//===-- llvm/CodeGen/MachineOperand.h - MachineOperand class ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the declaration of the MachineOperand class. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEOPERAND_H #define LLVM_CODEGEN_MACHINEOPERAND_H #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/Register.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/LowLevelTypeImpl.h" #include namespace llvm { class BlockAddress; class Constant; class ConstantFP; class ConstantInt; class GlobalValue; class MachineBasicBlock; class MachineInstr; class MachineRegisterInfo; class MCCFIInstruction; class MDNode; class ModuleSlotTracker; class TargetIntrinsicInfo; class TargetRegisterInfo; class hash_code; class raw_ostream; class MCSymbol; /// MachineOperand class - Representation of each machine instruction operand. /// /// This class isn't a POD type because it has a private constructor, but its /// destructor must be trivial. Functions like MachineInstr::addOperand(), /// MachineRegisterInfo::moveOperands(), and MF::DeleteMachineInstr() depend on /// not having to call the MachineOperand destructor. /// class MachineOperand { public: enum MachineOperandType : unsigned char { MO_Register, ///< Register operand. MO_Immediate, ///< Immediate operand MO_CImmediate, ///< Immediate >64bit operand MO_FPImmediate, ///< Floating-point immediate operand MO_MachineBasicBlock, ///< MachineBasicBlock reference MO_FrameIndex, ///< Abstract Stack Frame Index MO_ConstantPoolIndex, ///< Address of indexed Constant in Constant Pool MO_TargetIndex, ///< Target-dependent index+offset operand. MO_JumpTableIndex, ///< Address of indexed Jump Table for switch MO_ExternalSymbol, ///< Name of external global symbol MO_GlobalAddress, ///< Address of a global value MO_BlockAddress, ///< Address of a basic block MO_RegisterMask, ///< Mask of preserved registers. MO_RegisterLiveOut, ///< Mask of live-out registers. MO_Metadata, ///< Metadata reference (for debug info) MO_MCSymbol, ///< MCSymbol reference (for debug/eh info) MO_CFIIndex, ///< MCCFIInstruction index. MO_IntrinsicID, ///< Intrinsic ID for ISel MO_Predicate, ///< Generic predicate for ISel MO_ShuffleMask, ///< Other IR Constant for ISel (shuffle masks) MO_Last = MO_ShuffleMask }; private: /// OpKind - Specify what kind of operand this is. This discriminates the /// union. unsigned OpKind : 8; /// Subregister number for MO_Register. A value of 0 indicates the /// MO_Register has no subReg. /// /// For all other kinds of operands, this field holds target-specific flags. unsigned SubReg_TargetFlags : 12; /// TiedTo - Non-zero when this register operand is tied to another register /// operand. The encoding of this field is described in the block comment /// before MachineInstr::tieOperands(). unsigned TiedTo : 4; /// IsDef - True if this is a def, false if this is a use of the register. /// This is only valid on register operands. /// unsigned IsDef : 1; /// IsImp - True if this is an implicit def or use, false if it is explicit. /// This is only valid on register opderands. /// unsigned IsImp : 1; /// IsDeadOrKill /// For uses: IsKill - True if this instruction is the last use of the /// register on this path through the function. /// For defs: IsDead - True if this register is never used by a subsequent /// instruction. /// This is only valid on register operands. unsigned IsDeadOrKill : 1; /// See isRenamable(). unsigned IsRenamable : 1; /// IsUndef - True if this register operand reads an "undef" value, i.e. the /// read value doesn't matter. This flag can be set on both use and def /// operands. On a sub-register def operand, it refers to the part of the /// register that isn't written. On a full-register def operand, it is a /// noop. See readsReg(). /// /// This is only valid on registers. /// /// Note that an instruction may have multiple operands referring to /// the same register. In that case, the instruction may depend on those /// operands reading the same dont-care value. For example: /// /// %1 = XOR undef %2, undef %2 /// /// Any register can be used for %2, and its value doesn't matter, but /// the two operands must be the same register. /// unsigned IsUndef : 1; /// IsInternalRead - True