llvm-for-llvmta/include/llvm/IR/ModuleSummaryIndex.h

1577 lines
58 KiB
C
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// @file
/// ModuleSummaryIndex.h This file contains the declarations the classes that
/// hold the module index and summary for function importing.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MODULESUMMARYINDEX_H
#define LLVM_IR_MODULESUMMARYINDEX_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
namespace yaml {
template <typename T> struct MappingTraits;
} // end namespace yaml
/// Class to accumulate and hold information about a callee.
struct CalleeInfo {
enum class HotnessType : uint8_t {
Unknown = 0,
Cold = 1,
None = 2,
Hot = 3,
Critical = 4
};
// The size of the bit-field might need to be adjusted if more values are
// added to HotnessType enum.
uint32_t Hotness : 3;
/// The value stored in RelBlockFreq has to be interpreted as the digits of
/// a scaled number with a scale of \p -ScaleShift.
uint32_t RelBlockFreq : 29;
static constexpr int32_t ScaleShift = 8;
static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
CalleeInfo()
: Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
: Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
void updateHotness(const HotnessType OtherHotness) {
Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
}
HotnessType getHotness() const { return HotnessType(Hotness); }
/// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
///
/// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
/// fractional values, the result is represented as a fixed point number with
/// scale of -ScaleShift.
void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
if (EntryFreq == 0)
return;
using Scaled64 = ScaledNumber<uint64_t>;
Scaled64 Temp(BlockFreq, ScaleShift);
Temp /= Scaled64::get(EntryFreq);
uint64_t Sum =
SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
RelBlockFreq = static_cast<uint32_t>(Sum);
}
};
inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
switch (HT) {
case CalleeInfo::HotnessType::Unknown:
return "unknown";
case CalleeInfo::HotnessType::Cold:
return "cold";
case CalleeInfo::HotnessType::None:
return "none";
case CalleeInfo::HotnessType::Hot:
return "hot";
case CalleeInfo::HotnessType::Critical:
return "critical";
}
llvm_unreachable("invalid hotness");
}
class GlobalValueSummary;
using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
struct alignas(8) GlobalValueSummaryInfo {
union NameOrGV {
NameOrGV(bool HaveGVs) {
if (HaveGVs)
GV = nullptr;
else
Name = "";
}
/// The GlobalValue corresponding to this summary. This is only used in
/// per-module summaries and when the IR is available. E.g. when module
/// analysis is being run, or when parsing both the IR and the summary
/// from assembly.
const GlobalValue *GV;
/// Summary string representation. This StringRef points to BC module
/// string table and is valid until module data is stored in memory.
/// This is guaranteed to happen until runThinLTOBackend function is
/// called, so it is safe to use this field during thin link. This field
/// is only valid if summary index was loaded from BC file.
StringRef Name;
} U;
GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
/// List of global value summary structures for a particular value held
/// in the GlobalValueMap. Requires a vector in the case of multiple
/// COMDAT values of the same name.
GlobalValueSummaryList SummaryList;
};
/// Map from global value GUID to corresponding summary structures. Use a
/// std::map rather than a DenseMap so that pointers to the map's value_type
/// (which are used by ValueInfo) are not invalidated by insertion. Also it will
/// likely incur less overhead, as the value type is not very small and the size
/// of the map is unknown, resulting in inefficiencies due to repeated
/// insertions and resizing.
using GlobalValueSummaryMapTy =
std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
/// Struct that holds a reference to a particular GUID in a global value
/// summary.
struct ValueInfo {
enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
RefAndFlags;
ValueInfo() = default;
ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
RefAndFlags.setPointer(R);
RefAndFlags.setInt(HaveGVs);
}
explicit operator bool() const { return getRef(); }
GlobalValue::GUID getGUID() const { return getRef()->first; }
const GlobalValue *getValue() const {
assert(haveGVs());
return getRef()->second.U.GV;
}
ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
return getRef()->second.SummaryList;
}
StringRef name() const {
return haveGVs() ? getRef()->second.U.GV->getName()
: getRef()->second.U.Name;
}
bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
bool isReadOnly() const {
assert(isValidAccessSpecifier());
return RefAndFlags.getInt() & ReadOnly;
}
bool isWriteOnly() const {
assert(isValidAccessSpecifier());
return RefAndFlags.getInt() & WriteOnly;
}
unsigned getAccessSpecifier() const {
assert(isValidAccessSpecifier());
return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
}
bool isValidAccessSpecifier() const {
unsigned BadAccessMask = ReadOnly | WriteOnly;
return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
}
void setReadOnly() {
// We expect ro/wo attribute to set only once during
// ValueInfo lifetime.
assert(getAccessSpecifier() == 0);
RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
}
void setWriteOnly() {
assert(getAccessSpecifier() == 0);
RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
}
const GlobalValueSummaryMapTy::value_type *getRef() const {
return RefAndFlags.getPointer();
}
bool isDSOLocal() const;
/// Checks if all copies are eligible for auto-hiding (have flag set).
