1577 lines
58 KiB
C++
1577 lines
58 KiB
C++
//===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// @file
|
|
/// ModuleSummaryIndex.h This file contains the declarations the classes that
|
|
/// hold the module index and summary for function importing.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_MODULESUMMARYINDEX_H
|
|
#define LLVM_IR_MODULESUMMARYINDEX_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/ScaledNumber.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
namespace yaml {
|
|
|
|
template <typename T> struct MappingTraits;
|
|
|
|
} // end namespace yaml
|
|
|
|
/// Class to accumulate and hold information about a callee.
|
|
struct CalleeInfo {
|
|
enum class HotnessType : uint8_t {
|
|
Unknown = 0,
|
|
Cold = 1,
|
|
None = 2,
|
|
Hot = 3,
|
|
Critical = 4
|
|
};
|
|
|
|
// The size of the bit-field might need to be adjusted if more values are
|
|
// added to HotnessType enum.
|
|
uint32_t Hotness : 3;
|
|
|
|
/// The value stored in RelBlockFreq has to be interpreted as the digits of
|
|
/// a scaled number with a scale of \p -ScaleShift.
|
|
uint32_t RelBlockFreq : 29;
|
|
static constexpr int32_t ScaleShift = 8;
|
|
static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
|
|
|
|
CalleeInfo()
|
|
: Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
|
|
explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
|
|
: Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
|
|
|
|
void updateHotness(const HotnessType OtherHotness) {
|
|
Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
|
|
}
|
|
|
|
HotnessType getHotness() const { return HotnessType(Hotness); }
|
|
|
|
/// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
|
|
///
|
|
/// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
|
|
/// fractional values, the result is represented as a fixed point number with
|
|
/// scale of -ScaleShift.
|
|
void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
|
|
if (EntryFreq == 0)
|
|
return;
|
|
using Scaled64 = ScaledNumber<uint64_t>;
|
|
Scaled64 Temp(BlockFreq, ScaleShift);
|
|
Temp /= Scaled64::get(EntryFreq);
|
|
|
|
uint64_t Sum =
|
|
SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
|
|
Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
|
|
RelBlockFreq = static_cast<uint32_t>(Sum);
|
|
}
|
|
};
|
|
|
|
inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
|
|
switch (HT) {
|
|
case CalleeInfo::HotnessType::Unknown:
|
|
return "unknown";
|
|
case CalleeInfo::HotnessType::Cold:
|
|
return "cold";
|
|
case CalleeInfo::HotnessType::None:
|
|
return "none";
|
|
case CalleeInfo::HotnessType::Hot:
|
|
return "hot";
|
|
case CalleeInfo::HotnessType::Critical:
|
|
return "critical";
|
|
}
|
|
llvm_unreachable("invalid hotness");
|
|
}
|
|
|
|
class GlobalValueSummary;
|
|
|
|
using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
|
|
|
|
struct alignas(8) GlobalValueSummaryInfo {
|
|
union NameOrGV {
|
|
NameOrGV(bool HaveGVs) {
|
|
if (HaveGVs)
|
|
GV = nullptr;
|
|
else
|
|
Name = "";
|
|
}
|
|
|
|
/// The GlobalValue corresponding to this summary. This is only used in
|
|
/// per-module summaries and when the IR is available. E.g. when module
|
|
/// analysis is being run, or when parsing both the IR and the summary
|
|
/// from assembly.
|
|
const GlobalValue *GV;
|
|
|
|
/// Summary string representation. This StringRef points to BC module
|
|
/// string table and is valid until module data is stored in memory.
|
|
/// This is guaranteed to happen until runThinLTOBackend function is
|
|
/// called, so it is safe to use this field during thin link. This field
|
|
/// is only valid if summary index was loaded from BC file.
|
|
StringRef Name;
|
|
} U;
|
|
|
|
GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
|
|
|
|
/// List of global value summary structures for a particular value held
|
|
/// in the GlobalValueMap. Requires a vector in the case of multiple
|
|
/// COMDAT values of the same name.
|
|
GlobalValueSummaryList SummaryList;
|
|
};
|
|
|
|
/// Map from global value GUID to corresponding summary structures. Use a
|
|
/// std::map rather than a DenseMap so that pointers to the map's value_type
|
|
/// (which are used by ValueInfo) are not invalidated by insertion. Also it will
|
|
/// likely incur less overhead, as the value type is not very small and the size
|
|
/// of the map is unknown, resulting in inefficiencies due to repeated
|
|
/// insertions and resizing.
|
|
using GlobalValueSummaryMapTy =
|
|
std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
|
|
|
|
/// Struct that holds a reference to a particular GUID in a global value
|
|
/// summary.
|
|
struct ValueInfo {
|
|
enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
|
|
PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
|
|
RefAndFlags;
|
|
|
|
ValueInfo() = default;
|
|
ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
|
|
RefAndFlags.setPointer(R);
|
|
RefAndFlags.setInt(HaveGVs);
|
|
}
|
|
|
|
explicit operator bool() const { return getRef(); }
|
|
|
|
GlobalValue::GUID getGUID() const { return getRef()->first; }
|
|
const GlobalValue *getValue() const {
|
|
assert(haveGVs());
|
|
return getRef()->second.U.GV;
|
|
}
|
|
|
|
ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
|
|
return getRef()->second.SummaryList;
|
|
}
|
|
|
|
StringRef name() const {
|
|
return haveGVs() ? getRef()->second.U.GV->getName()
|
|
: getRef()->second.U.Name;
|
|
}
|
|
|
|
bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
|
|
bool isReadOnly() const {
|
|
assert(isValidAccessSpecifier());
|
|
return RefAndFlags.getInt() & ReadOnly;
|
|
}
|
|
bool isWriteOnly() const {
|
|
assert(isValidAccessSpecifier());
|
|
return RefAndFlags.getInt() & WriteOnly;
|
|
}
|
|
unsigned getAccessSpecifier() const {
|
|
assert(isValidAccessSpecifier());
|
|
return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
|
|
}
|
|
bool isValidAccessSpecifier() const {
|
|
unsigned BadAccessMask = ReadOnly | WriteOnly;
|
|
return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
|
|
}
|
|
void setReadOnly() {
|
|
// We expect ro/wo attribute to set only once during
|
|
// ValueInfo lifetime.
|
|
assert(getAccessSpecifier() == 0);
|
|
RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
|
|
}
|
|
void setWriteOnly() {
|
|
assert(getAccessSpecifier() == 0);
|
|
RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
|
|
}
|
|
|
|
const GlobalValueSummaryMapTy::value_type *getRef() const {
|
|
return RefAndFlags.getPointer();
|
|
}
|
|
|
|
bool isDSOLocal() const;
|
|
|
|
/// Checks if all copies are eligible for auto-hiding (have flag set).
