5333 lines
198 KiB
C++
5333 lines
198 KiB
C++
//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file exposes the class definitions of all of the subclasses of the
|
|
// Instruction class. This is meant to be an easy way to get access to all
|
|
// instruction subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_INSTRUCTIONS_H
|
|
#define LLVM_IR_INSTRUCTIONS_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Bitfields.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/OperandTraits.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
class APInt;
|
|
class ConstantInt;
|
|
class DataLayout;
|
|
class LLVMContext;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocaInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// an instruction to allocate memory on the stack
|
|
class AllocaInst : public UnaryInstruction {
|
|
Type *AllocatedType;
|
|
|
|
using AlignmentField = AlignmentBitfieldElementT<0>;
|
|
using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
|
|
using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
|
|
static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
|
|
SwiftErrorField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
AllocaInst *cloneImpl() const;
|
|
|
|
public:
|
|
explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
const Twine &Name, Instruction *InsertBefore);
|
|
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
|
|
Instruction *InsertBefore);
|
|
AllocaInst(Type *Ty, unsigned AddrSpace,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
|
|
const Twine &Name = "", Instruction *InsertBefore = nullptr);
|
|
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
/// Return true if there is an allocation size parameter to the allocation
|
|
/// instruction that is not 1.
|
|
bool isArrayAllocation() const;
|
|
|
|
/// Get the number of elements allocated. For a simple allocation of a single
|
|
/// element, this will return a constant 1 value.
|
|
const Value *getArraySize() const { return getOperand(0); }
|
|
Value *getArraySize() { return getOperand(0); }
|
|
|
|
/// Overload to return most specific pointer type.
|
|
PointerType *getType() const {
|
|
return cast<PointerType>(Instruction::getType());
|
|
}
|
|
|
|
/// Get allocation size in bits. Returns None if size can't be determined,
|
|
/// e.g. in case of a VLA.
|
|
Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
|
|
|
|
/// Return the type that is being allocated by the instruction.
|
|
Type *getAllocatedType() const { return AllocatedType; }
|
|
/// for use only in special circumstances that need to generically
|
|
/// transform a whole instruction (eg: IR linking and vectorization).
|
|
void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
|
|
|
|
/// Return the alignment of the memory that is being allocated by the
|
|
/// instruction.
|
|
Align getAlign() const {
|
|
return Align(1ULL << getSubclassData<AlignmentField>());
|
|
}
|
|
|
|
void setAlignment(Align Align) {
|
|
setSubclassData<AlignmentField>(Log2(Align));
|
|
}
|
|
|
|
// FIXME: Remove this one transition to Align is over.
|
|
unsigned getAlignment() const { return getAlign().value(); }
|
|
|
|
/// Return true if this alloca is in the entry block of the function and is a
|
|
/// constant size. If so, the code generator will fold it into the
|
|
/// prolog/epilog code, so it is basically free.
|
|
bool isStaticAlloca() const;
|
|
|
|
/// Return true if this alloca is used as an inalloca argument to a call. Such
|
|
/// allocas are never considered static even if they are in the entry block.
|
|
bool isUsedWithInAlloca() const {
|
|
return getSubclassData<UsedWithInAllocaField>();
|
|
}
|
|
|
|
/// Specify whether this alloca is used to represent the arguments to a call.
|
|
void setUsedWithInAlloca(bool V) {
|
|
setSubclassData<UsedWithInAllocaField>(V);
|
|
}
|
|
|
|
/// Return true if this alloca is used as a swifterror argument to a call.
|
|
bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
|
|
/// Specify whether this alloca is used to represent a swifterror.
|
|
void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Alloca);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// An instruction for reading from memory. This uses the SubclassData field in
|
|
/// Value to store whether or not the load is volatile.
|
|
class LoadInst : public UnaryInstruction {
|
|
using VolatileField = BoolBitfieldElementT<0>;
|
|
using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
|
|
using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
|
|
static_assert(
|
|
Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
void AssertOK();
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
LoadInst *cloneImpl() const;
|
|
|
|
public:
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
Instruction *InsertBefore);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
Align Align, Instruction *InsertBefore = nullptr);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
Align Align, BasicBlock *InsertAtEnd);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
Align Align, AtomicOrdering Order,
|
|
SyncScope::ID SSID = SyncScope::System,
|
|
Instruction *InsertBefore = nullptr);
|
|
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
|
|
Align Align, AtomicOrdering Order, SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
/// Return true if this is a load from a volatile memory location.
|
|
bool isVolatile() const { return getSubclassData<VolatileField>(); }
|
|
|
|
/// Specify whether this is a volatile load or not.
|
|
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
|
|
|
|
/// Return the alignment of the access that is being performed.