if this operand reads a value that was defined /// inside the same instruction or bundle. This flag can be set on both use /// and def operands. On a sub-register def operand, it refers to the part /// of the register that isn't written. On a full-register def operand, it /// is a noop. /// /// When this flag is set, the instruction bundle must contain at least one /// other def of the register. If multiple instructions in the bundle define /// the register, the meaning is target-defined. unsigned IsInternalRead : 1; /// IsEarlyClobber - True if this MO_Register 'def' operand is written to /// by the MachineInstr before all input registers are read. This is used to /// model the GCC inline asm '&' constraint modifier. unsigned IsEarlyClobber : 1; /// IsDebug - True if this MO_Register 'use' operand is in a debug pseudo, /// not a real instruction. Such uses should be ignored during codegen. unsigned IsDebug : 1; /// SmallContents - This really should be part of the Contents union, but /// lives out here so we can get a better packed struct. /// MO_Register: Register number. /// OffsetedInfo: Low bits of offset. union { unsigned RegNo; // For MO_Register. unsigned OffsetLo; // Matches Contents.OffsetedInfo.OffsetHi. } SmallContents; /// ParentMI - This is the instruction that this operand is embedded into. /// This is valid for all operand types, when the operand is in an instr. MachineInstr *ParentMI; /// Contents union - This contains the payload for the various operand types. union ContentsUnion { ContentsUnion() {} MachineBasicBlock *MBB; // For MO_MachineBasicBlock. const ConstantFP *CFP; // For MO_FPImmediate. const ConstantInt *CI; // For MO_CImmediate. Integers > 64bit. int64_t ImmVal; // For MO_Immediate. const uint32_t *RegMask; // For MO_RegisterMask and MO_RegisterLiveOut. const MDNode *MD; // For MO_Metadata. MCSymbol *Sym; // For MO_MCSymbol. unsigned CFIIndex; // For MO_CFI. Intrinsic::ID IntrinsicID; // For MO_IntrinsicID. unsigned Pred; // For MO_Predicate ArrayRef ShuffleMask; // For MO_ShuffleMask struct { // For MO_Register. // Register number is in SmallContents.RegNo. MachineOperand *Prev; // Access list for register. See MRI. MachineOperand *Next; } Reg; /// OffsetedInfo - This struct contains the offset and an object identifier. /// this represent the object as with an optional offset from it. struct { union { int Index; // For MO_*Index - The index itself. const char *SymbolName; // For MO_ExternalSymbol. const GlobalValue *GV; // For MO_GlobalAddress. const BlockAddress *BA; // For MO_BlockAddress. } Val; // Low bits of offset are in SmallContents.OffsetLo. int OffsetHi; // An offset from the object, high 32 bits. } OffsetedInfo; } Contents; explicit MachineOperand(MachineOperandType K) : OpKind(K), SubReg_TargetFlags(0), ParentMI(nullptr) { // Assert that the layout is what we expect. It's easy to grow this object. static_assert(alignof(MachineOperand) <= alignof(int64_t), "MachineOperand shouldn't be more than 8 byte aligned"); static_assert(sizeof(Contents) <= 2 * sizeof(void *), "Contents should be at most two pointers"); static_assert(sizeof(MachineOperand) <= alignTo(2 * sizeof(unsigned) + 3 * sizeof(void *)), "MachineOperand too big. Should be Kind, SmallContents, " "ParentMI, and Contents"); } public: /// getType - Returns the MachineOperandType for this operand. /// MachineOperandType getType() const { return (MachineOperandType)OpKind; } unsigned getTargetFlags() const { return isReg() ? 0 : SubReg_TargetFlags; } void setTargetFlags(unsigned F) { assert(!isReg() && "Register operands can't have target flags"); SubReg_TargetFlags = F; assert(SubReg_TargetFlags == F && "Target flags out of range"); } void addTargetFlag(unsigned F) { assert(!isReg() && "Register operands can't have target flags"); SubReg_TargetFlags |= F; assert((SubReg_TargetFlags & F) && "Target flags out of range"); } /// getParent - Return the instruction that this operand belongs to. /// MachineInstr *getParent() { return ParentMI; } const MachineInstr *getParent() const { return ParentMI; } /// clearParent - Reset the parent pointer. /// /// The MachineOperand copy constructor also copies ParentMI, expecting the /// original to be deleted. If