|
|
bool canAutoHide() const;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
|
|
OS << VI.getGUID();
|
|
if (!VI.name().empty())
|
|
OS << " (" << VI.name() << ")";
|
|
return OS;
|
|
}
|
|
|
|
inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
|
|
assert(A.getRef() && B.getRef() &&
|
|
"Need ValueInfo with non-null Ref for comparison");
|
|
return A.getRef() == B.getRef();
|
|
}
|
|
|
|
inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
|
|
assert(A.getRef() && B.getRef() &&
|
|
"Need ValueInfo with non-null Ref for comparison");
|
|
return A.getRef() != B.getRef();
|
|
}
|
|
|
|
inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
|
|
assert(A.getRef() && B.getRef() &&
|
|
"Need ValueInfo with non-null Ref to compare GUIDs");
|
|
return A.getGUID() < B.getGUID();
|
|
}
|
|
|
|
template <> struct DenseMapInfo<ValueInfo> {
|
|
static inline ValueInfo getEmptyKey() {
|
|
return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
|
|
}
|
|
|
|
static inline ValueInfo getTombstoneKey() {
|
|
return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
|
|
}
|
|
|
|
static inline bool isSpecialKey(ValueInfo V) {
|
|
return V == getTombstoneKey() || V == getEmptyKey();
|
|
}
|
|
|
|
static bool isEqual(ValueInfo L, ValueInfo R) {
|
|
// We are not supposed to mix ValueInfo(s) with different HaveGVs flag
|
|
// in a same container.
|
|
assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
|
|
return L.getRef() == R.getRef();
|
|
}
|
|
static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
|
|
};
|
|
|
|
/// Function and variable summary information to aid decisions and
|
|
/// implementation of importing.
|
|
class GlobalValueSummary {
|
|
public:
|
|
/// Sububclass discriminator (for dyn_cast<> et al.)
|
|
enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
|
|
|
|
/// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
|
|
struct GVFlags {
|
|
/// The linkage type of the associated global value.
|
|
///
|
|
/// One use is to flag values that have local linkage types and need to
|
|
/// have module identifier appended before placing into the combined
|
|
/// index, to disambiguate from other values with the same name.
|
|
/// In the future this will be used to update and optimize linkage
|
|
/// types based on global summary-based analysis.
|
|
unsigned Linkage : 4;
|
|
|
|
/// Indicate if the global value cannot be imported (e.g. it cannot
|
|
/// be renamed or references something that can't be renamed).
|
|
unsigned NotEligibleToImport : 1;
|
|
|
|
/// In per-module summary, indicate that the global value must be considered
|
|
/// a live root for index-based liveness analysis. Used for special LLVM
|
|
/// values such as llvm.global_ctors that the linker does not know about.
|
|
///
|
|
/// In combined summary, indicate that the global value is live.
|
|
unsigned Live : 1;
|
|
|
|
/// Indicates that the linker resolved the symbol to a definition from
|
|
/// within the same linkage unit.
|
|
unsigned DSOLocal : 1;
|
|
|
|
/// In the per-module summary, indicates that the global value is
|
|
/// linkonce_odr and global unnamed addr (so eligible for auto-hiding
|
|
/// via hidden visibility). In the combined summary, indicates that the
|
|
/// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
|
|
/// when it is upgraded to weak_odr in the backend. This is legal when
|
|
/// all copies are eligible for auto-hiding (i.e. all copies were
|
|
/// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
|
|
/// originally weak_odr, we cannot auto-hide the prevailing copy as it
|
|
/// means the symbol was externally visible.
|
|
unsigned CanAutoHide : 1;
|
|
|
|
/// Convenience Constructors
|
|
explicit GVFlags(GlobalValue::LinkageTypes Linkage,
|
|
bool NotEligibleToImport, bool Live, bool IsLocal,
|
|
bool CanAutoHide)
|
|
: Linkage(Linkage), NotEligibleToImport(NotEligibleToImport),
|
|
Live(Live), DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
|
|
};
|
|
|
|
private:
|
|
/// Kind of summary for use in dyn_cast<> et al.
|
|
SummaryKind Kind;
|
|
|
|
GVFlags Flags;
|
|
|
|
/// This is the hash of the name of the symbol in the original file. It is
|
|
/// identical to the GUID for global symbols, but differs for local since the
|
|
/// GUID includes the module level id in the hash.
|
|
GlobalValue::GUID OriginalName = 0;
|
|
|
|
/// Path of module IR containing value's definition, used to locate
|
|
/// module during importing.
|
|
///
|
|
/// This is only used during parsing of the combined index, or when
|
|
/// parsing the per-module index for creation of the combined summary index,
|
|
/// not during writing of the per-module index which doesn't contain a
|
|
/// module path string table.
|
|
StringRef ModulePath;
|
|
|
|
/// List of values referenced by this global value's definition
|
|
/// (either by the initializer of a global variable, or referenced
|
|
/// from within a function). This does not include functions called, which
|
|
/// are listed in the derived FunctionSummary object.
|
|
std::vector<ValueInfo> RefEdgeList;
|
|
|
|
protected:
|
|
GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
|
|
: Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
|
|
assert((K != AliasKind || Refs.empty()) &&
|
|
"Expect no references for AliasSummary");
|
|
}
|
|
|
|
public:
|
|
virtual ~GlobalValueSummary() = default;
|
|
|
|
/// Returns the hash of the original name, it is identical to the GUID for
|
|
/// externally visible symbols, but not for local ones.
|
|
GlobalValue::GUID getOriginalName() const { return OriginalName; }
|
|
|
|
/// Initialize the original name hash in this summary.
|
|
void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
|
|
|
|
/// Which kind of summary subclass this is.
|
|
SummaryKind getSummaryKind() const { return Kind; }
|
|
|
|
/// Set the path to the module containing this function, for use in
|
|
/// the combined index.
|
|
void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
|
|
|
|
/// Get the path to the module containing this function.
|
|
StringRef modulePath() const { return ModulePath; }
|
|
|
|
/// Get the flags for this GlobalValue (see \p struct GVFlags).
|
|
GVFlags flags() const { return Flags; }
|
|
|
|
/// Return linkage type recorded for this global value.
|
|
GlobalValue::LinkageTypes linkage() const {
|
|
return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
|
|
}
|
|
|
|
/// Sets the linkage to the value determined by global summary-based
|
|
/// optimization. Will be applied in the ThinLTO backends.
|
|
void setLinkage(GlobalValue::LinkageTypes Linkage) {
|
|
Flags.Linkage = Linkage;
|
|
}
|
|
|
|
/// Return true if this global value can't be imported.
|
|
bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
|
|
|
|
bool isLive() const { return Flags.Live; }
|
|
|
|
void setLive(bool Live) { Flags.Live = Live; }
|
|
|
|
void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
|
|
|
|
bool isDSOLocal() const { return Flags.DSOLocal; }
|
|
|
|
void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
|
|
|
|
bool canAutoHide() const { return Flags.CanAutoHide; }
|
|
|
|
/// Flag that this global value cannot be imported.
|
|
void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
|
|
|
|
/// Return the list of values referenced by this global value definition.
|
|
ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
|
|
|
|
/// If this is an alias summary, returns the summary of the aliased object (a
|
|
/// global variable or function), otherwise returns itself.
|
|
GlobalValueSummary *getBaseObject();
|
|
const GlobalValueSummary *getBaseObject() const;
|
|
|
|
friend class ModuleSummaryIndex;
|
|
};
|
|
|
|
/// Alias summary information.
|
|
class AliasSummary : public GlobalValueSummary {
|
|
ValueInfo AliaseeValueInfo;
|
|
|
|
/// This is the Aliasee in the same module as alias (could get from VI, trades
|
|
/// memory for time). Note that this pointer may be null (and the value info
|
|
/// empty) when we have a distributed index where the alias is being imported
|
|
/// (as a copy of the aliasee), but the aliasee is not.