bool canAutoHide() const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
OS << VI.getGUID();
if (!VI.name().empty())
OS << " (" << VI.name() << ")";
return OS;
}
inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
assert(A.getRef() && B.getRef() &&
"Need ValueInfo with non-null Ref for comparison");
return A.getRef() == B.getRef();
}
inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
assert(A.getRef() && B.getRef() &&
"Need ValueInfo with non-null Ref for comparison");
return A.getRef() != B.getRef();
}
inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
assert(A.getRef() && B.getRef() &&
"Need ValueInfo with non-null Ref to compare GUIDs");
return A.getGUID() < B.getGUID();
}
template <> struct DenseMapInfo<ValueInfo> {
static inline ValueInfo getEmptyKey() {
return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
}
static inline ValueInfo getTombstoneKey() {
return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
}
static inline bool isSpecialKey(ValueInfo V) {
return V == getTombstoneKey() || V == getEmptyKey();
}
static bool isEqual(ValueInfo L, ValueInfo R) {
// We are not supposed to mix ValueInfo(s) with different HaveGVs flag
// in a same container.
assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
return L.getRef() == R.getRef();
}
static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
};
/// Function and variable summary information to aid decisions and
/// implementation of importing.
class GlobalValueSummary {
public:
/// Sububclass discriminator (for dyn_cast<> et al.)
enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
/// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
struct GVFlags {
/// The linkage type of the associated global value.
///
/// One use is to flag values that have local linkage types and need to
/// have module identifier appended before placing into the combined
/// index, to disambiguate from other values with the same name.
/// In the future this will be used to update and optimize linkage
/// types based on global summary-based analysis.
unsigned Linkage : 4;
/// Indicate if the global value cannot be imported (e.g. it cannot
/// be renamed or references something that can't be renamed).
unsigned NotEligibleToImport : 1;
/// In per-module summary, indicate that the global value must be considered
/// a live root for index-based liveness analysis. Used for special LLVM
/// values such as llvm.global_ctors that the linker does not know about.
///
/// In combined summary, indicate that the global value is live.
unsigned Live : 1;
/// Indicates that the linker resolved the symbol to a definition from
/// within the same linkage unit.
unsigned DSOLocal : 1;
/// In the per-module summary, indicates that the global value is
/// linkonce_odr and global unnamed addr (so eligible for auto-hiding
/// via hidden visibility). In the combined summary, indicates that the
/// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
/// when it is upgraded to weak_odr in the backend. This is legal when
/// all copies are eligible for auto-hiding (i.e. all copies were
/// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
/// originally weak_odr, we cannot auto-hide the prevailing copy as it
/// means the symbol was externally visible.
unsigned CanAutoHide : 1;
/// Convenience Constructors
explicit GVFlags(GlobalValue::LinkageTypes Linkage,
bool NotEligibleToImport, bool Live, bool IsLocal,
bool CanAutoHide)
: Linkage(Linkage), NotEligibleToImport(NotEligibleToImport),
Live(Live), DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
};
private:
/// Kind of summary for use in dyn_cast<> et al.
SummaryKind Kind;
GVFlags Flags;
/// This is the hash of the name of the symbol in the original file. It is
/// identical to the GUID for global symbols, but differs for local since the
/// GUID includes the module level id in the hash.
GlobalValue::GUID OriginalName = 0;
/// Path of module IR containing value's definition, used to locate
/// module during importing.
///
/// This is only used during parsing of the combined index, or when
/// parsing the per-module index for creation of the combined summary index,
/// not during writing of the per-module index which doesn't contain a
/// module path string table.
StringRef ModulePath;
/// List of values referenced by this global value's definition
/// (either by the initializer of a global variable, or referenced
/// from within a function). This does not include functions called, which
/// are listed in the derived FunctionSummary object.
std::vector<ValueInfo> RefEdgeList;
protected:
GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
: Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
assert((K != AliasKind || Refs.empty()) &&
"Expect no references for AliasSummary");
}
public:
virtual ~GlobalValueSummary() = default;
/// Returns the hash of the original name, it is identical to the GUID for
/// externally visible symbols, but not for local ones.
GlobalValue::GUID getOriginalName() const { return OriginalName; }
/// Initialize the original name hash in this summary.
void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
/// Which kind of summary subclass this is.
SummaryKind getSummaryKind() const { return Kind; }
/// Set the path to the module containing this function, for use in
/// the combined index.
void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
/// Get the path to the module containing this function.
StringRef modulePath() const { return ModulePath; }
/// Get the flags for this GlobalValue (see \p struct GVFlags).
GVFlags flags() const { return Flags; }
/// Return linkage type recorded for this global value.
GlobalValue::LinkageTypes linkage() const {
return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
}
/// Sets the linkage to the value determined by global summary-based
/// optimization. Will be applied in the ThinLTO backends.
void setLinkage(GlobalValue::LinkageTypes Linkage) {
Flags.Linkage = Linkage;
}
/// Return true if this global value can't be imported.
bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
bool isLive() const { return Flags.Live; }
void setLive(bool Live) { Flags.Live = Live; }
void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
bool isDSOLocal() const { return Flags.DSOLocal; }
void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
bool canAutoHide() const { return Flags.CanAutoHide; }
/// Flag that this global value cannot be imported.
void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
/// Return the list of values referenced by this global value definition.
ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
/// If this is an alias summary, returns the summary of the aliased object (a
/// global variable or function), otherwise returns itself.
GlobalValueSummary *getBaseObject();
const GlobalValueSummary *getBaseObject() const;
friend class ModuleSummaryIndex;
};
/// Alias summary information.
class AliasSummary : public GlobalValueSummary {
ValueInfo AliaseeValueInfo;
/// This is the Aliasee in the same module as alias (could get from VI, trades
/// memory for time). Note that this pointer may be null (and the value info
/// empty) when we have a distributed index where the alias is being imported
/// (as a copy of the aliasee), but the aliasee is not.