a MachineOperand is ever stored outside a /// MachineInstr, the parent pointer must be cleared. /// /// Never call clearParent() on an operand in a MachineInstr. /// void clearParent() { ParentMI = nullptr; } /// Print a subreg index operand. /// MO_Immediate operands can also be subreg idices. If it's the case, the /// subreg index name will be printed. MachineInstr::isOperandSubregIdx can be /// called to check this. static void printSubRegIdx(raw_ostream &OS, uint64_t Index, const TargetRegisterInfo *TRI); /// Print operand target flags. static void printTargetFlags(raw_ostream& OS, const MachineOperand &Op); /// Print a MCSymbol as an operand. static void printSymbol(raw_ostream &OS, MCSymbol &Sym); /// Print a stack object reference. static void printStackObjectReference(raw_ostream &OS, unsigned FrameIndex, bool IsFixed, StringRef Name); /// Print the offset with explicit +/- signs. static void printOperandOffset(raw_ostream &OS, int64_t Offset); /// Print an IRSlotNumber. static void printIRSlotNumber(raw_ostream &OS, int Slot); /// Print the MachineOperand to \p os. /// Providing a valid \p TRI and \p IntrinsicInfo results in a more /// target-specific printing. If \p TRI and \p IntrinsicInfo are null, the /// function will try to pick it up from the parent. void print(raw_ostream &os, const TargetRegisterInfo *TRI = nullptr, const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const; /// More complex way of printing a MachineOperand. /// \param TypeToPrint specifies the generic type to be printed on uses and /// defs. It can be determined using MachineInstr::getTypeToPrint. /// \param OpIdx - specifies the index of the operand in machine instruction. /// This will be used by target dependent MIR formatter. Could be None if the /// index is unknown, e.g. called by dump(). /// \param PrintDef - whether we want to print `def` on an operand which /// isDef. Sometimes, if the operand is printed before '=', we don't print /// `def`. /// \param IsStandalone - whether we want a verbose output of the MO. This /// prints extra information that can be easily inferred when printing the /// whole function, but not when printing only a fragment of it. /// \param ShouldPrintRegisterTies - whether we want to print register ties. /// Sometimes they are easily determined by the instruction's descriptor /// (MachineInstr::hasComplexRegiterTies can determine if it's needed). /// \param TiedOperandIdx - if we need to print register ties this needs to /// provide the index of the tied register. If not, it will be ignored. /// \param TRI - provide more target-specific information to the printer. /// Unlike the previous function, this one will not try and get the /// information from it's parent. /// \param IntrinsicInfo - same as \p TRI. void print(raw_ostream &os, ModuleSlotTracker &MST, LLT TypeToPrint, Optional OpIdx, bool PrintDef, bool IsStandalone, bool ShouldPrintRegisterTies, unsigned TiedOperandIdx, const TargetRegisterInfo *TRI, const TargetIntrinsicInfo *IntrinsicInfo) const; /// Same as print(os, TRI, IntrinsicInfo), but allows to specify the low-level /// type to be printed the same way the full version of print(...) does it. void print(raw_ostream &os, LLT TypeToPrint, const TargetRegisterInfo *TRI = nullptr, const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const; void dump() const; //===--------------------------------------------------------------------===// // Accessors that tell you what kind of MachineOperand you're looking at. //===--------------------------------------------------------------------===// /// isReg - Tests if this is a MO_Register operand. bool isReg() const { return OpKind == MO_Register; } /// isImm - Tests if this is a MO_Immediate operand. bool isImm() const { return OpKind == MO_Immediate; } /// isCImm - Test if this is a MO_CImmediate operand. bool isCImm() const { return OpKind == MO_CImmediate; } /// isFPImm - Tests if this is a MO_FPImmediate operand. bool isFPImm() const { return OpKind == MO_FPImmediate; } /// isMBB - Tests if this is a MO_MachineBasicBlock operand. bool isMBB() const { return OpKind == MO_MachineBasicBlock; } /// isFI - Tests if this is a MO_FrameIndex operand. bool isFI() const { return OpKind == MO_FrameIndex; } /// isCPI - Tests if this is a MO_ConstantPoolIndex operand. bool isCPI() const { return OpKind == MO_ConstantPoolIndex; } /// isTargetIndex - Tests if this is a MO_TargetIndex operand. bool isTargetIndex() const { return OpKind == MO_TargetIndex; } /// isJTI - Tests if this is a MO_JumpTableIndex operand. bool isJTI() const { return OpKind == MO_JumpTableIndex; } /// isGlobal - Tests if this is a MO_GlobalAddress operand. bool isGlobal() const { return OpKind == MO_GlobalAddress; } /// isSymbol - Tests if this is a MO_ExternalSymbol operand. bool isSymbol() const { return OpKind == MO_ExternalSymbol; } /// isBlockAddress - Tests if this is a MO_BlockAddress operand. bool isBlockAddress() const { return OpKind == MO_BlockAddress; } /// isRegMask - Tests if this is a MO_RegisterMask operand. bool isRegMask() const { return OpKind == MO_RegisterMask; } /// isRegLiveOut - Tests if this is a MO_RegisterLiveOut operand. bool isRegLiveOut() const { return OpKind == MO_RegisterLiveOut; } /// isMetadata - Tests if this is a MO_Metadata operand. bool isMetadata() const { return OpKind == MO_Metadata; } bool isMCSymbol() const { return OpKind == MO_MCSymbol; } bool isCFIIndex() const { return OpKind == MO_CFIIndex; } bool isIntrinsicID() const { return OpKind == MO_IntrinsicID; } bool isPredicate() const { return OpKind == MO_Predicate; } bool isShuffleMask() const { return OpKind == MO_ShuffleMask; } //===--------------------------------------------------------------------===// // Accessors for Register Operands //===--------------------------------------------------------------------===// /// getReg - Returns the register number. Register getReg() const { assert(isReg() && "This is not a register operand!"); return Register(SmallContents.RegNo); } unsigned getSubReg() const { assert(isReg() && "Wrong MachineOperand accessor"); return SubReg_TargetFlags; } bool isUse() const { assert(isReg() && "Wrong MachineOperand accessor"); return !IsDef; } bool isDef() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDef; } bool isImplicit() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsImp; } bool isDead() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDeadOrKill & IsDef; } bool isKill() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDeadOrKill & !IsDef; } bool isUndef() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsUndef; } /// isRenamable - Returns true if this register may be renamed, i.e. it does /// not generate a value that is somehow read in a way that is not represented /// by the Machine IR (e.g. to meet an ABI or ISA requirement). This is only /// valid on physical register operands. Virtual registers are assumed to /// always be renamable regardless of the value of this field. /// /// Operands that are renamable can freely be changed to any other register /// that is a member of the register class returned by /// MI->getRegClassConstraint(). /// /// isRenamable can return false for several different reasons: /// /// - ABI constraints (since liveness is not always precisely modeled). We /// conservatively handle these cases by setting all physical register /// operands that didn’t start out as virtual regs to not be renamable. /// Also any physical register operands created after register allocation or /// whose register is changed after register allocation will not be /// renamable. This state is tracked in the MachineOperand::IsRenamable /// bit. /// /// - Opcode/target constraints: for opcodes that have complex register class /// requirements (e.g. that depend on other operands/instructions), we set /// hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq in the machine opcode /// description. Operands belonging to instructions with opcodes that are /// marked hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq return false from /// isRenamable(). Additionally, the AllowRegisterRenaming target property /// prevents any operands from being marked renamable for targets that don't /// have detailed opcode hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq /// values. bool isRenamable() const; bool isInternalRead() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsInternalRead; } bool