|
|
GlobalValueSummary *AliaseeSummary;
|
|
|
|
public:
|
|
AliasSummary(GVFlags Flags)
|
|
: GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
|
|
AliaseeSummary(nullptr) {}
|
|
|
|
/// Check if this is an alias summary.
|
|
static bool classof(const GlobalValueSummary *GVS) {
|
|
return GVS->getSummaryKind() == AliasKind;
|
|
}
|
|
|
|
void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
|
|
AliaseeValueInfo = AliaseeVI;
|
|
AliaseeSummary = Aliasee;
|
|
}
|
|
|
|
bool hasAliasee() const {
|
|
assert(!!AliaseeSummary == (AliaseeValueInfo &&
|
|
!AliaseeValueInfo.getSummaryList().empty()) &&
|
|
"Expect to have both aliasee summary and summary list or neither");
|
|
return !!AliaseeSummary;
|
|
}
|
|
|
|
const GlobalValueSummary &getAliasee() const {
|
|
assert(AliaseeSummary && "Unexpected missing aliasee summary");
|
|
return *AliaseeSummary;
|
|
}
|
|
|
|
GlobalValueSummary &getAliasee() {
|
|
return const_cast<GlobalValueSummary &>(
|
|
static_cast<const AliasSummary *>(this)->getAliasee());
|
|
}
|
|
ValueInfo getAliaseeVI() const {
|
|
assert(AliaseeValueInfo && "Unexpected missing aliasee");
|
|
return AliaseeValueInfo;
|
|
}
|
|
GlobalValue::GUID getAliaseeGUID() const {
|
|
assert(AliaseeValueInfo && "Unexpected missing aliasee");
|
|
return AliaseeValueInfo.getGUID();
|
|
}
|
|
};
|
|
|
|
const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
|
|
if (auto *AS = dyn_cast<AliasSummary>(this))
|
|
return &AS->getAliasee();
|
|
return this;
|
|
}
|
|
|
|
inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
|
|
if (auto *AS = dyn_cast<AliasSummary>(this))
|
|
return &AS->getAliasee();
|
|
return this;
|
|
}
|
|
|
|
/// Function summary information to aid decisions and implementation of
|
|
/// importing.
|
|
class FunctionSummary : public GlobalValueSummary {
|
|
public:
|
|
/// <CalleeValueInfo, CalleeInfo> call edge pair.
|
|
using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
|
|
|
|
/// Types for -force-summary-edges-cold debugging option.
|
|
enum ForceSummaryHotnessType : unsigned {
|
|
FSHT_None,
|
|
FSHT_AllNonCritical,
|
|
FSHT_All
|
|
};
|
|
|
|
/// An "identifier" for a virtual function. This contains the type identifier
|
|
/// represented as a GUID and the offset from the address point to the virtual
|
|
/// function pointer, where "address point" is as defined in the Itanium ABI:
|
|
/// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
|
|
struct VFuncId {
|
|
GlobalValue::GUID GUID;
|
|
uint64_t Offset;
|
|
};
|
|
|
|
/// A specification for a virtual function call with all constant integer
|
|
/// arguments. This is used to perform virtual constant propagation on the
|
|
/// summary.
|
|
struct ConstVCall {
|
|
VFuncId VFunc;
|
|
std::vector<uint64_t> Args;
|
|
};
|
|
|
|
/// All type identifier related information. Because these fields are
|
|
/// relatively uncommon we only allocate space for them if necessary.
|
|
struct TypeIdInfo {
|
|
/// List of type identifiers used by this function in llvm.type.test
|
|
/// intrinsics referenced by something other than an llvm.assume intrinsic,
|
|
/// represented as GUIDs.
|
|
std::vector<GlobalValue::GUID> TypeTests;
|
|
|
|
/// List of virtual calls made by this function using (respectively)
|
|
/// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
|
|
/// not have all constant integer arguments.
|
|
std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
|
|
|
|
/// List of virtual calls made by this function using (respectively)
|
|
/// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
|
|
/// all constant integer arguments.
|
|
std::vector<ConstVCall> TypeTestAssumeConstVCalls,
|
|
TypeCheckedLoadConstVCalls;
|
|
};
|
|
|
|
/// Flags specific to function summaries.
|
|
struct FFlags {
|
|
// Function attribute flags. Used to track if a function accesses memory,
|
|
// recurses or aliases.
|
|
unsigned ReadNone : 1;
|
|
unsigned ReadOnly : 1;
|
|
unsigned NoRecurse : 1;
|
|
unsigned ReturnDoesNotAlias : 1;
|
|
|
|
// Indicate if the global value cannot be inlined.
|
|
unsigned NoInline : 1;
|
|
// Indicate if function should be always inlined.
|
|
unsigned AlwaysInline : 1;
|
|
};
|
|
|
|
/// Describes the uses of a parameter by the function.
|
|
struct ParamAccess {
|
|
static constexpr uint32_t RangeWidth = 64;
|
|
|
|
/// Describes the use of a value in a call instruction, specifying the
|
|
/// call's target, the value's parameter number, and the possible range of
|
|
/// offsets from the beginning of the value that are passed.
|
|
struct Call {
|
|
uint64_t ParamNo = 0;
|
|
ValueInfo Callee;
|
|
ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
|
|
|
|
Call() = default;
|
|
Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
|
|
: ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
|
|
};
|
|
|
|
uint64_t ParamNo = 0;
|
|
/// The range contains byte offsets from the parameter pointer which
|
|
/// accessed by the function. In the per-module summary, it only includes
|
|
/// accesses made by the function instructions. In the combined summary, it
|
|
/// also includes accesses by nested function calls.
|
|
ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
|
|
/// In the per-module summary, it summarizes the byte offset applied to each
|
|
/// pointer parameter before passing to each corresponding callee.
|
|
/// In the combined summary, it's empty and information is propagated by
|
|
/// inter-procedural analysis and applied to the Use field.
|
|
std::vector<Call> Calls;
|
|
|
|
ParamAccess() = default;
|
|
ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
|
|
: ParamNo(ParamNo), Use(Use) {}
|
|
};
|
|
|
|
/// Create an empty FunctionSummary (with specified call edges).
|
|
/// Used to represent external nodes and the dummy root node.
|
|
static FunctionSummary
|
|
makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
|
|
return FunctionSummary(
|
|
FunctionSummary::GVFlags(
|
|
GlobalValue::LinkageTypes::AvailableExternallyLinkage,
|
|
/*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
|
|
/*CanAutoHide=*/false),
|
|
/*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
|
|
std::vector<ValueInfo>(), std::move(Edges),
|
|
std::vector<GlobalValue::GUID>(),
|
|
std::vector<FunctionSummary::VFuncId>(),
|
|
std::vector<FunctionSummary::VFuncId>(),
|
|
std::vector<FunctionSummary::ConstVCall>(),
|
|
std::vector<FunctionSummary::ConstVCall>(),
|
|
std::vector<FunctionSummary::ParamAccess>());
|
|
}
|
|
|
|
/// A dummy node to reference external functions that aren't in the index
|
|
static FunctionSummary ExternalNode;
|
|
|
|
private:
|
|
/// Number of instructions (ignoring debug instructions, e.g.) computed
|
|
/// during the initial compile step when the summary index is first built.
|
|
unsigned InstCount;
|
|
|
|
/// Function summary specific flags.
|
|
FFlags FunFlags;
|
|
|
|
/// The synthesized entry count of the function.