GlobalValueSummary *AliaseeSummary;
public:
AliasSummary(GVFlags Flags)
: GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
AliaseeSummary(nullptr) {}
/// Check if this is an alias summary.
static bool classof(const GlobalValueSummary *GVS) {
return GVS->getSummaryKind() == AliasKind;
}
void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
AliaseeValueInfo = AliaseeVI;
AliaseeSummary = Aliasee;
}
bool hasAliasee() const {
assert(!!AliaseeSummary == (AliaseeValueInfo &&
!AliaseeValueInfo.getSummaryList().empty()) &&
"Expect to have both aliasee summary and summary list or neither");
return !!AliaseeSummary;
}
const GlobalValueSummary &getAliasee() const {
assert(AliaseeSummary && "Unexpected missing aliasee summary");
return *AliaseeSummary;
}
GlobalValueSummary &getAliasee() {
return const_cast<GlobalValueSummary &>(
static_cast<const AliasSummary *>(this)->getAliasee());
}
ValueInfo getAliaseeVI() const {
assert(AliaseeValueInfo && "Unexpected missing aliasee");
return AliaseeValueInfo;
}
GlobalValue::GUID getAliaseeGUID() const {
assert(AliaseeValueInfo && "Unexpected missing aliasee");
return AliaseeValueInfo.getGUID();
}
};
const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
if (auto *AS = dyn_cast<AliasSummary>(this))
return &AS->getAliasee();
return this;
}
inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
if (auto *AS = dyn_cast<AliasSummary>(this))
return &AS->getAliasee();
return this;
}
/// Function summary information to aid decisions and implementation of
/// importing.
class FunctionSummary : public GlobalValueSummary {
public:
/// <CalleeValueInfo, CalleeInfo> call edge pair.
using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
/// Types for -force-summary-edges-cold debugging option.
enum ForceSummaryHotnessType : unsigned {
FSHT_None,
FSHT_AllNonCritical,
FSHT_All
};
/// An "identifier" for a virtual function. This contains the type identifier
/// represented as a GUID and the offset from the address point to the virtual
/// function pointer, where "address point" is as defined in the Itanium ABI:
/// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
struct VFuncId {
GlobalValue::GUID GUID;
uint64_t Offset;
};
/// A specification for a virtual function call with all constant integer
/// arguments. This is used to perform virtual constant propagation on the
/// summary.
struct ConstVCall {
VFuncId VFunc;
std::vector<uint64_t> Args;
};
/// All type identifier related information. Because these fields are
/// relatively uncommon we only allocate space for them if necessary.
struct TypeIdInfo {
/// List of type identifiers used by this function in llvm.type.test
/// intrinsics referenced by something other than an llvm.assume intrinsic,
/// represented as GUIDs.
std::vector<GlobalValue::GUID> TypeTests;
/// List of virtual calls made by this function using (respectively)
/// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
/// not have all constant integer arguments.
std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
/// List of virtual calls made by this function using (respectively)
/// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
/// all constant integer arguments.
std::vector<ConstVCall> TypeTestAssumeConstVCalls,
TypeCheckedLoadConstVCalls;
};
/// Flags specific to function summaries.
struct FFlags {
// Function attribute flags. Used to track if a function accesses memory,
// recurses or aliases.
unsigned ReadNone : 1;
unsigned ReadOnly : 1;
unsigned NoRecurse : 1;
unsigned ReturnDoesNotAlias : 1;
// Indicate if the global value cannot be inlined.
unsigned NoInline : 1;
// Indicate if function should be always inlined.
unsigned AlwaysInline : 1;
};
/// Describes the uses of a parameter by the function.
struct ParamAccess {
static constexpr uint32_t RangeWidth = 64;
/// Describes the use of a value in a call instruction, specifying the
/// call's target, the value's parameter number, and the possible range of
/// offsets from the beginning of the value that are passed.
struct Call {
uint64_t ParamNo = 0;
ValueInfo Callee;
ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
Call() = default;
Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
: ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
};
uint64_t ParamNo = 0;
/// The range contains byte offsets from the parameter pointer which
/// accessed by the function. In the per-module summary, it only includes
/// accesses made by the function instructions. In the combined summary, it
/// also includes accesses by nested function calls.
ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
/// In the per-module summary, it summarizes the byte offset applied to each
/// pointer parameter before passing to each corresponding callee.
/// In the combined summary, it's empty and information is propagated by
/// inter-procedural analysis and applied to the Use field.
std::vector<Call> Calls;
ParamAccess() = default;
ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
: ParamNo(ParamNo), Use(Use) {}
};
/// Create an empty FunctionSummary (with specified call edges).
/// Used to represent external nodes and the dummy root node.
static FunctionSummary
makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
return FunctionSummary(
FunctionSummary::GVFlags(
GlobalValue::LinkageTypes::AvailableExternallyLinkage,
/*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
/*CanAutoHide=*/false),
/*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
std::vector<ValueInfo>(), std::move(Edges),
std::vector<GlobalValue::GUID>(),
std::vector<FunctionSummary::VFuncId>(),
std::vector<FunctionSummary::VFuncId>(),
std::vector<FunctionSummary::ConstVCall>(),
std::vector<FunctionSummary::ConstVCall>(),
std::vector<FunctionSummary::ParamAccess>());
}
/// A dummy node to reference external functions that aren't in the index
static FunctionSummary ExternalNode;
private:
/// Number of instructions (ignoring debug instructions, e.g.) computed
/// during the initial compile step when the summary index is first built.
unsigned InstCount;
/// Function summary specific flags.
FFlags FunFlags;
/// The synthesized entry count of the function.