isEarlyClobber() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsEarlyClobber; } bool isTied() const { assert(isReg() && "Wrong MachineOperand accessor"); return TiedTo; } bool isDebug() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDebug; } /// readsReg - Returns true if this operand reads the previous value of its /// register. A use operand with the flag set doesn't read its /// register. A sub-register def implicitly reads the other parts of the /// register being redefined unless the flag is set. /// /// This refers to reading the register value from before the current /// instruction or bundle. Internal bundle reads are not included. bool readsReg() const { assert(isReg() && "Wrong MachineOperand accessor"); return !isUndef() && !isInternalRead() && (isUse() || getSubReg()); } //===--------------------------------------------------------------------===// // Mutators for Register Operands //===--------------------------------------------------------------------===// /// Change the register this operand corresponds to. /// void setReg(Register Reg); void setSubReg(unsigned subReg) { assert(isReg() && "Wrong MachineOperand mutator"); SubReg_TargetFlags = subReg; assert(SubReg_TargetFlags == subReg && "SubReg out of range"); } /// substVirtReg - Substitute the current register with the virtual /// subregister Reg:SubReg. Take any existing SubReg index into account, /// using TargetRegisterInfo to compose the subreg indices if necessary. /// Reg must be a virtual register, SubIdx can be 0. /// void substVirtReg(Register Reg, unsigned SubIdx, const TargetRegisterInfo&); /// substPhysReg - Substitute the current register with the physical register /// Reg, taking any existing SubReg into account. For instance, /// substPhysReg(%eax) will change %reg1024:sub_8bit to %al. /// void substPhysReg(MCRegister Reg, const TargetRegisterInfo&); void setIsUse(bool Val = true) { setIsDef(!Val); } /// Change a def to a use, or a use to a def. void setIsDef(bool Val = true); void setImplicit(bool Val = true) { assert(isReg() && "Wrong MachineOperand mutator"); IsImp = Val; } void setIsKill(bool Val = true) { assert(isReg() && !IsDef && "Wrong MachineOperand mutator"); assert((!Val || !isDebug()) && "Marking a debug operation as kill"); IsDeadOrKill = Val; } void setIsDead(bool Val = true) { assert(isReg() && IsDef && "Wrong MachineOperand mutator"); IsDeadOrKill = Val; } void setIsUndef(bool Val = true) { assert(isReg() && "Wrong MachineOperand mutator"); IsUndef = Val; } void setIsRenamable(bool Val = true); void setIsInternalRead(bool Val = true) { assert(isReg() && "Wrong MachineOperand mutator"); IsInternalRead = Val; } void setIsEarlyClobber(bool Val = true) { assert(isReg() && IsDef && "Wrong MachineOperand mutator"); IsEarlyClobber = Val; } void setIsDebug(bool Val = true) { assert(isReg() && !IsDef && "Wrong MachineOperand mutator"); IsDebug = Val; } //===--------------------------------------------------------------------===// // Accessors for various operand types. //===--------------------------------------------------------------------===// int64_t getImm() const { assert(isImm() && "Wrong MachineOperand accessor"); return Contents.ImmVal; } const ConstantInt *getCImm() const { assert(isCImm() && "Wrong MachineOperand accessor"); return Contents.CI; } const ConstantFP *getFPImm() const { assert(isFPImm() && "Wrong MachineOperand accessor"); return Contents.CFP; } MachineBasicBlock *getMBB() const { assert(isMBB() && "Wrong MachineOperand accessor"); return Contents.MBB; } int getIndex() const { assert((isFI() || isCPI() || isTargetIndex() || isJTI()) && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.Index; } const GlobalValue *getGlobal() const { assert(isGlobal() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.GV; } const BlockAddress *getBlockAddress() const { assert(isBlockAddress() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.BA; } MCSymbol *getMCSymbol() const { assert(isMCSymbol() && "Wrong MachineOperand accessor"); return Contents.Sym; } unsigned getCFIIndex() const { assert(isCFIIndex() && "Wrong MachineOperand accessor"); return Contents.CFIIndex; } Intrinsic::ID getIntrinsicID() const { assert(isIntrinsicID() && "Wrong