|
|
/// This is only populated during ThinLink phase and remains unused while
|
|
/// generating per-module summaries.
|
|
uint64_t EntryCount = 0;
|
|
|
|
/// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
|
|
std::vector<EdgeTy> CallGraphEdgeList;
|
|
|
|
std::unique_ptr<TypeIdInfo> TIdInfo;
|
|
|
|
/// Uses for every parameter to this function.
|
|
using ParamAccessesTy = std::vector<ParamAccess>;
|
|
std::unique_ptr<ParamAccessesTy> ParamAccesses;
|
|
|
|
public:
|
|
FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
|
|
uint64_t EntryCount, std::vector<ValueInfo> Refs,
|
|
std::vector<EdgeTy> CGEdges,
|
|
std::vector<GlobalValue::GUID> TypeTests,
|
|
std::vector<VFuncId> TypeTestAssumeVCalls,
|
|
std::vector<VFuncId> TypeCheckedLoadVCalls,
|
|
std::vector<ConstVCall> TypeTestAssumeConstVCalls,
|
|
std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
|
|
std::vector<ParamAccess> Params)
|
|
: GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
|
|
InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
|
|
CallGraphEdgeList(std::move(CGEdges)) {
|
|
if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
|
|
!TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
|
|
!TypeCheckedLoadConstVCalls.empty())
|
|
TIdInfo = std::make_unique<TypeIdInfo>(
|
|
TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
|
|
std::move(TypeCheckedLoadVCalls),
|
|
std::move(TypeTestAssumeConstVCalls),
|
|
std::move(TypeCheckedLoadConstVCalls)});
|
|
if (!Params.empty())
|
|
ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
|
|
}
|
|
// Gets the number of readonly and writeonly refs in RefEdgeList
|
|
std::pair<unsigned, unsigned> specialRefCounts() const;
|
|
|
|
/// Check if this is a function summary.
|
|
static bool classof(const GlobalValueSummary *GVS) {
|
|
return GVS->getSummaryKind() == FunctionKind;
|
|
}
|
|
|
|
/// Get function summary flags.
|
|
FFlags fflags() const { return FunFlags; }
|
|
|
|
/// Get the instruction count recorded for this function.
|
|
unsigned instCount() const { return InstCount; }
|
|
|
|
/// Get the synthetic entry count for this function.
|
|
uint64_t entryCount() const { return EntryCount; }
|
|
|
|
/// Set the synthetic entry count for this function.
|
|
void setEntryCount(uint64_t EC) { EntryCount = EC; }
|
|
|
|
/// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
|
|
ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
|
|
|
|
void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
|
|
|
|
/// Returns the list of type identifiers used by this function in
|
|
/// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
|
|
/// represented as GUIDs.
|
|
ArrayRef<GlobalValue::GUID> type_tests() const {
|
|
if (TIdInfo)
|
|
return TIdInfo->TypeTests;
|
|
return {};
|
|
}
|
|
|
|
/// Returns the list of virtual calls made by this function using
|
|
/// llvm.assume(llvm.type.test) intrinsics that do not have all constant
|
|
/// integer arguments.
|
|
ArrayRef<VFuncId> type_test_assume_vcalls() const {
|
|
if (TIdInfo)
|
|
return TIdInfo->TypeTestAssumeVCalls;
|
|
return {};
|
|
}
|
|
|
|
/// Returns the list of virtual calls made by this function using
|
|
/// llvm.type.checked.load intrinsics that do not have all constant integer
|
|
/// arguments.
|
|
ArrayRef<VFuncId> type_checked_load_vcalls() const {
|
|
if (TIdInfo)
|
|
return TIdInfo->TypeCheckedLoadVCalls;
|
|
return {};
|
|
}
|
|
|
|
/// Returns the list of virtual calls made by this function using
|
|
/// llvm.assume(llvm.type.test) intrinsics with all constant integer
|
|
/// arguments.
|
|
ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
|
|
if (TIdInfo)
|
|
return TIdInfo->TypeTestAssumeConstVCalls;
|
|
return {};
|
|
}
|
|
|
|
/// Returns the list of virtual calls made by this function using
|
|
/// llvm.type.checked.load intrinsics with all constant integer arguments.
|
|
ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
|
|
if (TIdInfo)
|
|
return TIdInfo->TypeCheckedLoadConstVCalls;
|
|
return {};
|
|
}
|
|
|
|
/// Returns the list of known uses of pointer parameters.
|
|
ArrayRef<ParamAccess> paramAccesses() const {
|
|
if (ParamAccesses)
|
|
return *ParamAccesses;
|
|
return {};
|
|
}
|
|
|
|
/// Sets the list of known uses of pointer parameters.
|
|
void setParamAccesses(std::vector<ParamAccess> NewParams) {
|
|
if (NewParams.empty())
|
|
ParamAccesses.reset();
|
|
else if (ParamAccesses)
|
|
*ParamAccesses = std::move(NewParams);
|
|
else
|
|
ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
|
|
}
|
|
|
|
/// Add a type test to the summary. This is used by WholeProgramDevirt if we
|
|
/// were unable to devirtualize a checked call.
|
|
void addTypeTest(GlobalValue::GUID Guid) {
|
|
if (!TIdInfo)
|
|
TIdInfo = std::make_unique<TypeIdInfo>();
|
|
TIdInfo->TypeTests.push_back(Guid);
|
|
}
|
|
|
|
const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
|
|
|
|
friend struct GraphTraits<ValueInfo>;
|
|
};
|
|
|
|
template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
|
|
static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
|
|
|
|
static FunctionSummary::VFuncId getTombstoneKey() {
|
|
return {0, uint64_t(-2)};
|
|
}
|
|
|
|
static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
|
|
return L.GUID == R.GUID && L.Offset == R.Offset;
|
|
}
|
|
|
|
static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
|
|
};
|
|
|
|
template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
|
|
static FunctionSummary::ConstVCall getEmptyKey() {
|
|
return {{0, uint64_t(-1)}, {}};
|
|
}
|
|
|
|
static FunctionSummary::ConstVCall getTombstoneKey() {
|
|
return {{0, uint64_t(-2)}, {}};
|
|
}
|
|
|
|
static bool isEqual(FunctionSummary::ConstVCall L,
|
|
FunctionSummary::ConstVCall R) {
|
|
return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
|
|
L.Args == R.Args;
|
|
}
|
|
|
|
static unsigned getHashValue(FunctionSummary::ConstVCall I) {
|
|
return I.VFunc.GUID;
|
|
}
|
|
};
|
|
|
|
/// The ValueInfo and offset for a function within a vtable definition
|
|
/// initializer array.
|
|
struct VirtFuncOffset {
|
|
VirtFuncOffset(ValueInfo VI, uint64_t Offset)
|
|
: FuncVI(VI), VTableOffset(Offset) {}
|
|
|
|
ValueInfo FuncVI;
|
|
uint64_t VTableOffset;
|
|
};
|
|
/// List of functions referenced by a particular vtable definition.
|
|
using VTableFuncList = std::vector<VirtFuncOffset>;
|
|
|
|
/// Global variable summary information to aid decisions and
|
|
/// implementation of importing.
|
|
///
|
|
/// Global variable summary has two extra flag, telling if it is
|
|
/// readonly or writeonly. Both readonly and writeonly variables
|
|
/// can be optimized in the backed: readonly variables can be
|
|
/// const-folded, while writeonly vars can be completely eliminated
|
|
/// together with corresponding stores. We let both things happen
|
|
/// by means of internalizing such variables after ThinLTO import.