/// This is only populated during ThinLink phase and remains unused while
/// generating per-module summaries.
uint64_t EntryCount = 0;
/// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
std::vector<EdgeTy> CallGraphEdgeList;
std::unique_ptr<TypeIdInfo> TIdInfo;
/// Uses for every parameter to this function.
using ParamAccessesTy = std::vector<ParamAccess>;
std::unique_ptr<ParamAccessesTy> ParamAccesses;
public:
FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
uint64_t EntryCount, std::vector<ValueInfo> Refs,
std::vector<EdgeTy> CGEdges,
std::vector<GlobalValue::GUID> TypeTests,
std::vector<VFuncId> TypeTestAssumeVCalls,
std::vector<VFuncId> TypeCheckedLoadVCalls,
std::vector<ConstVCall> TypeTestAssumeConstVCalls,
std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
std::vector<ParamAccess> Params)
: GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
CallGraphEdgeList(std::move(CGEdges)) {
if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
!TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
!TypeCheckedLoadConstVCalls.empty())
TIdInfo = std::make_unique<TypeIdInfo>(
TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
std::move(TypeCheckedLoadVCalls),
std::move(TypeTestAssumeConstVCalls),
std::move(TypeCheckedLoadConstVCalls)});
if (!Params.empty())
ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
}
// Gets the number of readonly and writeonly refs in RefEdgeList
std::pair<unsigned, unsigned> specialRefCounts() const;
/// Check if this is a function summary.
static bool classof(const GlobalValueSummary *GVS) {
return GVS->getSummaryKind() == FunctionKind;
}
/// Get function summary flags.
FFlags fflags() const { return FunFlags; }
/// Get the instruction count recorded for this function.
unsigned instCount() const { return InstCount; }
/// Get the synthetic entry count for this function.
uint64_t entryCount() const { return EntryCount; }
/// Set the synthetic entry count for this function.
void setEntryCount(uint64_t EC) { EntryCount = EC; }
/// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
/// Returns the list of type identifiers used by this function in
/// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
/// represented as GUIDs.
ArrayRef<GlobalValue::GUID> type_tests() const {
if (TIdInfo)
return TIdInfo->TypeTests;
return {};
}
/// Returns the list of virtual calls made by this function using
/// llvm.assume(llvm.type.test) intrinsics that do not have all constant
/// integer arguments.
ArrayRef<VFuncId> type_test_assume_vcalls() const {
if (TIdInfo)
return TIdInfo->TypeTestAssumeVCalls;
return {};
}
/// Returns the list of virtual calls made by this function using
/// llvm.type.checked.load intrinsics that do not have all constant integer
/// arguments.
ArrayRef<VFuncId> type_checked_load_vcalls() const {
if (TIdInfo)
return TIdInfo->TypeCheckedLoadVCalls;
return {};
}
/// Returns the list of virtual calls made by this function using
/// llvm.assume(llvm.type.test) intrinsics with all constant integer
/// arguments.
ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
if (TIdInfo)
return TIdInfo->TypeTestAssumeConstVCalls;
return {};
}
/// Returns the list of virtual calls made by this function using
/// llvm.type.checked.load intrinsics with all constant integer arguments.
ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
if (TIdInfo)
return TIdInfo->TypeCheckedLoadConstVCalls;
return {};
}
/// Returns the list of known uses of pointer parameters.
ArrayRef<ParamAccess> paramAccesses() const {
if (ParamAccesses)
return *ParamAccesses;
return {};
}
/// Sets the list of known uses of pointer parameters.
void setParamAccesses(std::vector<ParamAccess> NewParams) {
if (NewParams.empty())
ParamAccesses.reset();
else if (ParamAccesses)
*ParamAccesses = std::move(NewParams);
else
ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
}
/// Add a type test to the summary. This is used by WholeProgramDevirt if we
/// were unable to devirtualize a checked call.
void addTypeTest(GlobalValue::GUID Guid) {
if (!TIdInfo)
TIdInfo = std::make_unique<TypeIdInfo>();
TIdInfo->TypeTests.push_back(Guid);
}
const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
friend struct GraphTraits<ValueInfo>;
};
template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
static FunctionSummary::VFuncId getTombstoneKey() {
return {0, uint64_t(-2)};
}
static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
return L.GUID == R.GUID && L.Offset == R.Offset;
}
static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
};
template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
static FunctionSummary::ConstVCall getEmptyKey() {
return {{0, uint64_t(-1)}, {}};
}
static FunctionSummary::ConstVCall getTombstoneKey() {
return {{0, uint64_t(-2)}, {}};
}
static bool isEqual(FunctionSummary::ConstVCall L,
FunctionSummary::ConstVCall R) {
return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
L.Args == R.Args;
}
static unsigned getHashValue(FunctionSummary::ConstVCall I) {
return I.VFunc.GUID;
}
};
/// The ValueInfo and offset for a function within a vtable definition
/// initializer array.
struct VirtFuncOffset {
VirtFuncOffset(ValueInfo VI, uint64_t Offset)
: FuncVI(VI), VTableOffset(Offset) {}
ValueInfo FuncVI;
uint64_t VTableOffset;
};
/// List of functions referenced by a particular vtable definition.
using VTableFuncList = std::vector<VirtFuncOffset>;
/// Global variable summary information to aid decisions and
/// implementation of importing.