|
|
/// FIXME: Remove this function once transition to Align is over.
|
|
/// Use getAlign() instead.
|
|
unsigned getAlignment() const { return getAlign().value(); }
|
|
|
|
/// Return the alignment of the access that is being performed.
|
|
Align getAlign() const {
|
|
return Align(1ULL << (getSubclassData<AlignmentField>()));
|
|
}
|
|
|
|
void setAlignment(Align Align) {
|
|
setSubclassData<AlignmentField>(Log2(Align));
|
|
}
|
|
|
|
/// Returns the ordering constraint of this load instruction.
|
|
AtomicOrdering getOrdering() const {
|
|
return getSubclassData<OrderingField>();
|
|
}
|
|
/// Sets the ordering constraint of this load instruction. May not be Release
|
|
/// or AcquireRelease.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setSubclassData<OrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the synchronization scope ID of this load instruction.
|
|
SyncScope::ID getSyncScopeID() const {
|
|
return SSID;
|
|
}
|
|
|
|
/// Sets the synchronization scope ID of this load instruction.
|
|
void setSyncScopeID(SyncScope::ID SSID) {
|
|
this->SSID = SSID;
|
|
}
|
|
|
|
/// Sets the ordering constraint and the synchronization scope ID of this load
|
|
/// instruction.
|
|
void setAtomic(AtomicOrdering Ordering,
|
|
SyncScope::ID SSID = SyncScope::System) {
|
|
setOrdering(Ordering);
|
|
setSyncScopeID(SSID);
|
|
}
|
|
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
|
|
bool isUnordered() const {
|
|
return (getOrdering() == AtomicOrdering::NotAtomic ||
|
|
getOrdering() == AtomicOrdering::Unordered) &&
|
|
!isVolatile();
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperandType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Load;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
|
|
/// The synchronization scope ID of this load instruction. Not quite enough
|
|
/// room in SubClassData for everything, so synchronization scope ID gets its
|
|
/// own field.
|
|
SyncScope::ID SSID;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// An instruction for storing to memory.
|
|
class StoreInst : public Instruction {
|
|
using VolatileField = BoolBitfieldElementT<0>;
|
|
using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
|
|
using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
|
|
static_assert(
|
|
Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
void AssertOK();
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
StoreInst *cloneImpl() const;
|
|
|
|
public:
|
|
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
|
|
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
|
|
Instruction *InsertBefore = nullptr);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
|
|
BasicBlock *InsertAtEnd);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
|
|
AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
|
|
Instruction *InsertBefore = nullptr);
|
|
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
|
|
AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
|
|
/// Return true if this is a store to a volatile memory location.
|
|
bool isVolatile() const { return getSubclassData<VolatileField>(); }
|
|
|
|
/// Specify whether this is a volatile store or not.
|
|
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Return the alignment of the access that is being performed
|
|
/// FIXME: Remove this function once transition to Align is over.
|
|
/// Use getAlign() instead.
|
|
unsigned getAlignment() const { return getAlign().value(); }
|
|
|
|
Align getAlign() const {
|
|
return Align(1ULL << (getSubclassData<AlignmentField>()));
|
|
}
|
|
|
|
void setAlignment(Align Align) {
|
|
setSubclassData<AlignmentField>(Log2(Align));
|
|
}
|
|
|
|
/// Returns the ordering constraint of this store instruction.
|
|
AtomicOrdering getOrdering() const {
|
|
return getSubclassData<OrderingField>();
|
|
}
|
|
|
|
/// Sets the ordering constraint of this store instruction. May not be
|
|
/// Acquire or AcquireRelease.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setSubclassData<OrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the synchronization scope ID of this store instruction.
|
|
SyncScope::ID getSyncScopeID() const {
|
|
return SSID;
|
|
}
|
|
|
|
/// Sets the synchronization scope ID of this store instruction.
|
|
void setSyncScopeID(SyncScope::ID SSID) {
|
|
this->SSID = SSID;
|
|
}
|
|
|
|
/// Sets the ordering constraint and the synchronization scope ID of this
|
|
/// store instruction.
|
|
void setAtomic(AtomicOrdering Ordering,
|
|
SyncScope::ID SSID = SyncScope::System) {
|
|
setOrdering(Ordering);
|
|
setSyncScopeID(SSID);
|
|
}
|
|
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
|
|
bool isUnordered() const {
|
|
return (getOrdering() == AtomicOrdering::NotAtomic ||
|
|
getOrdering() == AtomicOrdering::Unordered) &&
|
|
!isVolatile();
|
|
}
|
|
|
|
Value *getValueOperand() { return getOperand(0); }
|
|
const Value *getValueOperand() const { return getOperand(0); }
|
|
|
|
Value *getPointerOperand() { return getOperand(1); }
|
|
const Value *getPointerOperand() const { return getOperand(1); }
|
|
static unsigned getPointerOperandIndex() { return 1U; }
|
|
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperandType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Store;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
|
|
/// The synchronization scope ID of this store instruction. Not quite enough
|
|
/// room in SubClassData for everything, so synchronization scope ID gets its
|
|
/// own field.