|
|
class GlobalVarSummary : public GlobalValueSummary {
|
|
private:
|
|
/// For vtable definitions this holds the list of functions and
|
|
/// their corresponding offsets within the initializer array.
|
|
std::unique_ptr<VTableFuncList> VTableFuncs;
|
|
|
|
public:
|
|
struct GVarFlags {
|
|
GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
|
|
GlobalObject::VCallVisibility Vis)
|
|
: MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
|
|
Constant(Constant), VCallVisibility(Vis) {}
|
|
|
|
// If true indicates that this global variable might be accessed
|
|
// purely by non-volatile load instructions. This in turn means
|
|
// it can be internalized in source and destination modules during
|
|
// thin LTO import because it neither modified nor its address
|
|
// is taken.
|
|
unsigned MaybeReadOnly : 1;
|
|
// If true indicates that variable is possibly only written to, so
|
|
// its value isn't loaded and its address isn't taken anywhere.
|
|
// False, when 'Constant' attribute is set.
|
|
unsigned MaybeWriteOnly : 1;
|
|
// Indicates that value is a compile-time constant. Global variable
|
|
// can be 'Constant' while not being 'ReadOnly' on several occasions:
|
|
// - it is volatile, (e.g mapped device address)
|
|
// - its address is taken, meaning that unlike 'ReadOnly' vars we can't
|
|
// internalize it.
|
|
// Constant variables are always imported thus giving compiler an
|
|
// opportunity to make some extra optimizations. Readonly constants
|
|
// are also internalized.
|
|
unsigned Constant : 1;
|
|
// Set from metadata on vtable definitions during the module summary
|
|
// analysis.
|
|
unsigned VCallVisibility : 2;
|
|
} VarFlags;
|
|
|
|
GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
|
|
std::vector<ValueInfo> Refs)
|
|
: GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
|
|
VarFlags(VarFlags) {}
|
|
|
|
/// Check if this is a global variable summary.
|
|
static bool classof(const GlobalValueSummary *GVS) {
|
|
return GVS->getSummaryKind() == GlobalVarKind;
|
|
}
|
|
|
|
GVarFlags varflags() const { return VarFlags; }
|
|
void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
|
|
void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
|
|
bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
|
|
bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
|
|
bool isConstant() const { return VarFlags.Constant; }
|
|
void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
|
|
VarFlags.VCallVisibility = Vis;
|
|
}
|
|
GlobalObject::VCallVisibility getVCallVisibility() const {
|
|
return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
|
|
}
|
|
|
|
void setVTableFuncs(VTableFuncList Funcs) {
|
|
assert(!VTableFuncs);
|
|
VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
|
|
}
|
|
|
|
ArrayRef<VirtFuncOffset> vTableFuncs() const {
|
|
if (VTableFuncs)
|
|
return *VTableFuncs;
|
|
return {};
|
|
}
|
|
};
|
|
|
|
struct TypeTestResolution {
|
|
/// Specifies which kind of type check we should emit for this byte array.
|
|
/// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
|
|
/// details on each kind of check; the enumerators are described with
|
|
/// reference to that document.
|
|
enum Kind {
|
|
Unsat, ///< Unsatisfiable type (i.e. no global has this type metadata)
|
|
ByteArray, ///< Test a byte array (first example)
|
|
Inline, ///< Inlined bit vector ("Short Inline Bit Vectors")
|
|
Single, ///< Single element (last example in "Short Inline Bit Vectors")
|
|
AllOnes, ///< All-ones bit vector ("Eliminating Bit Vector Checks for
|
|
/// All-Ones Bit Vectors")
|
|
Unknown, ///< Unknown (analysis not performed, don't lower)
|
|
} TheKind = Unknown;
|
|
|
|
/// Range of size-1 expressed as a bit width. For example, if the size is in
|
|
/// range [1,256], this number will be 8. This helps generate the most compact
|
|
/// instruction sequences.
|
|
unsigned SizeM1BitWidth = 0;
|
|
|
|
// The following fields are only used if the target does not support the use
|
|
// of absolute symbols to store constants. Their meanings are the same as the
|
|
// corresponding fields in LowerTypeTestsModule::TypeIdLowering in
|
|
// LowerTypeTests.cpp.
|
|
|
|
uint64_t AlignLog2 = 0;
|
|
uint64_t SizeM1 = 0;
|
|
uint8_t BitMask = 0;
|
|
uint64_t InlineBits = 0;
|
|
};
|
|
|
|
struct WholeProgramDevirtResolution {
|
|
enum Kind {
|
|
Indir, ///< Just do a regular virtual call
|
|
SingleImpl, ///< Single implementation devirtualization
|
|
BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
|
|
///< that is defined in the merged module. Otherwise same as
|
|
///< Indir.
|
|
} TheKind = Indir;
|
|
|
|
std::string SingleImplName;
|
|
|
|
struct ByArg {
|
|
enum Kind {
|
|
Indir, ///< Just do a regular virtual call
|
|
UniformRetVal, ///< Uniform return value optimization
|
|
UniqueRetVal, ///< Unique return value optimization
|
|
VirtualConstProp, ///< Virtual constant propagation
|
|
} TheKind = Indir;
|
|
|
|
/// Additional information for the resolution:
|
|
/// - UniformRetVal: the uniform return value.
|
|
/// - UniqueRetVal: the return value associated with the unique vtable (0 or
|
|
/// 1).
|
|
uint64_t Info = 0;
|
|
|
|
// The following fields are only used if the target does not support the use
|
|
// of absolute symbols to store constants.
|
|
|
|
uint32_t Byte = 0;
|
|
uint32_t Bit = 0;
|
|
};
|
|
|
|
/// Resolutions for calls with all constant integer arguments (excluding the
|
|
/// first argument, "this"), where the key is the argument vector.
|
|
std::map<std::vector<uint64_t>, ByArg> ResByArg;
|
|
};
|
|
|
|
struct TypeIdSummary {
|
|
TypeTestResolution TTRes;
|
|
|
|
/// Mapping from byte offset to whole-program devirt resolution for that
|
|
/// (typeid, byte offset) pair.
|
|
std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
|
|
};
|
|
|
|
/// 160 bits SHA1
|
|
using ModuleHash = std::array<uint32_t, 5>;
|
|
|
|
/// Type used for iterating through the global value summary map.
|
|
using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
|
|
using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
|
|
|
|
/// String table to hold/own module path strings, which additionally holds the
|
|
/// module ID assigned to each module during the plugin step, as well as a hash
|
|
/// of the module. The StringMap makes a copy of and owns inserted strings.
|
|
using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
|
|
|
|
/// Map of global value GUID to its summary, used to identify values defined in
|
|
/// a particular module, and provide efficient access to their summary.
|
|
using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
|
|
|
|
/// Map of a type GUID to type id string and summary (multimap used
|
|
/// in case of GUID conflicts).
|
|
using TypeIdSummaryMapTy =
|
|
std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
|
|
|
|
/// The following data structures summarize type metadata information.
|
|
/// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
|
|
/// Each type metadata includes both the type identifier and the offset of
|
|
/// the address point of the type (the address held by objects of that type
|
|
/// which may not be the beginning of the virtual table). Vtable definitions
|
|
/// are decorated with type metadata for the types they are compatible with.
