; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; Tests that check our handling of volatile instructions encountered ; when scanning for dependencies ; RUN: opt -basic-aa -gvn -S < %s | FileCheck %s ; Check that we can bypass a volatile load when searching ; for dependencies of a non-volatile load define i32 @test1(i32* nocapture %p, i32* nocapture %q) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4 ; CHECK-NEXT: ret i32 0 ; entry: %x = load i32, i32* %p load volatile i32, i32* %q %y = load i32, i32* %p %add = sub i32 %y, %x ret i32 %add } ; We can not value forward if the query instruction is ; volatile, this would be (in effect) removing the volatile load define i32 @test2(i32* nocapture %p, i32* nocapture %q) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4 ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]] ; CHECK-NEXT: ret i32 [[ADD]] ; entry: %x = load i32, i32* %p %y = load volatile i32, i32* %p %add = sub i32 %y, %x ret i32 %add } ; If the query instruction is itself volatile, we *cannot* ; reorder it even if p and q are noalias define i32 @test3(i32* noalias nocapture %p, i32* noalias nocapture %q) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[TMP0:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4 ; CHECK-NEXT: [[Y:%.*]] = load volatile i32, i32* [[P]], align 4 ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]] ; CHECK-NEXT: ret i32 [[ADD]] ; entry: %x = load i32, i32* %p load volatile i32, i32* %q %y = load volatile i32, i32* %p %add = sub i32 %y, %x ret i32 %add } ; If an encountered instruction is both volatile and ordered, ; we need to use the strictest ordering of either. In this ; case, the ordering prevents forwarding. define i32 @test4(i32* noalias nocapture %p, i32* noalias nocapture %q) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[X:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: [[TMP0:%.*]] = load atomic volatile i32, i32* [[Q:%.*]] seq_cst, align 4 ; CHECK-NEXT: [[Y:%.*]] = load atomic i32, i32* [[P]] seq_cst, align 4 ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]] ; CHECK-NEXT: ret i32 [[ADD]] ; entry: %x = load i32, i32* %p load atomic volatile i32, i32* %q seq_cst, align 4 %y = load atomic i32, i32* %p seq_cst, align 4 %add = sub i32 %y, %x ret i32 %add } ; Value forwarding from a volatile load is perfectly legal define i32 @test5(i32* nocapture %p, i32* nocapture %q) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: ret i32 0 ; entry: %x = load volatile i32, i32* %p %y = load i32, i32* %p %add = sub i32 %y, %x ret i32 %add } ; Does cross block redundancy elimination work with volatiles? define i32 @test6(i32* noalias nocapture %p, i32* noalias nocapture %q) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: call void @use(i32 [[Y1]]) ; CHECK-NEXT: br label [[HEADER:%.*]] ; CHECK: header: ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4 ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y1]], [[X]] ; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0 ; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]] ; CHECK: exit: ; CHECK-NEXT: ret i32 0 ; entry: %y1 = load i32, i32* %p call void @use(i32 %y1) br label %header header: %x = load volatile i32, i32* %q %y = load i32, i32* %p %add = sub i32 %y, %x %cnd = icmp eq i32 %add, 0 br i1 %cnd, label %exit, label %header exit: ret i32 %add } ; Does cross block PRE work with volatiles? define i32 @test7(i1 %c, i32* noalias nocapture %p, i32* noalias nocapture %q) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[C:%.*]], label [[ENTRY_HEADER_CRIT_EDGE:%.*]], label [[SKIP:%.*]] ; CHECK: entry.header_crit_edge: ; CHECK-NEXT: [[Y_PRE:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: br label [[HEADER:%.*]] ; CHECK: skip: ; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P]], align 4 ; CHECK-NEXT: call void @use(i32 [[Y1]]) ; CHECK-NEXT: br label [[HEADER]] ; CHECK: header: ; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE]], [[ENTRY_HEADER_CRIT_EDGE]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[SKIP]] ] ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4 ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]] ; CHECK-NEXT: [[CND:%.*]] = icmp eq i32 [[ADD]], 0 ; CHECK-NEXT: br i1 [[CND]], label [[EXIT:%.*]], label [[HEADER]] ; CHECK: exit: ; CHECK-NEXT: ret i32 0 ; entry: br i1 %c, label %header, label %skip skip: %y1 = load i32, i32* %p call void @use(i32 %y1) br label %header header: %x = load volatile i32, i32* %q %y = load i32, i32* %p %add = sub i32 %y, %x %cnd = icmp eq i32 %add, 0 br i1 %cnd, label %exit, label %header exit: ret i32 %add } ; Another volatile PRE case - two paths through a loop ; load in preheader, one path read only, one not define i32 @test8(i1 %b, i1 %c, i32* noalias %p, i32* noalias %q) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[Y1:%.*]] = load i32, i32* [[P:%.*]], align 4 ; CHECK-NEXT: call void @use(i32 [[Y1]]) ; CHECK-NEXT: br label [[HEADER:%.*]] ; CHECK: header: ; CHECK-NEXT: [[Y:%.*]] = phi i32 [ [[Y_PRE:%.*]], [[SKIP_HEADER_CRIT_EDGE:%.*]] ], [ [[Y]], [[HEADER]] ], [ [[Y1]], [[ENTRY:%.*]] ] ; CHECK-NEXT: [[X:%.*]] = load volatile i32, i32* [[Q:%.*]], align 4 ; CHECK-NEXT: call void @use(i32 [[Y]]) ; CHECK-NEXT: br i1 [[B:%.*]], label [[SKIP:%.*]], label [[HEADER]] ; CHECK: skip: ; CHECK-NEXT: call void @clobber(i32* [[P]], i32* [[Q]]) ; CHECK-NEXT: br i1 [[C:%.*]], label [[SKIP_HEADER_CRIT_EDGE]], label [[EXIT:%.*]] ; CHECK: skip.header_crit_edge: ; CHECK-NEXT: [[Y_PRE]] = load i32, i32* [[P]], align 4 ; CHECK-NEXT: br label [[HEADER]] ; CHECK: exit: ; CHECK-NEXT: [[ADD:%.*]] = sub i32 [[Y]], [[X]] ; CHECK-NEXT: ret i32 [[ADD]] ; entry: %y1 = load i32, i32* %p call void @use(i32 %y1) br label %header header: %x = load volatile i32, i32* %q %y = load i32, i32* %p call void @use(i32 %y) br i1 %b, label %skip, label %header skip: ; escaping the arguments is explicitly required since we marked ; them noalias call void @clobber(i32* %p, i32* %q) br i1 %c, label %header, label %exit exit: %add = sub i32 %y, %x ret i32 %add } ; This test checks that we don't optimize away instructions that are ; simplified by SimplifyInstruction(), but are not trivially dead. define i32 @test9(i32* %V) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[LOAD:%.*]] = call i32 undef() ; CHECK-NEXT: ret i32 poison ; entry: %load = call i32 undef() ret i32 %load } declare void @use(i32) readonly declare void @clobber(i32* %p, i32* %q) !0 = !{ i32 0, i32 1 }