MachineOperand accessor"); return Contents.IntrinsicID; } unsigned getPredicate() const { assert(isPredicate() && "Wrong MachineOperand accessor"); return Contents.Pred; } ArrayRef getShuffleMask() const { assert(isShuffleMask() && "Wrong MachineOperand accessor"); return Contents.ShuffleMask; } /// Return the offset from the symbol in this operand. This always returns 0 /// for ExternalSymbol operands. int64_t getOffset() const { assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() || isTargetIndex() || isBlockAddress()) && "Wrong MachineOperand accessor"); return int64_t(uint64_t(Contents.OffsetedInfo.OffsetHi) << 32) | SmallContents.OffsetLo; } const char *getSymbolName() const { assert(isSymbol() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.SymbolName; } /// clobbersPhysReg - Returns true if this RegMask clobbers PhysReg. /// It is sometimes necessary to detach the register mask pointer from its /// machine operand. This static method can be used for such detached bit /// mask pointers. static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg) { // See TargetRegisterInfo.h. assert(PhysReg < (1u << 30) && "Not a physical register"); return !(RegMask[PhysReg / 32] & (1u << PhysReg % 32)); } /// clobbersPhysReg - Returns true if this RegMask operand clobbers PhysReg. bool clobbersPhysReg(MCRegister PhysReg) const { return clobbersPhysReg(getRegMask(), PhysReg); } /// getRegMask - Returns a bit mask of registers preserved by this RegMask /// operand. const uint32_t *getRegMask() const { assert(isRegMask() && "Wrong MachineOperand accessor"); return Contents.RegMask; } /// Returns number of elements needed for a regmask array. static unsigned getRegMaskSize(unsigned NumRegs) { return (NumRegs + 31) / 32; } /// getRegLiveOut - Returns a bit mask of live-out registers. const uint32_t *getRegLiveOut() const { assert(isRegLiveOut() && "Wrong MachineOperand accessor"); return Contents.RegMask; } const MDNode *getMetadata() const { assert(isMetadata() && "Wrong MachineOperand accessor"); return Contents.MD; } //===--------------------------------------------------------------------===// // Mutators for various operand types. //===--------------------------------------------------------------------===// void setImm(int64_t immVal) { assert(isImm() && "Wrong MachineOperand mutator"); Contents.ImmVal = immVal; } void setCImm(const ConstantInt *CI) { assert(isCImm() && "Wrong MachineOperand mutator"); Contents.CI = CI; } void setFPImm(const ConstantFP *CFP) { assert(isFPImm() && "Wrong MachineOperand mutator"); Contents.CFP = CFP; } void setOffset(int64_t Offset) { assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() || isTargetIndex() || isBlockAddress()) && "Wrong MachineOperand mutator"); SmallContents.OffsetLo = unsigned(Offset); Contents.OffsetedInfo.OffsetHi = int(Offset >> 32); } void setIndex(int Idx) { assert((isFI() || isCPI() || isTargetIndex() || isJTI()) && "Wrong MachineOperand mutator"); Contents.OffsetedInfo.Val.Index = Idx; } void setMetadata(const MDNode *MD) { assert(isMetadata() && "Wrong MachineOperand mutator"); Contents.MD = MD; } void setMBB(MachineBasicBlock *MBB) { assert(isMBB() && "Wrong MachineOperand mutator"); Contents.MBB = MBB; } /// Sets value of register mask operand referencing Mask. The /// operand does not take ownership of the memory referenced by Mask, it must /// remain valid for the lifetime of the operand. See CreateRegMask(). /// Any physreg with a 0 bit in the mask is clobbered by the instruction. void setRegMask(const uint32_t *RegMaskPtr) { assert(isRegMask() && "Wrong MachineOperand mutator"); Contents.RegMask = RegMaskPtr; } void setIntrinsicID(Intrinsic::ID IID) { assert(isIntrinsicID() && "Wrong MachineOperand mutator"); Contents.IntrinsicID = IID; } void setPredicate(unsigned Predicate) { assert(isPredicate() && "Wrong MachineOperand mutator"); Contents.Pred = Predicate; } //===--------------------------------------------------------------------===// // Other methods. //===--------------------------------------------------------------------===// /// Returns true if this operand is identical to the specified operand except /// for liveness related flags (isKill, isUndef