|
|
///
|
|
/// Holds information about vtable definitions decorated with type metadata:
|
|
/// the vtable definition value and its address point offset in a type
|
|
/// identifier metadata it is decorated (compatible) with.
|
|
struct TypeIdOffsetVtableInfo {
|
|
TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
|
|
: AddressPointOffset(Offset), VTableVI(VI) {}
|
|
|
|
uint64_t AddressPointOffset;
|
|
ValueInfo VTableVI;
|
|
};
|
|
/// List of vtable definitions decorated by a particular type identifier,
|
|
/// and their corresponding offsets in that type identifier's metadata.
|
|
/// Note that each type identifier may be compatible with multiple vtables, due
|
|
/// to inheritance, which is why this is a vector.
|
|
using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
|
|
|
|
/// Class to hold module path string table and global value map,
|
|
/// and encapsulate methods for operating on them.
|
|
class ModuleSummaryIndex {
|
|
private:
|
|
/// Map from value name to list of summary instances for values of that
|
|
/// name (may be duplicates in the COMDAT case, e.g.).
|
|
GlobalValueSummaryMapTy GlobalValueMap;
|
|
|
|
/// Holds strings for combined index, mapping to the corresponding module ID.
|
|
ModulePathStringTableTy ModulePathStringTable;
|
|
|
|
/// Mapping from type identifier GUIDs to type identifier and its summary
|
|
/// information. Produced by thin link.
|
|
TypeIdSummaryMapTy TypeIdMap;
|
|
|
|
/// Mapping from type identifier to information about vtables decorated
|
|
/// with that type identifier's metadata. Produced by per module summary
|
|
/// analysis and consumed by thin link. For more information, see description
|
|
/// above where TypeIdCompatibleVtableInfo is defined.
|
|
std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
|
|
TypeIdCompatibleVtableMap;
|
|
|
|
/// Mapping from original ID to GUID. If original ID can map to multiple
|
|
/// GUIDs, it will be mapped to 0.
|
|
std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
|
|
|
|
/// Indicates that summary-based GlobalValue GC has run, and values with
|
|
/// GVFlags::Live==false are really dead. Otherwise, all values must be
|
|
/// considered live.
|
|
bool WithGlobalValueDeadStripping = false;
|
|
|
|
/// Indicates that summary-based attribute propagation has run and
|
|
/// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
|
|
/// read/write only.
|
|
bool WithAttributePropagation = false;
|
|
|
|
/// Indicates that summary-based synthetic entry count propagation has run
|
|
bool HasSyntheticEntryCounts = false;
|
|
|
|
/// Indicates that distributed backend should skip compilation of the
|
|
/// module. Flag is suppose to be set by distributed ThinLTO indexing
|
|
/// when it detected that the module is not needed during the final
|
|
/// linking. As result distributed backend should just output a minimal
|
|
/// valid object file.
|
|
bool SkipModuleByDistributedBackend = false;
|
|
|
|
/// If true then we're performing analysis of IR module, or parsing along with
|
|
/// the IR from assembly. The value of 'false' means we're reading summary
|
|
/// from BC or YAML source. Affects the type of value stored in NameOrGV
|
|
/// union.
|
|
bool HaveGVs;
|
|
|
|
// True if the index was created for a module compiled with -fsplit-lto-unit.
|
|
bool EnableSplitLTOUnit;
|
|
|
|
// True if some of the modules were compiled with -fsplit-lto-unit and
|
|
// some were not. Set when the combined index is created during the thin link.
|
|
bool PartiallySplitLTOUnits = false;
|
|
|
|
/// True if some of the FunctionSummary contains a ParamAccess.
|
|
bool HasParamAccess = false;
|
|
|
|
std::set<std::string> CfiFunctionDefs;
|
|
std::set<std::string> CfiFunctionDecls;
|
|
|
|
// Used in cases where we want to record the name of a global, but
|
|
// don't have the string owned elsewhere (e.g. the Strtab on a module).
|
|
StringSaver Saver;
|
|
BumpPtrAllocator Alloc;
|
|
|
|
// The total number of basic blocks in the module in the per-module summary or
|
|
// the total number of basic blocks in the LTO unit in the combined index.
|
|
uint64_t BlockCount;
|
|
|
|
// YAML I/O support.
|
|
friend yaml::MappingTraits<ModuleSummaryIndex>;
|
|
|
|
GlobalValueSummaryMapTy::value_type *
|
|
getOrInsertValuePtr(GlobalValue::GUID GUID) {
|
|
return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
|
|
.first;
|
|
}
|
|
|
|
public:
|
|
// See HaveGVs variable comment.
|
|
ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
|
|
: HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
|
|
BlockCount(0) {}
|
|
|
|
// Current version for the module summary in bitcode files.
|
|
// The BitcodeSummaryVersion should be bumped whenever we introduce changes
|
|
// in the way some record are interpreted, like flags for instance.
|
|
// Note that incrementing this may require changes in both BitcodeReader.cpp
|
|
// and BitcodeWriter.cpp.
|
|
static constexpr uint64_t BitcodeSummaryVersion = 9;
|
|
|
|
// Regular LTO module name for ASM writer
|
|
static constexpr const char *getRegularLTOModuleName() {
|
|
return "[Regular LTO]";
|
|
}
|
|
|
|
bool haveGVs() const { return HaveGVs; }
|
|
|
|
uint64_t getFlags() const;
|
|
void setFlags(uint64_t Flags);
|
|
|
|
uint64_t getBlockCount() const { return BlockCount; }
|
|
void addBlockCount(uint64_t C) { BlockCount += C; }
|
|
void setBlockCount(uint64_t C) { BlockCount = C; }
|
|
|
|
gvsummary_iterator begin() { return GlobalValueMap.begin(); }
|
|
const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
|
|
gvsummary_iterator end() { return GlobalValueMap.end(); }
|
|
const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
|
|
size_t size() const { return GlobalValueMap.size(); }
|
|
|
|
/// Convenience function for doing a DFS on a ValueInfo. Marks the function in
|
|
/// the FunctionHasParent map.
|
|
static void discoverNodes(ValueInfo V,
|
|
std::map<ValueInfo, bool> &FunctionHasParent) {
|
|
if (!V.getSummaryList().size())
|
|
return; // skip external functions that don't have summaries
|
|
|
|
// Mark discovered if we haven't yet
|
|
auto S = FunctionHasParent.emplace(V, false);
|
|
|
|
// Stop if we've already discovered this node
|
|
if (!S.second)
|
|
return;
|
|
|
|
FunctionSummary *F =
|
|
dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
|
|
assert(F != nullptr && "Expected FunctionSummary node");
|
|
|
|
for (auto &C : F->calls()) {
|
|
// Insert node if necessary
|
|
auto S = FunctionHasParent.emplace(C.first, true);
|
|
|
|
// Skip nodes that we're sure have parents
|
|
if (!S.second && S.first->second)
|
|
continue;
|
|
|
|
if (S.second)
|
|
discoverNodes(C.first, FunctionHasParent);
|
|
else
|
|
S.first->second = true;
|
|
}
|
|
}
|
|
|
|
// Calculate the callgraph root
|
|
FunctionSummary calculateCallGraphRoot() {
|
|
// Functions that have a parent will be marked in FunctionHasParent pair.
