//===--- X86InstPrinterCommon.cpp - X86 assembly instruction printing -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file includes common code for rendering MCInst instances as Intel-style // and Intel-style assembly. // //===----------------------------------------------------------------------===// #include "X86InstPrinterCommon.h" #include "X86BaseInfo.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Casting.h" #include #include using namespace llvm; void X86InstPrinterCommon::printCondCode(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm(); switch (Imm) { default: llvm_unreachable("Invalid condcode argument!"); case 0: O << "o"; break; case 1: O << "no"; break; case 2: O << "b"; break; case 3: O << "ae"; break; case 4: O << "e"; break; case 5: O << "ne"; break; case 6: O << "be"; break; case 7: O << "a"; break; case 8: O << "s"; break; case 9: O << "ns"; break; case 0xa: O << "p"; break; case 0xb: O << "np"; break; case 0xc: O << "l"; break; case 0xd: O << "ge"; break; case 0xe: O << "le"; break; case 0xf: O << "g"; break; } } void X86InstPrinterCommon::printSSEAVXCC(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm(); switch (Imm) { default: llvm_unreachable("Invalid ssecc/avxcc argument!"); case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; case 8: O << "eq_uq"; break; case 9: O << "nge"; break; case 0xa: O << "ngt"; break; case 0xb: O << "false"; break; case 0xc: O << "neq_oq"; break; case 0xd: O << "ge"; break; case 0xe: O << "gt"; break; case 0xf: O << "true"; break; case 0x10: O << "eq_os"; break; case 0x11: O << "lt_oq"; break; case 0x12: O << "le_oq"; break; case 0x13: O << "unord_s"; break; case 0x14: O << "neq_us"; break; case 0x15: O << "nlt_uq"; break; case 0x16: O << "nle_uq"; break; case 0x17: O << "ord_s"; break; case 0x18: O << "eq_us"; break; case 0x19: O << "nge_uq"; break; case 0x1a: O << "ngt_uq"; break; case 0x1b: O << "false_os"; break; case 0x1c: O << "neq_os"; break; case 0x1d: O << "ge_oq"; break; case 0x1e: O << "gt_oq"; break; case 0x1f: O << "true_us"; break; } } void X86InstPrinterCommon::printVPCOMMnemonic(const MCInst *MI, raw_ostream &OS) { OS << "vpcom"; int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm(); switch (Imm) { default: llvm_unreachable("Invalid vpcom argument!"); case 0: OS << "lt"; break; case 1: OS << "le"; break; case 2: OS << "gt"; break; case 3: OS << "ge"; break; case 4: OS << "eq"; break; case 5: OS << "neq"; break; case 6: OS << "false"; break; case 7: OS << "true"; break; } switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case X86::VPCOMBmi: case X86::VPCOMBri: OS << "b\t"; break; case X86::VPCOMDmi: case X86::VPCOMDri: OS << "d\t"; break; case X86::VPCOMQmi: case X86::VPCOMQri: OS << "q\t"; break; case X86::VPCOMUBmi: case X86::VPCOMUBri: OS << "ub\t"; break; case X86::VPCOMUDmi: case X86::VPCOMUDri: OS << "ud\t"; break; case X86::VPCOMUQmi: case X86::VPCOMUQri: OS << "uq\t"; break; case X86::VPCOMUWmi: case X86::VPCOMUWri: OS << "uw\t"; break; case X86::VPCOMWmi: case X86::VPCOMWri: OS << "w\t"; break; } } void X86InstPrinterCommon::printVPCMPMnemonic(const MCInst *MI, raw_ostream &OS) { OS << "vpcmp"; printSSEAVXCC(MI, MI->getNumOperands() - 1, OS); switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri: case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri: case X86::VPCMPBZrmi: case X86::VPCMPBZrri: case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik: case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik: case X86::VPCMPBZrmik: case X86::VPCMPBZrrik: OS << "b\t"; break; case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri: case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri: case X86::VPCMPDZrmi: case X86::VPCMPDZrri: case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik: case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik: case X86::VPCMPDZrmik: case X86::VPCMPDZrrik: case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk: case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk: case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk: OS << "d\t"; break; case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri: case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri: case X86::VPCMPQZrmi: case X86::VPCMPQZrri: case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik: case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik: case X86::VPCMPQZrmik: case X86::VPCMPQZrrik: case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk: case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk: case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk: OS << "q\t"; break; case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri: case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri: case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri: case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik: case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik: case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik: OS << "ub\t"; break; case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri: case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri: case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri: case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik: case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik: case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik: case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk: case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk: case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk: OS << "ud\t"; break; case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri: case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri: case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri: case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik: case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik: case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik: case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk: case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk: case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk: OS << "uq\t"; break; case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri: case X86::VPCMPUWZ256rri: case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri: case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik: case X86::VPCMPUWZ256rrik: case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik: OS << "uw\t"; break; case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri: case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri: case X86::VPCMPWZrmi: case X86::VPCMPWZrri: case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik: case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik: case X86::VPCMPWZrmik: case X86::VPCMPWZrrik: OS << "w\t"; break; } } void X86InstPrinterCommon::printCMPMnemonic(const MCInst *MI, bool IsVCmp, raw_ostream &OS) { OS << (IsVCmp ? "vcmp" : "cmp"); printSSEAVXCC(MI, MI->getNumOperands() - 1, OS); switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case X86::CMPPDrmi: case X86::CMPPDrri: case X86::VCMPPDrmi: case X86::VCMPPDrri: case X86::VCMPPDYrmi: case X86::VCMPPDYrri: case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri: case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri: case X86::VCMPPDZrmi: case X86::VCMPPDZrri: case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik: case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik: case X86::VCMPPDZrmik: case X86::VCMPPDZrrik: case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik: case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik: case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik: case X86::VCMPPDZrrib: case X86::VCMPPDZrribk: OS << "pd\t"; break; case X86::CMPPSrmi: case X86::CMPPSrri: case X86::VCMPPSrmi: case X86::VCMPPSrri: case X86::VCMPPSYrmi: case X86::VCMPPSYrri: case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri: case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri: case X86::VCMPPSZrmi: case X86::VCMPPSZrri: case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik: case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik: case X86::VCMPPSZrmik: case X86::VCMPPSZrrik: case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik: case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik: case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik: case X86::VCMPPSZrrib: case X86::VCMPPSZrribk: OS << "ps\t"; break; case X86::CMPSDrm: case X86::CMPSDrr: case X86::CMPSDrm_Int: case X86::CMPSDrr_Int: case X86::VCMPSDrm: case X86::VCMPSDrr: case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrm: case X86::VCMPSDZrr: case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int: case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk: case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk: OS << "sd\t"; break; case X86::CMPSSrm: case X86::CMPSSrr: case X86::CMPSSrm_Int: case X86::CMPSSrr_Int: case X86::VCMPSSrm: case X86::VCMPSSrr: case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrm: case X86::VCMPSSZrr: case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int: case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk: case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk: OS << "ss\t"; break; } } void X86InstPrinterCommon::printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &O) { int64_t Imm = MI->getOperand(Op).getImm(); switch (Imm) { default: llvm_unreachable("Invalid rounding control!"); case X86::TO_NEAREST_INT: O << "{rn-sae}"; break; case X86::TO_NEG_INF: O << "{rd-sae}"; break; case X86::TO_POS_INF: O << "{ru-sae}"; break; case X86::TO_ZERO: O << "{rz-sae}"; break; } } /// value (e.g. for jumps and calls). In Intel-style these print slightly /// differently than normal immediates. For example, a $ is not emitted. /// /// \p Address The address of the next instruction. /// \see MCInstPrinter::printInst void X86InstPrinterCommon::printPCRelImm(const MCInst *MI, uint64_t Address, unsigned OpNo, raw_ostream &O) { // Do not print the numberic target address when symbolizing. if (SymbolizeOperands) return; const MCOperand &Op = MI->getOperand(OpNo); if (Op.isImm()) { if (PrintBranchImmAsAddress) { uint64_t Target = Address + Op.getImm(); if (MAI.getCodePointerSize() == 4) Target &= 0xffffffff; O << formatHex(Target); } else O << formatImm(Op.getImm()); } else { assert(Op.isExpr() && "unknown pcrel immediate operand"); // If a symbolic branch target was added as a constant expression then print // that address in hex. const MCConstantExpr *BranchTarget = dyn_cast(Op.getExpr()); int64_t Address; if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) { O << formatHex((uint64_t)Address); } else { // Otherwise, just print the expression. Op.getExpr()->print(O, &MAI); } } } void X86InstPrinterCommon::printOptionalSegReg(const MCInst *MI, unsigned OpNo, raw_ostream &O) { if (MI->getOperand(OpNo).getReg()) { printOperand(MI, OpNo, O); O << ':'; } } void X86InstPrinterCommon::printInstFlags(const MCInst *MI, raw_ostream &O) { const MCInstrDesc &Desc = MII.get(MI->getOpcode()); uint64_t TSFlags = Desc.TSFlags; unsigned Flags = MI->getFlags(); if ((TSFlags & X86II::LOCK) || (Flags & X86::IP_HAS_LOCK)) O << "\tlock\t"; if ((TSFlags & X86II::NOTRACK) || (Flags & X86::IP_HAS_NOTRACK)) O << "\tnotrack\t"; if (Flags & X86::IP_HAS_REPEAT_NE) O << "\trepne\t"; else if (Flags & X86::IP_HAS_REPEAT) O << "\trep\t"; // These all require a pseudo prefix if ((Flags & X86::IP_USE_VEX) || (TSFlags & X86II::ExplicitVEXPrefix)) O << "\t{vex}"; else if (Flags & X86::IP_USE_VEX2) O << "\t{vex2}"; else if (Flags & X86::IP_USE_VEX3) O << "\t{vex3}"; else if (Flags & X86::IP_USE_EVEX) O << "\t{evex}"; if (Flags & X86::IP_USE_DISP8) O << "\t{disp8}"; else if (Flags & X86::IP_USE_DISP32) O << "\t{disp32}"; } void X86InstPrinterCommon::printVKPair(const MCInst *MI, unsigned OpNo, raw_ostream &OS) { // In assembly listings, a pair is represented by one of its members, any // of the two. Here, we pick k0, k2, k4, k6, but we could as well // print K2_K3 as "k3". It would probably make a lot more sense, if // the assembly would look something like: // "vp2intersect %zmm5, %zmm7, {%k2, %k3}" // but this can work too. switch (MI->getOperand(OpNo).getReg()) { case X86::K0_K1: printRegName(OS, X86::K0); return; case X86::K2_K3: printRegName(OS, X86::K2); return; case X86::K4_K5: printRegName(OS, X86::K4); return; case X86::K6_K7: printRegName(OS, X86::K6); return; } llvm_unreachable("Unknown mask pair register name"); }