|
|
SyncScope::ID SSID;
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FenceInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// An instruction for ordering other memory operations.
|
|
class FenceInst : public Instruction {
|
|
using OrderingField = AtomicOrderingBitfieldElementT<0>;
|
|
|
|
void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
FenceInst *cloneImpl() const;
|
|
|
|
public:
|
|
// Ordering may only be Acquire, Release, AcquireRelease, or
|
|
// SequentiallyConsistent.
|
|
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
|
|
SyncScope::ID SSID = SyncScope::System,
|
|
Instruction *InsertBefore = nullptr);
|
|
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
|
|
/// Returns the ordering constraint of this fence instruction.
|
|
AtomicOrdering getOrdering() const {
|
|
return getSubclassData<OrderingField>();
|
|
}
|
|
|
|
/// Sets the ordering constraint of this fence instruction. May only be
|
|
/// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
setSubclassData<OrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the synchronization scope ID of this fence instruction.
|
|
SyncScope::ID getSyncScopeID() const {
|
|
return SSID;
|
|
}
|
|
|
|
/// Sets the synchronization scope ID of this fence instruction.
|
|
void setSyncScopeID(SyncScope::ID SSID) {
|
|
this->SSID = SSID;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Fence;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
|
|
/// The synchronization scope ID of this fence instruction. Not quite enough
|
|
/// room in SubClassData for everything, so synchronization scope ID gets its
|
|
/// own field.
|
|
SyncScope::ID SSID;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicCmpXchgInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// An instruction that atomically checks whether a
|
|
/// specified value is in a memory location, and, if it is, stores a new value
|
|
/// there. The value returned by this instruction is a pair containing the
|
|
/// original value as first element, and an i1 indicating success (true) or
|
|
/// failure (false) as second element.
|
|
///
|
|
class AtomicCmpXchgInst : public Instruction {
|
|
void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
|
|
AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID);
|
|
|
|
template <unsigned Offset>
|
|
using AtomicOrderingBitfieldElement =
|
|
typename Bitfield::Element<AtomicOrdering, Offset, 3,
|
|
AtomicOrdering::LAST>;
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
AtomicCmpXchgInst *cloneImpl() const;
|
|
|
|
public:
|
|
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering, SyncScope::ID SSID,
|
|
Instruction *InsertBefore = nullptr);
|
|
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering, SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
|
|
using VolatileField = BoolBitfieldElementT<0>;
|
|
using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
|
|
using SuccessOrderingField =
|
|
AtomicOrderingBitfieldElementT<WeakField::NextBit>;
|
|
using FailureOrderingField =
|
|
AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
|
|
using AlignmentField =
|
|
AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
|
|
static_assert(
|
|
Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
|
|
FailureOrderingField, AlignmentField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
/// Return the alignment of the memory that is being allocated by the
|
|
/// instruction.
|
|
Align getAlign() const {
|
|
return Align(1ULL << getSubclassData<AlignmentField>());
|
|
}
|
|
|
|
void setAlignment(Align Align) {
|
|
setSubclassData<AlignmentField>(Log2(Align));
|
|
}
|
|
|
|
/// Return true if this is a cmpxchg from a volatile memory
|
|
/// location.
|
|
///
|
|
bool isVolatile() const { return getSubclassData<VolatileField>(); }
|
|
|
|
/// Specify whether this is a volatile cmpxchg.
|
|
///
|
|
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
|
|
|
|
/// Return true if this cmpxchg may spuriously fail.
|
|
bool isWeak() const { return getSubclassData<WeakField>(); }
|
|
|
|
void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Returns the success ordering constraint of this cmpxchg instruction.
|
|
AtomicOrdering getSuccessOrdering() const {
|
|
return getSubclassData<SuccessOrderingField>();
|
|
}
|
|
|
|
/// Sets the success ordering constraint of this cmpxchg instruction.
|
|
void setSuccessOrdering(AtomicOrdering Ordering) {
|
|
assert(Ordering != AtomicOrdering::NotAtomic &&
|
|
"CmpXchg instructions can only be atomic.");
|
|
setSubclassData<SuccessOrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the failure ordering constraint of this cmpxchg instruction.
|
|
AtomicOrdering getFailureOrdering() const {
|
|
return getSubclassData<FailureOrderingField>();
|
|
}
|
|
|
|
/// Sets the failure ordering constraint of this cmpxchg instruction.