|
|
// Once we've marked all functions, the functions in the map that are false
|
|
// have no parent (so they're the roots)
|
|
std::map<ValueInfo, bool> FunctionHasParent;
|
|
|
|
for (auto &S : *this) {
|
|
// Skip external functions
|
|
if (!S.second.SummaryList.size() ||
|
|
!isa<FunctionSummary>(S.second.SummaryList.front().get()))
|
|
continue;
|
|
discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
|
|
}
|
|
|
|
std::vector<FunctionSummary::EdgeTy> Edges;
|
|
// create edges to all roots in the Index
|
|
for (auto &P : FunctionHasParent) {
|
|
if (P.second)
|
|
continue; // skip over non-root nodes
|
|
Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
|
|
}
|
|
if (Edges.empty()) {
|
|
// Failed to find root - return an empty node
|
|
return FunctionSummary::makeDummyFunctionSummary({});
|
|
}
|
|
auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
|
|
return CallGraphRoot;
|
|
}
|
|
|
|
bool withGlobalValueDeadStripping() const {
|
|
return WithGlobalValueDeadStripping;
|
|
}
|
|
void setWithGlobalValueDeadStripping() {
|
|
WithGlobalValueDeadStripping = true;
|
|
}
|
|
|
|
bool withAttributePropagation() const { return WithAttributePropagation; }
|
|
void setWithAttributePropagation() {
|
|
WithAttributePropagation = true;
|
|
}
|
|
|
|
bool isReadOnly(const GlobalVarSummary *GVS) const {
|
|
return WithAttributePropagation && GVS->maybeReadOnly();
|
|
}
|
|
bool isWriteOnly(const GlobalVarSummary *GVS) const {
|
|
return WithAttributePropagation && GVS->maybeWriteOnly();
|
|
}
|
|
|
|
bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
|
|
void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
|
|
|
|
bool skipModuleByDistributedBackend() const {
|
|
return SkipModuleByDistributedBackend;
|
|
}
|
|
void setSkipModuleByDistributedBackend() {
|
|
SkipModuleByDistributedBackend = true;
|
|
}
|
|
|
|
bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
|
|
void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
|
|
|
|
bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
|
|
void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
|
|
|
|
bool hasParamAccess() const { return HasParamAccess; }
|
|
|
|
bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
|
|
return !WithGlobalValueDeadStripping || GVS->isLive();
|
|
}
|
|
bool isGUIDLive(GlobalValue::GUID GUID) const;
|
|
|
|
/// Return a ValueInfo for the index value_type (convenient when iterating
|
|
/// index).
|
|
ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
|
|
return ValueInfo(HaveGVs, &R);
|
|
}
|
|
|
|
/// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
|
|
ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
|
|
auto I = GlobalValueMap.find(GUID);
|
|
return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
|
|
}
|
|
|
|
/// Return a ValueInfo for \p GUID.
|
|
ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
|
|
return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
|
|
}
|
|
|
|
// Save a string in the Index. Use before passing Name to
|
|
// getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
|
|
// module's Strtab).
|
|
StringRef saveString(StringRef String) { return Saver.save(String); }
|
|
|
|
/// Return a ValueInfo for \p GUID setting value \p Name.
|
|
ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
|
|
assert(!HaveGVs);
|
|
auto VP = getOrInsertValuePtr(GUID);
|
|
VP->second.U.Name = Name;
|
|
return ValueInfo(HaveGVs, VP);
|
|
}
|
|
|
|
/// Return a ValueInfo for \p GV and mark it as belonging to GV.
|
|
ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
|
|
assert(HaveGVs);
|
|
auto VP = getOrInsertValuePtr(GV->getGUID());
|
|
VP->second.U.GV = GV;
|
|
return ValueInfo(HaveGVs, VP);
|
|
}
|
|
|
|
/// Return the GUID for \p OriginalId in the OidGuidMap.
|
|
GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
|
|
const auto I = OidGuidMap.find(OriginalID);
|
|
return I == OidGuidMap.end() ? 0 : I->second;
|
|
}
|
|
|
|
std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
|
|
const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
|
|
|
|
std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
|
|
const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
|
|
|
|
/// Add a global value summary for a value.
|
|
void addGlobalValueSummary(const GlobalValue &GV,
|
|
std::unique_ptr<GlobalValueSummary> Summary) {
|
|
addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
|
|
}
|
|
|
|
/// Add a global value summary for a value of the given name.
|
|
void addGlobalValueSummary(StringRef ValueName,
|
|
std::unique_ptr<GlobalValueSummary> Summary) {
|
|
addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
|
|
std::move(Summary));
|
|
}
|
|
|
|
/// Add a global value summary for the given ValueInfo.
|
|
void addGlobalValueSummary(ValueInfo VI,
|
|
std::unique_ptr<GlobalValueSummary> Summary) {
|
|
if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
|
|
HasParamAccess |= !FS->paramAccesses().empty();
|
|
addOriginalName(VI.getGUID(), Summary->getOriginalName());
|
|
// Here we have a notionally const VI, but the value it points to is owned
|
|
// by the non-const *this.
|
|
const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
|
|
->second.SummaryList.push_back(std::move(Summary));
|
|
}
|
|
|
|
/// Add an original name for the value of the given GUID.
|
|
void addOriginalName(GlobalValue::GUID ValueGUID,
|
|
GlobalValue::GUID OrigGUID) {
|
|
if (OrigGUID == 0 || ValueGUID == OrigGUID)
|
|
return;
|
|
if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
|
|
OidGuidMap[OrigGUID] = 0;
|
|
else
|
|
OidGuidMap[OrigGUID] = ValueGUID;
|
|
}
|
|
|
|
/// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
|
|
/// not found.
|
|
GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
|
|
auto SummaryList = VI.getSummaryList();
|
|
auto Summary =
|
|
llvm::find_if(SummaryList,
|
|
[&](const std::unique_ptr<GlobalValueSummary> &Summary) {
|
|
return Summary->modulePath() == ModuleId;
|
|
});
|
|
if (Summary == SummaryList.end())
|
|
return nullptr;
|
|
return Summary->get();
|
|
}
|
|
|
|
/// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
|
|
/// not found.
|
|
GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
|
|
StringRef ModuleId) const {
|
|
auto CalleeInfo = getValueInfo(ValueGUID);
|
|
if (!CalleeInfo)
|
|
return nullptr; // This function does not have a summary
|
|
return findSummaryInModule(CalleeInfo, ModuleId);
|
|
}
|
|
|
|
/// Returns the first GlobalValueSummary for \p GV, asserting that there
|
|
/// is only one if \p PerModuleIndex.
|
|
GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
|
|
bool PerModuleIndex = true) const {
|
|
assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
|
|
return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
|
|
}
|
|
|
|
/// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
|
|
/// there
|
|
/// is only one if \p PerModuleIndex.
|
|
GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
|
|
bool PerModuleIndex = true) const;
|
|
|
|
/// Table of modules, containing module hash and id.
|
|
const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
|
|
return ModulePathStringTable;
|
|
}
|
|
|
|
/// Table of modules, containing hash and id.
|
|
StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
|
|
return ModulePathStringTable;
|
|
}
|
|
|
|
/// Get the module ID recorded for the given module path.
|
|
uint64_t getModuleId(const StringRef ModPath) const {
|
|
return ModulePathStringTable.lookup(ModPath).first;
|
|
}
|
|
|
|
/// Get the module SHA1 hash recorded for the given module path.