///
/// Global variable summary has two extra flag, telling if it is
/// readonly or writeonly. Both readonly and writeonly variables
/// can be optimized in the backed: readonly variables can be
/// const-folded, while writeonly vars can be completely eliminated
/// together with corresponding stores. We let both things happen
/// by means of internalizing such variables after ThinLTO import.
class GlobalVarSummary : public GlobalValueSummary {
private:
/// For vtable definitions this holds the list of functions and
/// their corresponding offsets within the initializer array.
std::unique_ptr<VTableFuncList> VTableFuncs;
public:
struct GVarFlags {
GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
GlobalObject::VCallVisibility Vis)
: MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
Constant(Constant), VCallVisibility(Vis) {}
// If true indicates that this global variable might be accessed
// purely by non-volatile load instructions. This in turn means
// it can be internalized in source and destination modules during
// thin LTO import because it neither modified nor its address
// is taken.
unsigned MaybeReadOnly : 1;
// If true indicates that variable is possibly only written to, so
// its value isn't loaded and its address isn't taken anywhere.
// False, when 'Constant' attribute is set.
unsigned MaybeWriteOnly : 1;
// Indicates that value is a compile-time constant. Global variable
// can be 'Constant' while not being 'ReadOnly' on several occasions:
// - it is volatile, (e.g mapped device address)
// - its address is taken, meaning that unlike 'ReadOnly' vars we can't
// internalize it.
// Constant variables are always imported thus giving compiler an
// opportunity to make some extra optimizations. Readonly constants
// are also internalized.
unsigned Constant : 1;
// Set from metadata on vtable definitions during the module summary
// analysis.
unsigned VCallVisibility : 2;
} VarFlags;
GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
std::vector<ValueInfo> Refs)
: GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
VarFlags(VarFlags) {}
/// Check if this is a global variable summary.
static bool classof(const GlobalValueSummary *GVS) {
return GVS->getSummaryKind() == GlobalVarKind;
}
GVarFlags varflags() const { return VarFlags; }
void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
bool isConstant() const { return VarFlags.Constant; }
void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
VarFlags.VCallVisibility = Vis;
}
GlobalObject::VCallVisibility getVCallVisibility() const {
return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
}
void setVTableFuncs(VTableFuncList Funcs) {
assert(!VTableFuncs);
VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
}
ArrayRef<VirtFuncOffset> vTableFuncs() const {
if (VTableFuncs)
return *VTableFuncs;
return {};
}
};
struct TypeTestResolution {
/// Specifies which kind of type check we should emit for this byte array.
/// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
/// details on each kind of check; the enumerators are described with
/// reference to that document.
enum Kind {
Unsat, ///< Unsatisfiable type (i.e. no global has this type metadata)
ByteArray, ///< Test a byte array (first example)
Inline, ///< Inlined bit vector ("Short Inline Bit Vectors")
Single, ///< Single element (last example in "Short Inline Bit Vectors")
AllOnes, ///< All-ones bit vector ("Eliminating Bit Vector Checks for
/// All-Ones Bit Vectors")
Unknown, ///< Unknown (analysis not performed, don't lower)
} TheKind = Unknown;
/// Range of size-1 expressed as a bit width. For example, if the size is in
/// range [1,256], this number will be 8. This helps generate the most compact
/// instruction sequences.
unsigned SizeM1BitWidth = 0;
// The following fields are only used if the target does not support the use
// of absolute symbols to store constants. Their meanings are the same as the
// corresponding fields in LowerTypeTestsModule::TypeIdLowering in
// LowerTypeTests.cpp.
uint64_t AlignLog2 = 0;
uint64_t SizeM1 = 0;
uint8_t BitMask = 0;
uint64_t InlineBits = 0;
};
struct WholeProgramDevirtResolution {
enum Kind {
Indir, ///< Just do a regular virtual call
SingleImpl, ///< Single implementation devirtualization
BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
///< that is defined in the merged module. Otherwise same as
///< Indir.
} TheKind = Indir;
std::string SingleImplName;
struct ByArg {
enum Kind {
Indir, ///< Just do a regular virtual call
UniformRetVal, ///< Uniform return value optimization
UniqueRetVal, ///< Unique return value optimization
VirtualConstProp, ///< Virtual constant propagation
} TheKind = Indir;
/// Additional information for the resolution:
/// - UniformRetVal: the uniform return value.
/// - UniqueRetVal: the return value associated with the unique vtable (0 or
/// 1).
uint64_t Info = 0;
// The following fields are only used if the target does not support the use
// of absolute symbols to store constants.
uint32_t Byte = 0;
uint32_t Bit = 0;
};
/// Resolutions for calls with all constant integer arguments (excluding the
/// first argument, "this"), where the key is the argument vector.
std::map<std::vector<uint64_t>, ByArg> ResByArg;
};
struct TypeIdSummary {
TypeTestResolution TTRes;
/// Mapping from byte offset to whole-program devirt resolution for that
/// (typeid, byte offset) pair.
std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
};
/// 160 bits SHA1
using ModuleHash = std::array<uint32_t, 5>;
/// Type used for iterating through the global value summary map.
using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
/// String table to hold/own module path strings, which additionally holds the
/// module ID assigned to each module during the plugin step, as well as a hash
/// of the module. The StringMap makes a copy of and owns inserted strings.
using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
/// Map of global value GUID to its summary, used to identify values defined in
/// a particular module, and provide efficient access to their summary.
using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
/// Map of a type GUID to type id string and summary (multimap used
/// in case of GUID conflicts).
using TypeIdSummaryMapTy =
std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
/// The following data structures summarize type metadata information.
/// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
/// Each type metadata includes both the type identifier and the offset of
/// the address point of the type (the address held by objects of that type
/// which may not be the beginning of the virtual table). Vtable definitions
/// are decorated with type metadata for the types they are compatible with.
