llvm-for-llvmta/lib/Target/X86/MCTargetDesc/X86InstPrinterCommon.cpp

390 lines
14 KiB
C++

//===--- X86InstPrinterCommon.cpp - X86 assembly instruction printing -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file includes common code for rendering MCInst instances as Intel-style
// and Intel-style assembly.
//
//===----------------------------------------------------------------------===//
#include "X86InstPrinterCommon.h"
#include "X86BaseInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Casting.h"
#include <cstdint>
#include <cassert>
using namespace llvm;
void X86InstPrinterCommon::printCondCode(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
switch (Imm) {
default: llvm_unreachable("Invalid condcode argument!");
case 0: O << "o"; break;
case 1: O << "no"; break;
case 2: O << "b"; break;
case 3: O << "ae"; break;
case 4: O << "e"; break;
case 5: O << "ne"; break;
case 6: O << "be"; break;
case 7: O << "a"; break;
case 8: O << "s"; break;
case 9: O << "ns"; break;
case 0xa: O << "p"; break;
case 0xb: O << "np"; break;
case 0xc: O << "l"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "le"; break;
case 0xf: O << "g"; break;
}
}
void X86InstPrinterCommon::printSSEAVXCC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
switch (Imm) {
default: llvm_unreachable("Invalid ssecc/avxcc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
case 8: O << "eq_uq"; break;
case 9: O << "nge"; break;
case 0xa: O << "ngt"; break;
case 0xb: O << "false"; break;
case 0xc: O << "neq_oq"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "gt"; break;
case 0xf: O << "true"; break;
case 0x10: O << "eq_os"; break;
case 0x11: O << "lt_oq"; break;
case 0x12: O << "le_oq"; break;
case 0x13: O << "unord_s"; break;
case 0x14: O << "neq_us"; break;
case 0x15: O << "nlt_uq"; break;
case 0x16: O << "nle_uq"; break;
case 0x17: O << "ord_s"; break;
case 0x18: O << "eq_us"; break;
case 0x19: O << "nge_uq"; break;
case 0x1a: O << "ngt_uq"; break;
case 0x1b: O << "false_os"; break;
case 0x1c: O << "neq_os"; break;
case 0x1d: O << "ge_oq"; break;
case 0x1e: O << "gt_oq"; break;
case 0x1f: O << "true_us"; break;
}
}
void X86InstPrinterCommon::printVPCOMMnemonic(const MCInst *MI,
raw_ostream &OS) {
OS << "vpcom";
int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
switch (Imm) {
default: llvm_unreachable("Invalid vpcom argument!");
case 0: OS << "lt"; break;
case 1: OS << "le"; break;
case 2: OS << "gt"; break;
case 3: OS << "ge"; break;
case 4: OS << "eq"; break;
case 5: OS << "neq"; break;
case 6: OS << "false"; break;
case 7: OS << "true"; break;
}
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86::VPCOMBmi: case X86::VPCOMBri: OS << "b\t"; break;
case X86::VPCOMDmi: case X86::VPCOMDri: OS << "d\t"; break;
case X86::VPCOMQmi: case X86::VPCOMQri: OS << "q\t"; break;
case X86::VPCOMUBmi: case X86::VPCOMUBri: OS << "ub\t"; break;
case X86::VPCOMUDmi: case X86::VPCOMUDri: OS << "ud\t"; break;
case X86::VPCOMUQmi: case X86::VPCOMUQri: OS << "uq\t"; break;
case X86::VPCOMUWmi: case X86::VPCOMUWri: OS << "uw\t"; break;
case X86::VPCOMWmi: case X86::VPCOMWri: OS << "w\t"; break;
}
}
void X86InstPrinterCommon::printVPCMPMnemonic(const MCInst *MI,
raw_ostream &OS) {
OS << "vpcmp";
printSSEAVXCC(MI, MI->getNumOperands() - 1, OS);
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri:
case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri:
case X86::VPCMPBZrmi: case X86::VPCMPBZrri:
case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik:
case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik:
case X86::VPCMPBZrmik: case X86::VPCMPBZrrik:
OS << "b\t";
break;
case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri:
case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri:
case X86::VPCMPDZrmi: case X86::VPCMPDZrri:
case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik:
case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik:
case X86::VPCMPDZrmik: case X86::VPCMPDZrrik:
case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
OS << "d\t";
break;
case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri:
case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri:
case X86::VPCMPQZrmi: case X86::VPCMPQZrri:
case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik:
case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik:
case X86::VPCMPQZrmik: case X86::VPCMPQZrrik:
case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
OS << "q\t";
break;
case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri:
case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri:
case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri:
case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik:
OS << "ub\t";
break;
case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri:
case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri:
case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri:
case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik:
case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk:
OS << "ud\t";
break;
case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri:
case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri:
case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri:
case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik:
case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk:
OS << "uq\t";
break;
case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri:
case X86::VPCMPUWZ256rri: case X86::VPCMPUWZ256rmi:
case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri:
case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
case X86::VPCMPUWZ256rrik: case X86::VPCMPUWZ256rmik:
case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik:
OS << "uw\t";
break;
case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri:
case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri:
case X86::VPCMPWZrmi: case X86::VPCMPWZrri:
case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik:
case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik:
case X86::VPCMPWZrmik: case X86::VPCMPWZrrik:
OS << "w\t";
break;
}
}
void X86InstPrinterCommon::printCMPMnemonic(const MCInst *MI, bool IsVCmp,
raw_ostream &OS) {
OS << (IsVCmp ? "vcmp" : "cmp");
printSSEAVXCC(MI, MI->getNumOperands() - 1, OS);
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected opcode!");
case X86::CMPPDrmi: case X86::CMPPDrri:
case X86::VCMPPDrmi: case X86::VCMPPDrri:
case X86::VCMPPDYrmi: case X86::VCMPPDYrri:
case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri:
case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri:
case X86::VCMPPDZrmi: case X86::VCMPPDZrri:
case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
case X86::VCMPPDZrmik: case X86::VCMPPDZrrik:
case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik:
case X86::VCMPPDZrrib: case X86::VCMPPDZrribk:
OS << "pd\t";
break;
case X86::CMPPSrmi: case X86::CMPPSrri:
case X86::VCMPPSrmi: case X86::VCMPPSrri:
case X86::VCMPPSYrmi: case X86::VCMPPSYrri:
case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri:
case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri:
case X86::VCMPPSZrmi: case X86::VCMPPSZrri:
case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
case X86::VCMPPSZrmik: case X86::VCMPPSZrrik:
case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik:
case X86::VCMPPSZrrib: case X86::VCMPPSZrribk:
OS << "ps\t";
break;
case X86::CMPSDrm: case X86::CMPSDrr:
case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
case X86::VCMPSDrm: case X86::VCMPSDrr:
case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int:
case X86::VCMPSDZrm: case X86::VCMPSDZrr:
case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int:
case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
OS << "sd\t";
break;
case X86::CMPSSrm: case X86::CMPSSrr:
case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
case X86::VCMPSSrm: case X86::VCMPSSrr:
case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int:
case X86::VCMPSSZrm: case X86::VCMPSSZrr:
case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int:
case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
OS << "ss\t";
break;
}
}
void X86InstPrinterCommon::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
switch (Imm) {
default:
llvm_unreachable("Invalid rounding control!");
case X86::TO_NEAREST_INT:
O << "{rn-sae}";
break;
case X86::TO_NEG_INF:
O << "{rd-sae}";
break;
case X86::TO_POS_INF:
O << "{ru-sae}";
break;
case X86::TO_ZERO:
O << "{rz-sae}";
break;
}
}
/// value (e.g. for jumps and calls). In Intel-style these print slightly
/// differently than normal immediates. For example, a $ is not emitted.
///
/// \p Address The address of the next instruction.
/// \see MCInstPrinter::printInst
void X86InstPrinterCommon::printPCRelImm(const MCInst *MI, uint64_t Address,
unsigned OpNo, raw_ostream &O) {
// Do not print the numberic target address when symbolizing.
if (SymbolizeOperands)
return;
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isImm()) {
if (PrintBranchImmAsAddress) {
uint64_t Target = Address + Op.getImm();
if (MAI.getCodePointerSize() == 4)
Target &= 0xffffffff;
O << formatHex(Target);
} else
O << formatImm(Op.getImm());
} else {
assert(Op.isExpr() && "unknown pcrel immediate operand");
// If a symbolic branch target was added as a constant expression then print
// that address in hex.
const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
int64_t Address;
if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) {
O << formatHex((uint64_t)Address);
} else {
// Otherwise, just print the expression.
Op.getExpr()->print(O, &MAI);
}
}
}
void X86InstPrinterCommon::printOptionalSegReg(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
if (MI->getOperand(OpNo).getReg()) {
printOperand(MI, OpNo, O);
O << ':';
}
}
void X86InstPrinterCommon::printInstFlags(const MCInst *MI, raw_ostream &O) {
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
uint64_t TSFlags = Desc.TSFlags;
unsigned Flags = MI->getFlags();
if ((TSFlags & X86II::LOCK) || (Flags & X86::IP_HAS_LOCK))
O << "\tlock\t";
if ((TSFlags & X86II::NOTRACK) || (Flags & X86::IP_HAS_NOTRACK))
O << "\tnotrack\t";
if (Flags & X86::IP_HAS_REPEAT_NE)
O << "\trepne\t";
else if (Flags & X86::IP_HAS_REPEAT)
O << "\trep\t";
// These all require a pseudo prefix
if ((Flags & X86::IP_USE_VEX) || (TSFlags & X86II::ExplicitVEXPrefix))
O << "\t{vex}";
else if (Flags & X86::IP_USE_VEX2)
O << "\t{vex2}";
else if (Flags & X86::IP_USE_VEX3)
O << "\t{vex3}";
else if (Flags & X86::IP_USE_EVEX)
O << "\t{evex}";
if (Flags & X86::IP_USE_DISP8)
O << "\t{disp8}";
else if (Flags & X86::IP_USE_DISP32)
O << "\t{disp32}";
}
void X86InstPrinterCommon::printVKPair(const MCInst *MI, unsigned OpNo,
raw_ostream &OS) {
// In assembly listings, a pair is represented by one of its members, any
// of the two. Here, we pick k0, k2, k4, k6, but we could as well
// print K2_K3 as "k3". It would probably make a lot more sense, if
// the assembly would look something like:
// "vp2intersect %zmm5, %zmm7, {%k2, %k3}"
// but this can work too.
switch (MI->getOperand(OpNo).getReg()) {
case X86::K0_K1:
printRegName(OS, X86::K0);
return;
case X86::K2_K3:
printRegName(OS, X86::K2);
return;
case X86::K4_K5:
printRegName(OS, X86::K4);
return;
case X86::K6_K7:
printRegName(OS, X86::K6);
return;
}
llvm_unreachable("Unknown mask pair register name");
}