218 lines
7.1 KiB
LLVM
218 lines
7.1 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; Tests that check our handling of volatile instructions encountered
|
|
; when scanning for dependencies
|
|
; RUN: opt -basic-aa -gvn -S < %s | FileCheck %s
|
|
|
|
; Check that we can bypass a volatile load when searching
|
|
; for dependencies of a non-volatile load
|
|
define i32 @test1(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test1(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; We can not value forward if the query instruction is
|
|
; volatile, this would be (in effect) removing the volatile load
|
|
define i32 @test2(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test2(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
%y = load volatile i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; If the query instruction is itself volatile, we *cannot*
|
|
; reorder it even if p and q are noalias
|
|
define i32 @test3(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test3(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load volatile i32, i32* %q
|
|
%y = load volatile i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; If an encountered instruction is both volatile and ordered,
|
|
; we need to use the strictest ordering of either. In this
|
|
; case, the ordering prevents forwarding.
|
|
define i32 @test4(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test4(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: [[TMP0:%.*]] = load atomic volatile i32, i32* [[Q:%.*]] seq_cst, align 4
|
|
; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] seq_cst, align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%x = load i32, i32* %p
|
|
load atomic volatile i32, i32* %q seq_cst, align 4
|
|
%y = load atomic i32, i32* %p seq_cst, align 4
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; Value forwarding from a volatile load is perfectly legal
|
|
define i32 @test5(i32* nocapture %p, i32* nocapture %q) {
|
|
; CHECK-LABEL: @test5(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%x = load volatile i32, i32* %p
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; Does cross block redundancy elimination work with volatiles?
|
|
define i32 @test6(i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test6(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y1]], [[X]]
|
|
; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0
|
|
; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
%cnd = icmp eq i32 %add, 0
|
|
br i1 %cnd, label %exit, label %header
|
|
exit:
|
|
ret i32 %add
|
|
}
|
|
|
|
; Does cross block PRE work with volatiles?
|
|
define i32 @test7(i1 %c, i32* noalias nocapture %p, i32* noalias nocapture %q) {
|
|
; CHECK-LABEL: @test7(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: br i1 [[C:%.*]], label [[ENTRY_HEADER_CRIT_EDGE:%.*]], label [[SKIP:%.*]]
|
|
; CHECK: entry.header_crit_edge:
|
|
; CHECK-NEXT: [[Y_PRE:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: skip:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE]], [[ENTRY_HEADER_CRIT_EDGE]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[SKIP]] ]
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0
|
|
; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: ret i32 0
|
|
;
|
|
entry:
|
|
br i1 %c, label %header, label %skip
|
|
skip:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
%add = sub i32 %y, %x
|
|
%cnd = icmp eq i32 %add, 0
|
|
br i1 %cnd, label %exit, label %header
|
|
exit:
|
|
ret i32 %add
|
|
}
|
|
|
|
; Another volatile PRE case - two paths through a loop
|
|
; load in preheader, one path read only, one not
|
|
define i32 @test8(i1 %b, i1 %c, i32* noalias %p, i32* noalias %q) {
|
|
; CHECK-LABEL: @test8(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y1]])
|
|
; CHECK-NEXT: br label [[HEADER:%.*]]
|
|
; CHECK: header:
|
|
; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE:%.*]], [[SKIP_HEADER_CRIT_EDGE:%.*]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[ENTRY:%.*]] ]
|
|
; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4
|
|
; CHECK-NEXT: call void @use(i32 [[Y]])
|
|
; CHECK-NEXT: br i1 [[B:%.*]], label [[SKIP:%.*]], label [[HEADER]]
|
|
; CHECK: skip:
|
|
; CHECK-NEXT: call void @clobber(i32* [[P]], i32* [[Q]])
|
|
; CHECK-NEXT: br i1 [[C:%.*]], label [[SKIP_HEADER_CRIT_EDGE]], label [[EXIT:%.*]]
|
|
; CHECK: skip.header_crit_edge:
|
|
; CHECK-NEXT: [[Y_PRE]] = load i32, i32* [[P]], align 4
|
|
; CHECK-NEXT: br label [[HEADER]]
|
|
; CHECK: exit:
|
|
; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]]
|
|
; CHECK-NEXT: ret i32 [[ADD]]
|
|
;
|
|
entry:
|
|
%y1 = load i32, i32* %p
|
|
call void @use(i32 %y1)
|
|
br label %header
|
|
header:
|
|
%x = load volatile i32, i32* %q
|
|
%y = load i32, i32* %p
|
|
call void @use(i32 %y)
|
|
br i1 %b, label %skip, label %header
|
|
skip:
|
|
; escaping the arguments is explicitly required since we marked
|
|
; them noalias
|
|
call void @clobber(i32* %p, i32* %q)
|
|
br i1 %c, label %header, label %exit
|
|
exit:
|
|
%add = sub i32 %y, %x
|
|
ret i32 %add
|
|
}
|
|
|
|
; This test checks that we don't optimize away instructions that are
|
|
; simplified by SimplifyInstruction(), but are not trivially dead.
|
|
|
|
define i32 @test9(i32* %V) {
|
|
; CHECK-LABEL: @test9(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: [[LOAD:%.*]] = call i32 undef()
|
|
; CHECK-NEXT: ret i32 poison
|
|
;
|
|
entry:
|
|
%load = call i32 undef()
|
|
ret i32 %load
|
|
}
|
|
|
|
declare void @use(i32) readonly
|
|
declare void @clobber(i32* %p, i32* %q)
|
|
|
|
!0 = !{ i32 0, i32 1 }
|