///
/// Holds information about vtable definitions decorated with type metadata:
/// the vtable definition value and its address point offset in a type
/// identifier metadata it is decorated (compatible) with.
struct TypeIdOffsetVtableInfo {
TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
: AddressPointOffset(Offset), VTableVI(VI) {}
uint64_t AddressPointOffset;
ValueInfo VTableVI;
};
/// List of vtable definitions decorated by a particular type identifier,
/// and their corresponding offsets in that type identifier's metadata.
/// Note that each type identifier may be compatible with multiple vtables, due
/// to inheritance, which is why this is a vector.
using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
/// Class to hold module path string table and global value map,
/// and encapsulate methods for operating on them.
class ModuleSummaryIndex {
private:
/// Map from value name to list of summary instances for values of that
/// name (may be duplicates in the COMDAT case, e.g.).
GlobalValueSummaryMapTy GlobalValueMap;
/// Holds strings for combined index, mapping to the corresponding module ID.
ModulePathStringTableTy ModulePathStringTable;
/// Mapping from type identifier GUIDs to type identifier and its summary
/// information. Produced by thin link.
TypeIdSummaryMapTy TypeIdMap;
/// Mapping from type identifier to information about vtables decorated
/// with that type identifier's metadata. Produced by per module summary
/// analysis and consumed by thin link. For more information, see description
/// above where TypeIdCompatibleVtableInfo is defined.
std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
TypeIdCompatibleVtableMap;
/// Mapping from original ID to GUID. If original ID can map to multiple
/// GUIDs, it will be mapped to 0.
std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
/// Indicates that summary-based GlobalValue GC has run, and values with
/// GVFlags::Live==false are really dead. Otherwise, all values must be
/// considered live.
bool WithGlobalValueDeadStripping = false;
/// Indicates that summary-based attribute propagation has run and
/// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
/// read/write only.
bool WithAttributePropagation = false;
/// Indicates that summary-based synthetic entry count propagation has run
bool HasSyntheticEntryCounts = false;
/// Indicates that distributed backend should skip compilation of the
/// module. Flag is suppose to be set by distributed ThinLTO indexing
/// when it detected that the module is not needed during the final
/// linking. As result distributed backend should just output a minimal
/// valid object file.
bool SkipModuleByDistributedBackend = false;
/// If true then we're performing analysis of IR module, or parsing along with
/// the IR from assembly. The value of 'false' means we're reading summary
/// from BC or YAML source. Affects the type of value stored in NameOrGV
/// union.
bool HaveGVs;
// True if the index was created for a module compiled with -fsplit-lto-unit.
bool EnableSplitLTOUnit;
// True if some of the modules were compiled with -fsplit-lto-unit and
// some were not. Set when the combined index is created during the thin link.
bool PartiallySplitLTOUnits = false;
/// True if some of the FunctionSummary contains a ParamAccess.
bool HasParamAccess = false;
std::set<std::string> CfiFunctionDefs;
std::set<std::string> CfiFunctionDecls;
// Used in cases where we want to record the name of a global, but
// don't have the string owned elsewhere (e.g. the Strtab on a module).
StringSaver Saver;
BumpPtrAllocator Alloc;
// The total number of basic blocks in the module in the per-module summary or
// the total number of basic blocks in the LTO unit in the combined index.
uint64_t BlockCount;
// YAML I/O support.
friend yaml::MappingTraits<ModuleSummaryIndex>;
GlobalValueSummaryMapTy::value_type *
getOrInsertValuePtr(GlobalValue::GUID GUID) {
return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
.first;
}
public:
// See HaveGVs variable comment.
ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
: HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
BlockCount(0) {}
// Current version for the module summary in bitcode files.
// The BitcodeSummaryVersion should be bumped whenever we introduce changes
// in the way some record are interpreted, like flags for instance.
// Note that incrementing this may require changes in both BitcodeReader.cpp
// and BitcodeWriter.cpp.
static constexpr uint64_t BitcodeSummaryVersion = 9;
// Regular LTO module name for ASM writer
static constexpr const char *getRegularLTOModuleName() {
return "[Regular LTO]";
}
bool haveGVs() const { return HaveGVs; }
uint64_t getFlags() const;
void setFlags(uint64_t Flags);
uint64_t getBlockCount() const { return BlockCount; }
void addBlockCount(uint64_t C) { BlockCount += C; }
void setBlockCount(uint64_t C) { BlockCount = C; }
gvsummary_iterator begin() { return GlobalValueMap.begin(); }
const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
gvsummary_iterator end() { return GlobalValueMap.end(); }
const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
size_t size() const { return GlobalValueMap.size(); }
/// Convenience function for doing a DFS on a ValueInfo. Marks the function in
/// the FunctionHasParent map.
static void discoverNodes(ValueInfo V,
std::map<ValueInfo, bool> &FunctionHasParent) {
if (!V.getSummaryList().size())
return; // skip external functions that don't have summaries
// Mark discovered if we haven't yet
auto S = FunctionHasParent.emplace(V, false);
// Stop if we've already discovered this node
if (!S.second)
return;
FunctionSummary *F =
dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
assert(F != nullptr && "Expected FunctionSummary node");
for (auto &C : F->calls()) {
// Insert node if necessary
auto S = FunctionHasParent.emplace(C.first, true);
// Skip nodes that we're sure have parents
if (!S.second && S.first->second)
continue;
if (S.second)
discoverNodes(C.first, FunctionHasParent);
else
S.first->second = true;
}
}
// Calculate the callgraph root
FunctionSummary calculateCallGraphRoot() {
// Functions that have a parent will be marked in FunctionHasParent pair.
