveOut() const {
assert(isRegLiveOut() && "Wrong MachineOperand accessor");
return Contents.RegMask;
}
const MDNode *getMetadata() const {
assert(isMetadata() && "Wrong MachineOperand accessor");
return Contents.MD;
}
//===--------------------------------------------------------------------===//
// Mutators for various operand types.
//===--------------------------------------------------------------------===//
void setImm(int64_t immVal) {
assert(isImm() && "Wrong MachineOperand mutator");
Contents.ImmVal = immVal;
}
void setCImm(const ConstantInt *CI) {
assert(isCImm() && "Wrong MachineOperand mutator");
Contents.CI = CI;
}
void setFPImm(const ConstantFP *CFP) {
assert(isFPImm() && "Wrong MachineOperand mutator");
Contents.CFP = CFP;
}
void setOffset(int64_t Offset) {
assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() ||
isTargetIndex() || isBlockAddress()) &&
"Wrong MachineOperand mutator");
SmallContents.OffsetLo = unsigned(Offset);
Contents.OffsetedInfo.OffsetHi = int(Offset >> 32);
}
void setIndex(int Idx) {
assert((isFI() || isCPI() || isTargetIndex() || isJTI()) &&
"Wrong MachineOperand mutator");
Contents.OffsetedInfo.Val.Index = Idx;
}
void setMetadata(const MDNode *MD) {
assert(isMetadata() && "Wrong MachineOperand mutator");
Contents.MD = MD;
}
void setMBB(MachineBasicBlock *MBB) {
assert(isMBB() && "Wrong MachineOperand mutator");
Contents.MBB = MBB;
}
/// Sets value of register mask operand referencing Mask. The
/// operand does not take ownership of the memory referenced by Mask, it must
/// remain valid for the lifetime of the operand. See CreateRegMask().
/// Any physreg with a 0 bit in the mask is clobbered by the instruction.
void setRegMask(const uint32_t *RegMaskPtr) {
assert(isRegMask() && "Wrong MachineOperand mutator");
Contents.RegMask = RegMaskPtr;
}
void setIntrinsicID(Intrinsic::ID IID) {
assert(isIntrinsicID() && "Wrong MachineOperand mutator");
Contents.IntrinsicID = IID;
}
void setPredicate(unsigned Predicate) {
assert(isPredicate() && "Wrong MachineOperand mutator");
Contents.Pred = Predicate;
}
//===--------------------------------------------------------------------===//
// Other methods.
//===--------------------------------------------------------------------===//
/// Returns true if this operand is identical to the specified operand except
/// for liveness related flags (isKill, isUndef and isDead). Note that this
/// should stay in sync with the hash_value overload below.
bool isIdenticalTo(const MachineOperand &Other) const;
/// MachineOperand hash_value overload.
///
/// Note that this includes the same information in the hash that
/// isIdenticalTo uses for comparison. It is thus suited for use in hash
/// tables which use that function for equality comparisons only. This must
/// stay exactly in sync with isIdenticalTo above.
friend hash_code hash_value(const MachineOperand &MO);
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags = 0);
/// ChangeToFPImmediate - Replace this operand with a new FP immediate operand
/// of the specified value. If an operand is known to be an FP immediate
/// already, the setFPImm method should be used.
void ChangeToFPImmediate(const ConstantFP *FPImm, unsigned TargetFlags = 0);
/// ChangeToES - Replace this operand with a new external symbol operand.
void ChangeToES(const char *SymName, unsigned TargetFlags = 0);
/// ChangeToGA - Replace this operand with a new global address operand.
void ChangeToGA(const GlobalValue *GV, int64_t Offset,
unsigned TargetFlags = 0);
/// ChangeToMCSymbol - Replace this operand with a new MC symbol operand.
void ChangeToMCSymbol(MCSymbol *Sym, unsigned TargetFlags = 0);
/// Replace this operand with a frame index.
void ChangeToFrameIndex(int Idx, unsigned TargetFlags = 0);
/// Replace this operand with a target index.
void ChangeToTargetIndex(unsigned Idx, int64_t Offset,
unsigned TargetFlags = 0);
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void ChangeToRegister(Register Reg, bool isDef, bool isImp = false,
bool isKill = false, bool isDead = false,
bool isUndef = false, bool isDebug = false);
/// getTargetIndexName - If this MachineOperand is a TargetIndex that has a
/// name, attempt to get the name. Returns nullptr if the TargetIndex does not
/// have a name. Asserts if MO is not a TargetIndex.
const char *getTargetIndexName() const;
//===--------------------------------------------------------------------===//
// Construction methods.