and isDead). Note that this /// should stay in sync with the hash_value overload below. bool isIdenticalTo(const MachineOperand &Other) const; /// MachineOperand hash_value overload. /// /// Note that this includes the same information in the hash that /// isIdenticalTo uses for comparison. It is thus suited for use in hash /// tables which use that function for equality comparisons only. This must /// stay exactly in sync with isIdenticalTo above. friend hash_code hash_value(const MachineOperand &MO); /// ChangeToImmediate - Replace this operand with a new immediate operand of /// the specified value. If an operand is known to be an immediate already, /// the setImm method should be used. void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags = 0); /// ChangeToFPImmediate - Replace this operand with a new FP immediate operand /// of the specified value. If an operand is known to be an FP immediate /// already, the setFPImm method should be used. void ChangeToFPImmediate(const ConstantFP *FPImm, unsigned TargetFlags = 0); /// ChangeToES - Replace this operand with a new external symbol operand. void ChangeToES(const char *SymName, unsigned TargetFlags = 0); /// ChangeToGA - Replace this operand with a new global address operand. void ChangeToGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags = 0); /// ChangeToMCSymbol - Replace this operand with a new MC symbol operand. void ChangeToMCSymbol(MCSymbol *Sym, unsigned TargetFlags = 0); /// Replace this operand with a frame index. void ChangeToFrameIndex(int Idx, unsigned TargetFlags = 0); /// Replace this operand with a target index. void ChangeToTargetIndex(unsigned Idx, int64_t Offset, unsigned TargetFlags = 0); /// ChangeToRegister - Replace this operand with a new register operand of /// the specified value. If an operand is known to be an register already, /// the setReg method should be used. void ChangeToRegister(Register Reg, bool isDef, bool isImp = false, bool isKill = false, bool isDead = false, bool isUndef = false, bool isDebug = false); /// getTargetIndexName - If this MachineOperand is a TargetIndex that has a /// name, attempt to get the name. Returns nullptr if the TargetIndex does not /// have a name. Asserts if MO is not a TargetIndex. const char *getTargetIndexName() const; //===--------------------------------------------------------------------===// // Construction methods. //===--------------------------------------------------------------------===// static MachineOperand CreateImm(int64_t Val) { MachineOperand Op(MachineOperand::MO_Immediate); Op.setImm(Val); return Op; } static MachineOperand CreateCImm(const ConstantInt *CI) { MachineOperand Op(MachineOperand::MO_CImmediate); Op.Contents.CI = CI; return Op; } static MachineOperand CreateFPImm(const ConstantFP *CFP) { MachineOperand Op(MachineOperand::MO_FPImmediate); Op.Contents.CFP = CFP; return Op; } static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp = false, bool isKill = false, bool isDead = false, bool isUndef = false, bool isEarlyClobber = false, unsigned SubReg = 0, bool isDebug = false, bool isInternalRead = false, bool isRenamable = false) { assert(!(isDead && !isDef) && "Dead flag on non-def"); assert(!(isKill && isDef) && "Kill flag on def"); MachineOperand Op(MachineOperand::MO_Register); Op.IsDef = isDef; Op.IsImp = isImp; Op.IsDeadOrKill = isKill | isDead; Op.IsRenamable = isRenamable; Op.IsUndef = isUndef; Op.IsInternalRead = isInternalRead; Op.IsEarlyClobber = isEarlyClobber; Op.TiedTo = 0; Op.IsDebug = isDebug; Op.SmallContents.RegNo = Reg; Op.Contents.Reg.Prev = nullptr; Op.Contents.Reg.Next = nullptr; Op.setSubReg(SubReg); return Op; } static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_MachineBasicBlock); Op.setMBB(MBB); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateFI(int Idx) { MachineOperand Op(MachineOperand::MO_FrameIndex); Op.setIndex(Idx); return Op; } static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_ConstantPoolIndex); Op.setIndex(Idx); Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_TargetIndex); Op.setIndex(Idx); Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_JumpTableIndex); Op.setIndex(Idx); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_GlobalAddress); Op.Contents.OffsetedInfo.Val.GV = GV; Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateES(const char *SymName, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_ExternalSymbol); Op.Contents.OffsetedInfo.Val.SymbolName = SymName; Op.setOffset(0); // Offset is always 0. Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_BlockAddress); Op.Contents.OffsetedInfo.Val.BA = BA; Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } /// CreateRegMask - Creates a register mask operand referencing Mask. The /// operand does not take ownership of the memory referenced by Mask, it /// must remain valid for the lifetime of the operand. /// /// A RegMask operand represents a set of non-clobbered physical registers /// on an instruction that clobbers many registers, typically a call. The /// bit mask has a bit set for each physreg that is preserved by this /// instruction, as described in the documentation for /// TargetRegisterInfo::getCallPreservedMask(). /// /// Any physreg with a 0 bit in the mask is clobbered by the instruction. /// static MachineOperand CreateRegMask(const uint32_t *Mask) { assert(Mask && "Missing register mask"); MachineOperand Op(MachineOperand::MO_RegisterMask); Op.Contents.RegMask = Mask; return Op; } static MachineOperand CreateRegLiveOut(const uint32_t *Mask) { assert(Mask && "Missing live-out register mask"); MachineOperand Op(MachineOperand::MO_RegisterLiveOut); Op.Contents.RegMask = Mask; return Op; } static MachineOperand CreateMetadata(const MDNode *Meta) { MachineOperand Op(MachineOperand::MO_Metadata); Op.Contents.MD = Meta; return Op; } static MachineOperand CreateMCSymbol(MCSymbol *Sym, unsigned TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_MCSymbol); Op.Contents.Sym = Sym; Op.setOffset(0); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateCFIIndex(unsigned CFIIndex) { MachineOperand Op(MachineOperand::MO_CFIIndex); Op.Contents.CFIIndex = CFIIndex; return Op; } static MachineOperand CreateIntrinsicID(Intrinsic::ID ID) { MachineOperand Op(MachineOperand::MO_IntrinsicID); Op.Contents.IntrinsicID = ID; return Op; } static MachineOperand CreatePredicate(unsigned Pred) { MachineOperand Op(MachineOperand::MO_Predicate); Op.Contents.Pred = Pred; return Op; } static MachineOperand CreateShuffleMask(ArrayRef Mask) { MachineOperand Op(MachineOperand::MO_ShuffleMask); Op.Contents.ShuffleMask = Mask; return Op; } friend class MachineInstr; friend class MachineRegisterInfo; private: // If this operand is currently a register operand, and if this is in a // function, deregister the operand from the register's use/def list. void removeRegFromUses(); /// Artificial kinds for DenseMap usage. enum : unsigned char { MO_Empty = MO_Last + 1, MO_Tombstone, }; friend struct DenseMapInfo; //===--------------------------------------------------------------------===// // Methods for handling register use/def lists. //===--------------------------------------------------------------------===// /// isOnRegUseList - Return true if this operand is on a register use/def /// list or false if not. This can only be called for register operands /// that are part of a machine instruction. bool isOnRegUseList() const { assert(isReg() && "Can only add reg operand to use lists"); return Contents.Reg.Prev != nullptr; } }; template <> struct DenseMapInfo { static MachineOperand getEmptyKey() { return MachineOperand(static_cast( MachineOperand::MO_Empty)); } static MachineOperand getTombstoneKey() { return MachineOperand(static_cast( MachineOperand::MO_Tombstone)); } static unsigned getHashValue(const MachineOperand &MO) { return hash_value(MO); } static bool isEqual(const MachineOperand &LHS, const MachineOperand &RHS) { if (LHS.getType() == static_cast( MachineOperand::MO_Empty) || LHS.getType() == static_cast( MachineOperand::MO_Tombstone)) return LHS.getType() == RHS.getType(); return LHS.isIdenticalTo(RHS); } }; inline raw_ostream &operator<<(raw_ostream &OS, const MachineOperand &MO) { MO.print(OS); return OS; } // See friend declaration above. This additional declaration is required in // order to compile LLVM with IBM xlC compiler. hash_code hash_value(const MachineOperand &MO); } // namespace llvm #endif