// Once we've marked all functions, the functions in the map that are false
// have no parent (so they're the roots)
std::map<ValueInfo, bool> FunctionHasParent;
for (auto &S : *this) {
// Skip external functions
if (!S.second.SummaryList.size() ||
!isa<FunctionSummary>(S.second.SummaryList.front().get()))
continue;
discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
}
std::vector<FunctionSummary::EdgeTy> Edges;
// create edges to all roots in the Index
for (auto &P : FunctionHasParent) {
if (P.second)
continue; // skip over non-root nodes
Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
}
if (Edges.empty()) {
// Failed to find root - return an empty node
return FunctionSummary::makeDummyFunctionSummary({});
}
auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
return CallGraphRoot;
}
bool withGlobalValueDeadStripping() const {
return WithGlobalValueDeadStripping;
}
void setWithGlobalValueDeadStripping() {
WithGlobalValueDeadStripping = true;
}
bool withAttributePropagation() const { return WithAttributePropagation; }
void setWithAttributePropagation() {
WithAttributePropagation = true;
}
bool isReadOnly(const GlobalVarSummary *GVS) const {
return WithAttributePropagation && GVS->maybeReadOnly();
}
bool isWriteOnly(const GlobalVarSummary *GVS) const {
return WithAttributePropagation && GVS->maybeWriteOnly();
}
bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
bool skipModuleByDistributedBackend() const {
return SkipModuleByDistributedBackend;
}
void setSkipModuleByDistributedBackend() {
SkipModuleByDistributedBackend = true;
}
bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
bool hasParamAccess() const { return HasParamAccess; }
bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
return !WithGlobalValueDeadStripping || GVS->isLive();
}
bool isGUIDLive(GlobalValue::GUID GUID) const;
/// Return a ValueInfo for the index value_type (convenient when iterating
/// index).
ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
return ValueInfo(HaveGVs, &R);
}
/// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
auto I = GlobalValueMap.find(GUID);
return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
}
/// Return a ValueInfo for \p GUID.
ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
}
// Save a string in the Index. Use before passing Name to
// getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
// module's Strtab).
StringRef saveString(StringRef String) { return Saver.save(String); }
/// Return a ValueInfo for \p GUID setting value \p Name.
ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
assert(!HaveGVs);
auto VP = getOrInsertValuePtr(GUID);
VP->second.U.Name = Name;
return ValueInfo(HaveGVs, VP);
}
/// Return a ValueInfo for \p GV and mark it as belonging to GV.
ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
assert(HaveGVs);
auto VP = getOrInsertValuePtr(GV->getGUID());
VP->second.U.GV = GV;
return ValueInfo(HaveGVs, VP);
}
/// Return the GUID for \p OriginalId in the OidGuidMap.
GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
const auto I = OidGuidMap.find(OriginalID);
return I == OidGuidMap.end() ? 0 : I->second;
}
std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
/// Add a global value summary for a value.
void addGlobalValueSummary(const GlobalValue &GV,
std::unique_ptr<GlobalValueSummary> Summary) {
addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
}
/// Add a global value summary for a value of the given name.
void addGlobalValueSummary(StringRef ValueName,
std::unique_ptr<GlobalValueSummary> Summary) {
addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
std::move(Summary));
}
/// Add a global value summary for the given ValueInfo.
void addGlobalValueSummary(ValueInfo VI,
std::unique_ptr<GlobalValueSummary> Summary) {
if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
HasParamAccess |= !FS->paramAccesses().empty();
addOriginalName(VI.getGUID(), Summary->getOriginalName());
// Here we have a notionally const VI, but the value it points to is owned
// by the non-const *this.
const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
->second.SummaryList.push_back(std::move(Summary));
}
/// Add an original name for the value of the given GUID.
void addOriginalName(GlobalValue::GUID ValueGUID,
GlobalValue::GUID OrigGUID) {
if (OrigGUID == 0 || ValueGUID == OrigGUID)
return;
if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
OidGuidMap[OrigGUID] = 0;
else
OidGuidMap[OrigGUID] = ValueGUID;
}
/// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
/// not found.
GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
auto SummaryList = VI.getSummaryList();
auto Summary =
llvm::find_if(SummaryList,
[&](const std::unique_ptr<GlobalValueSummary> &Summary) {
return Summary->modulePath() == ModuleId;
});
if (Summary == SummaryList.end())
return nullptr;
return Summary->get();
}
/// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
/// not found.
GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
StringRef ModuleId) const {
auto CalleeInfo = getValueInfo(ValueGUID);
if (!CalleeInfo)
return nullptr; // This function does not have a summary
return findSummaryInModule(CalleeInfo, ModuleId);
}
/// Returns the first GlobalValueSummary for \p GV, asserting that there
/// is only one if \p PerModuleIndex.
GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
bool PerModuleIndex = true) const {
assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
}
/// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
/// there
/// is only one if \p PerModuleIndex.
GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
bool PerModuleIndex = true) const;
/// Table of modules, containing module hash and id.
const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
return ModulePathStringTable;
}
/// Table of modules, containing hash and id.
StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
return ModulePathStringTable;
}
/// Get the module ID recorded for the given module path.
uint64_t getModuleId(const StringRef ModPath) const {
return ModulePathStringTable.lookup(ModPath).first;
}
/// Get the module SHA1 hash recorded for the given module path.
const ModuleHash &getModuleHash(const StringRef ModPath) const {
auto It = ModulePathStringTable.find(ModPath);
assert(It != ModulePathStringTable.end() && "Module not registered");
return It->second.second;
}
/// Convenience method for creating a promoted global name
/// for the given value name of a local, and its original module's ID.
static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
SmallString<256> NewName(Name);
NewName += ".llvm.";
NewName += utostr((uint64_t(ModHash[0]) << 32) |
ModHash[1]); // Take the first 64 bits
return std::string(NewName.str());
}
/// Helper to obtain the unpromoted name for a global value (or the original
/// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
/// because it is possible in certain clients (not clang at the moment) for
/// two rounds of ThinLTO optimization and therefore promotion to occur.
static StringRef getOriginalNameBeforePromote(StringRef Name) {
std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
return Pair.first;
}
typedef ModulePathStringTableTy::value_type ModuleInfo;
/// Add a new module with the given \p Hash, mapped to the given \p
/// ModID, and return a reference to the module.
ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
ModuleHash Hash = ModuleHash{{0}}) {
return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
}
/// Return module entry for module with the given \p ModPath.
ModuleInfo *getModule(StringRef ModPath) {
auto It = ModulePathStringTable.find(ModPath);
assert(It != ModulePathStringTable.end() && "Module not registered");
return &*It;
}
/// Check if the given Module has any functions available for exporting
/// in the index. We consider any module present in the ModulePathStringTable
/// to have exported functions.
bool hasExportedFunctions(const Module &M) const {
return ModulePathStringTable.count(M.getModuleIdentifier());
}
const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
/// Return an existing or new TypeIdSummary entry for \p TypeId.
/// This accessor can mutate the map and therefore should not be used in
/// the ThinLTO backends.
TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
for (auto It = TidIter.first; It != TidIter.second; ++It)
if (It->second.first == TypeId)
return It->second.second;
auto It = TypeIdMap.insert(
{GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
return It->second.second;
}
/// This returns either a pointer to the type id summary (if present in the
/// summary map) or null (if not present). This may be used when importing.
const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
for (auto It = TidIter.first; It != TidIter.second; ++It)
if (It->second.first == TypeId)
return &It->second.second;
return nullptr;
}
TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
return const_cast<TypeIdSummary *>(
static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
TypeId));
}
const auto &typeIdCompatibleVtableMap() const {
return TypeIdCompatibleVtableMap;
}
/// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
/// This accessor can mutate the map and therefore should not be used in
/// the ThinLTO backends.
TypeIdCompatibleVtableInfo &
getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
return TypeIdCompatibleVtableMap[std::string(TypeId)];
}
/// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
/// entry if present in the summary map. This may be used when importing.
Optional<TypeIdCompatibleVtableInfo>
getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
auto I = TypeIdCompatibleVtableMap.find(TypeId);
if (I == TypeIdCompatibleVtableMap.end())
return None;
return I->second;
}
/// Collect for the given module the list of functions it defines
/// (GUID -> Summary).
void collectDefinedFunctionsForModule(StringRef ModulePath,
GVSummaryMapTy &GVSummaryMap) const;
/// Collect for each module the list of Summaries it defines (GUID ->
/// Summary).
template <class Map>
void
collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
for (auto &GlobalList : *this) {
auto GUID = GlobalList.first;
for (auto &Summary : GlobalList.second.SummaryList) {
ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
}
}
}
/// Print to an output stream.
void print(raw_ostream &OS, bool IsForDebug = false) const;
/// Dump to stderr (for debugging).
void dump() const;
/// Export summary to dot file for GraphViz.
void
exportToDot(raw_ostream &OS,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
/// Print out strongly connected components for debugging.
void dumpSCCs(raw_ostream &OS);
/// Analyze index and detect unmodified globals
void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
/// Checks if we can import global variable from another module.
bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
};
/// GraphTraits definition to build SCC for the index
template <> struct GraphTraits<ValueInfo> {
typedef ValueInfo NodeRef;
using EdgeRef = FunctionSummary::EdgeTy &;
static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
return P.first;
}
using ChildIteratorType =
mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
decltype(&valueInfoFromEdge)>;
using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
static NodeRef getEntryNode(ValueInfo V) { return V; }
static ChildIteratorType child_begin(NodeRef N) {
if (!N.getSummaryList().size()) // handle external function
return ChildIteratorType(
FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
&valueInfoFromEdge);
FunctionSummary *F =
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
}
static ChildIteratorType child_end(NodeRef N) {
if (!N.getSummaryList().size()) // handle external function
return ChildIteratorType(
FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
&valueInfoFromEdge);
FunctionSummary *F =
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
}
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
if (!N.getSummaryList().size()) // handle external function
return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
FunctionSummary *F =
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
return F->CallGraphEdgeList.begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) {
if (!N.getSummaryList().size()) // handle external function
return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
FunctionSummary *F =
cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
return F->CallGraphEdgeList.end();
}
static NodeRef edge_dest(EdgeRef E) { return E.first; }
};
template <>
struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
static NodeRef getEntryNode(ModuleSummaryIndex *I) {
std::unique_ptr<GlobalValueSummary> Root =
std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
GlobalValueSummaryInfo G(I->haveGVs());
G.SummaryList.push_back(std::move(Root));
static auto P =
GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
return ValueInfo(I->haveGVs(), &P);
}
};
} // end namespace llvm
#endif // LLVM_IR_MODULESUMMARYINDEX_H