//===--------------------------------------------------------------------===//
static MachineOperand CreateImm(int64_t Val) {
MachineOperand Op(MachineOperand::MO_Immediate);
Op.setImm(Val);
return Op;
}
static MachineOperand CreateCImm(const ConstantInt *CI) {
MachineOperand Op(MachineOperand::MO_CImmediate);
Op.Contents.CI = CI;
return Op;
}
static MachineOperand CreateFPImm(const ConstantFP *CFP) {
MachineOperand Op(MachineOperand::MO_FPImmediate);
Op.Contents.CFP = CFP;
return Op;
}
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp = false,
bool isKill = false, bool isDead = false,
bool isUndef = false,
bool isEarlyClobber = false,
unsigned SubReg = 0, bool isDebug = false,
bool isInternalRead = false,
bool isRenamable = false) {
assert(!(isDead && !isDef) && "Dead flag on non-def");
assert(!(isKill && isDef) && "Kill flag on def");
MachineOperand Op(MachineOperand::MO_Register);
Op.IsDef = isDef;
Op.IsImp = isImp;
Op.IsDeadOrKill = isKill | isDead;
Op.IsRenamable = isRenamable;
Op.IsUndef = isUndef;
Op.IsInternalRead = isInternalRead;
Op.IsEarlyClobber = isEarlyClobber;
Op.TiedTo = 0;
Op.IsDebug = isDebug;
Op.SmallContents.RegNo = Reg;
Op.Contents.Reg.Prev = nullptr;
Op.Contents.Reg.Next = nullptr;
Op.setSubReg(SubReg);
return Op;
}
static MachineOperand CreateMBB(MachineBasicBlock *MBB,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_MachineBasicBlock);
Op.setMBB(MBB);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateFI(int Idx) {
MachineOperand Op(MachineOperand::MO_FrameIndex);
Op.setIndex(Idx);
return Op;
}
static MachineOperand CreateCPI(unsigned Idx, int Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_ConstantPoolIndex);
Op.setIndex(Idx);
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_TargetIndex);
Op.setIndex(Idx);
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_JumpTableIndex);
Op.setIndex(Idx);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_GlobalAddress);
Op.Contents.OffsetedInfo.Val.GV = GV;
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateES(const char *SymName,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_ExternalSymbol);
Op.Contents.OffsetedInfo.Val.SymbolName = SymName;
Op.setOffset(0); // Offset is always 0.
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_BlockAddress);
Op.Contents.OffsetedInfo.Val.BA = BA;
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
/// CreateRegMask - Creates a register mask operand referencing Mask. The
/// operand does not take ownership of the memory referenced by Mask, it
/// must remain valid for the lifetime of the operand.
///
/// A RegMask operand represents a set of non-clobbered physical registers
/// on an instruction that clobbers many registers, typically a call. The
/// bit mask has a bit set for each physreg that is preserved by this
/// instruction, as described in the documentation for
/// TargetRegisterInfo::getCallPreservedMask().
///
/// Any physreg with a 0 bit in the mask is clobbered by the instruction.
///
static MachineOperand CreateRegMask(const uint32_t *Mask) {
assert(Mask && "Missing register mask");
MachineOperand Op(MachineOperand::MO_RegisterMask);
Op.Contents.RegMask = Mask;
return Op;
}
static MachineOperand CreateRegLiveOut(const uint32_t *Mask) {
assert(Mask && "Missing live-out register mask");
MachineOperand Op(MachineOperand::MO_RegisterLiveOut);
Op.Contents.RegMask = Mask;
return Op;
}
static MachineOperand CreateMetadata(const MDNode *Meta) {
MachineOperand Op(MachineOperand::MO_Metadata);
Op.Contents.MD = Meta;
return Op;
}
static MachineOperand CreateMCSymbol(MCSymbol *Sym,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_MCSymbol);
Op.Contents.Sym = Sym;
Op.setOffset(0);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateCFIIndex(unsigned CFIIndex) {
MachineOperand Op(MachineOperand::MO_CFIIndex);
Op.Contents.CFIIndex = CFIIndex;
return Op;
}
static MachineOperand CreateIntrinsicID(Intrinsic::ID ID) {
MachineOperand Op(MachineOperand::MO_IntrinsicID);
Op.Contents.IntrinsicID = ID;
return Op;
}
static MachineOperand CreatePredicate(unsigned Pred) {
MachineOperand Op(MachineOperand::MO_Predicate);
Op.Contents.Pred = Pred;
return Op;
}
static MachineOperand CreateShuffleMask(ArrayRef<int> Mask) {
MachineOperand Op(MachineOperand::MO_ShuffleMask);
Op.Contents.ShuffleMask = Mask;
return Op;
}
friend class MachineInstr;
friend class MachineRegisterInfo;
private:
// If this operand is currently a register operand, and if this is in a
// function, deregister the operand from the register's use/def list.
void removeRegFromUses();
/// Artificial kinds for DenseMap usage.
enum : unsigned char {
MO_Empty = MO_Last + 1,
MO_Tombstone,
};
friend struct DenseMapInfo<MachineOperand>;
//===--------------------------------------------------------------------===//
// Methods for handling register use/def lists.
//===--------------------------------------------------------------------===//
/// isOnRegUseList - Return true if this operand is on a register use/def
/// list or false if not. This can only be called for register operands
/// that are part of a machine instruction.
bool isOnRegUseList() const {
assert(isReg() && "Can only add reg operand to use lists");
return Contents.Reg.Prev != nullptr;
}
};
template <> struct DenseMapInfo<MachineOperand> {
static MachineOperand getEmptyKey() {
return MachineOperand(static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Empty));
}
static MachineOperand getTombstoneKey() {
return MachineOperand(static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Tombstone));
}
static unsigned getHashValue(const MachineOperand &MO) {
return hash_value(MO);
}
static bool isEqual(const MachineOperand &LHS, const MachineOperand &RHS) {
if (LHS.getType() == static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Empty) ||
LHS.getType() == static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Tombstone))
return LHS.getType() == RHS.getType();
return LHS.isIdenticalTo(RHS);
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const MachineOperand &MO) {
MO.print(OS);
return OS;
}
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const MachineOperand &MO);
} // namespace llvm
#endif