|
|
const ModuleHash &getModuleHash(const StringRef ModPath) const {
|
|
auto It = ModulePathStringTable.find(ModPath);
|
|
assert(It != ModulePathStringTable.end() && "Module not registered");
|
|
return It->second.second;
|
|
}
|
|
|
|
/// Convenience method for creating a promoted global name
|
|
/// for the given value name of a local, and its original module's ID.
|
|
static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
|
|
SmallString<256> NewName(Name);
|
|
NewName += ".llvm.";
|
|
NewName += utostr((uint64_t(ModHash[0]) << 32) |
|
|
ModHash[1]); // Take the first 64 bits
|
|
return std::string(NewName.str());
|
|
}
|
|
|
|
/// Helper to obtain the unpromoted name for a global value (or the original
|
|
/// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
|
|
/// because it is possible in certain clients (not clang at the moment) for
|
|
/// two rounds of ThinLTO optimization and therefore promotion to occur.
|
|
static StringRef getOriginalNameBeforePromote(StringRef Name) {
|
|
std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
|
|
return Pair.first;
|
|
}
|
|
|
|
typedef ModulePathStringTableTy::value_type ModuleInfo;
|
|
|
|
/// Add a new module with the given \p Hash, mapped to the given \p
|
|
/// ModID, and return a reference to the module.
|
|
ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
|
|
ModuleHash Hash = ModuleHash{{0}}) {
|
|
return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
|
|
}
|
|
|
|
/// Return module entry for module with the given \p ModPath.
|
|
ModuleInfo *getModule(StringRef ModPath) {
|
|
auto It = ModulePathStringTable.find(ModPath);
|
|
assert(It != ModulePathStringTable.end() && "Module not registered");
|
|
return &*It;
|
|
}
|
|
|
|
/// Check if the given Module has any functions available for exporting
|
|
/// in the index. We consider any module present in the ModulePathStringTable
|
|
/// to have exported functions.
|
|
bool hasExportedFunctions(const Module &M) const {
|
|
return ModulePathStringTable.count(M.getModuleIdentifier());
|
|
}
|
|
|
|
const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
|
|
|
|
/// Return an existing or new TypeIdSummary entry for \p TypeId.
|
|
/// This accessor can mutate the map and therefore should not be used in
|
|
/// the ThinLTO backends.
|
|
TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
|
|
auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
|
|
for (auto It = TidIter.first; It != TidIter.second; ++It)
|
|
if (It->second.first == TypeId)
|
|
return It->second.second;
|
|
auto It = TypeIdMap.insert(
|
|
{GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
|
|
return It->second.second;
|
|
}
|
|
|
|
/// This returns either a pointer to the type id summary (if present in the
|
|
/// summary map) or null (if not present). This may be used when importing.
|
|
const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
|
|
auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
|
|
for (auto It = TidIter.first; It != TidIter.second; ++It)
|
|
if (It->second.first == TypeId)
|
|
return &It->second.second;
|
|
return nullptr;
|
|
}
|
|
|
|
TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
|
|
return const_cast<TypeIdSummary *>(
|
|
static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
|
|
TypeId));
|
|
}
|
|
|
|
const auto &typeIdCompatibleVtableMap() const {
|
|
return TypeIdCompatibleVtableMap;
|
|
}
|
|
|
|
/// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
|
|
/// This accessor can mutate the map and therefore should not be used in
|
|
/// the ThinLTO backends.
|
|
TypeIdCompatibleVtableInfo &
|
|
getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
|
|
return TypeIdCompatibleVtableMap[std::string(TypeId)];
|
|
}
|
|
|
|
/// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
|
|
/// entry if present in the summary map. This may be used when importing.
|
|
Optional<TypeIdCompatibleVtableInfo>
|
|
getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
|
|
auto I = TypeIdCompatibleVtableMap.find(TypeId);
|
|
if (I == TypeIdCompatibleVtableMap.end())
|
|
return None;
|
|
return I->second;
|
|
}
|
|
|
|
/// Collect for the given module the list of functions it defines
|
|
/// (GUID -> Summary).
|
|
void collectDefinedFunctionsForModule(StringRef ModulePath,
|
|
GVSummaryMapTy &GVSummaryMap) const;
|
|
|
|
/// Collect for each module the list of Summaries it defines (GUID ->
|
|
/// Summary).
|
|
template <class Map>
|
|
void
|
|
collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
|
|
for (auto &GlobalList : *this) {
|
|
auto GUID = GlobalList.first;
|
|
for (auto &Summary : GlobalList.second.SummaryList) {
|
|
ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Print to an output stream.
|
|
void print(raw_ostream &OS, bool IsForDebug = false) const;
|
|
|
|
/// Dump to stderr (for debugging).
|
|
void dump() const;
|
|
|
|
/// Export summary to dot file for GraphViz.
|
|
void
|
|
exportToDot(raw_ostream &OS,
|
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
|
|
|
|
/// Print out strongly connected components for debugging.
|
|
void dumpSCCs(raw_ostream &OS);
|
|
|
|
/// Analyze index and detect unmodified globals
|
|
void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
|
|
|
|
/// Checks if we can import global variable from another module.
|
|
bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
|
|
};
|
|
|
|
/// GraphTraits definition to build SCC for the index
|
|
template <> struct GraphTraits<ValueInfo> {
|
|
typedef ValueInfo NodeRef;
|
|
using EdgeRef = FunctionSummary::EdgeTy &;
|
|
|
|
static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
|
|
return P.first;
|
|
}
|
|
using ChildIteratorType =
|
|
mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
|
|
decltype(&valueInfoFromEdge)>;
|
|
|
|
using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
|
|
|
|
static NodeRef getEntryNode(ValueInfo V) { return V; }
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) {
|
|
if (!N.getSummaryList().size()) // handle external function
|
|
return ChildIteratorType(
|
|
FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
|
|
&valueInfoFromEdge);
|
|
FunctionSummary *F =
|
|
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
|
|
return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
|
|
}
|
|
|
|
static ChildIteratorType child_end(NodeRef N) {
|
|
if (!N.getSummaryList().size()) // handle external function
|
|
return ChildIteratorType(
|
|
FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
|
|
&valueInfoFromEdge);
|
|
FunctionSummary *F =
|
|
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
|
|
return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
|
|
}
|
|
|
|
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
|
|
if (!N.getSummaryList().size()) // handle external function
|
|
return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
|
|
|
|
FunctionSummary *F =
|
|
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
|
|
return F->CallGraphEdgeList.begin();
|
|
}
|
|
|
|
static ChildEdgeIteratorType child_edge_end(NodeRef N) {
|
|
if (!N.getSummaryList().size()) // handle external function
|
|
return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
|
|
|
|
FunctionSummary *F =
|
|
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
|
|
return F->CallGraphEdgeList.end();
|
|
}
|
|
|
|
static NodeRef edge_dest(EdgeRef E) { return E.first; }
|
|
};
|
|
|
|
template <>
|
|
struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
|
|
static NodeRef getEntryNode(ModuleSummaryIndex *I) {
|
|
std::unique_ptr<GlobalValueSummary> Root =
|
|
std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
|
|
GlobalValueSummaryInfo G(I->haveGVs());
|
|
G.SummaryList.push_back(std::move(Root));
|
|
static auto P =
|
|
GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
|
|
return ValueInfo(I->haveGVs(), &P);
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_MODULESUMMARYINDEX_H
|