|
|
void setFailureOrdering(AtomicOrdering Ordering) {
|
|
assert(Ordering != AtomicOrdering::NotAtomic &&
|
|
"CmpXchg instructions can only be atomic.");
|
|
setSubclassData<FailureOrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the synchronization scope ID of this cmpxchg instruction.
|
|
SyncScope::ID getSyncScopeID() const {
|
|
return SSID;
|
|
}
|
|
|
|
/// Sets the synchronization scope ID of this cmpxchg instruction.
|
|
void setSyncScopeID(SyncScope::ID SSID) {
|
|
this->SSID = SSID;
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
Value *getCompareOperand() { return getOperand(1); }
|
|
const Value *getCompareOperand() const { return getOperand(1); }
|
|
|
|
Value *getNewValOperand() { return getOperand(2); }
|
|
const Value *getNewValOperand() const { return getOperand(2); }
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
/// Returns the strongest permitted ordering on failure, given the
|
|
/// desired ordering on success.
|
|
///
|
|
/// If the comparison in a cmpxchg operation fails, there is no atomic store
|
|
/// so release semantics cannot be provided. So this function drops explicit
|
|
/// Release requests from the AtomicOrdering. A SequentiallyConsistent
|
|
/// operation would remain SequentiallyConsistent.
|
|
static AtomicOrdering
|
|
getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
|
|
switch (SuccessOrdering) {
|
|
default:
|
|
llvm_unreachable("invalid cmpxchg success ordering");
|
|
case AtomicOrdering::Release:
|
|
case AtomicOrdering::Monotonic:
|
|
return AtomicOrdering::Monotonic;
|
|
case AtomicOrdering::AcquireRelease:
|
|
case AtomicOrdering::Acquire:
|
|
return AtomicOrdering::Acquire;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::AtomicCmpXchg;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
|
|
/// The synchronization scope ID of this cmpxchg instruction. Not quite
|
|
/// enough room in SubClassData for everything, so synchronization scope ID
|
|
/// gets its own field.
|
|
SyncScope::ID SSID;
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<AtomicCmpXchgInst> :
|
|
public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicRMWInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// an instruction that atomically reads a memory location,
|
|
/// combines it with another value, and then stores the result back. Returns
|
|
/// the old value.
|
|
///
|
|
class AtomicRMWInst : public Instruction {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
AtomicRMWInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// This enumeration lists the possible modifications atomicrmw can make. In
|
|
/// the descriptions, 'p' is the pointer to the instruction's memory location,
|
|
/// 'old' is the initial value of *p, and 'v' is the other value passed to the
|
|
/// instruction. These instructions always return 'old'.
|
|
enum BinOp : unsigned {
|
|
/// *p = v
|
|
Xchg,
|
|
/// *p = old + v
|
|
Add,
|
|
/// *p = old - v
|
|
Sub,
|
|
/// *p = old & v
|
|
And,
|
|
/// *p = ~(old & v)
|
|
Nand,
|
|
/// *p = old | v
|
|
Or,
|
|
/// *p = old ^ v
|
|
Xor,
|
|
/// *p = old >signed v ? old : v
|
|
Max,
|
|
/// *p = old <signed v ? old : v
|
|
Min,
|
|
/// *p = old >unsigned v ? old : v
|
|
UMax,
|
|
/// *p = old <unsigned v ? old : v
|
|
UMin,
|
|
|
|
/// *p = old + v
|
|
FAdd,
|
|
|
|
/// *p = old - v
|
|
FSub,
|
|
|
|
FIRST_BINOP = Xchg,
|
|
LAST_BINOP = FSub,
|
|
BAD_BINOP
|
|
};
|
|
|
|
private:
|
|
template <unsigned Offset>
|
|
using AtomicOrderingBitfieldElement =
|
|
typename Bitfield::Element<AtomicOrdering, Offset, 3,
|
|
AtomicOrdering::LAST>;
|
|
|
|
template <unsigned Offset>
|
|
using BinOpBitfieldElement =
|
|
typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
|
|
|
|
public:
|
|
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
|
|
AtomicOrdering Ordering, SyncScope::ID SSID,
|
|
Instruction *InsertBefore = nullptr);
|
|
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
|
|
AtomicOrdering Ordering, SyncScope::ID SSID,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
|
|
using VolatileField = BoolBitfieldElementT<0>;
|
|
using AtomicOrderingField =
|
|
AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
|
|
using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
|
|
using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
|
|
static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
|
|
OperationField, AlignmentField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
BinOp getOperation() const { return getSubclassData<OperationField>(); }
|
|
|
|
static StringRef getOperationName(BinOp Op);
|
|
|
|
static bool isFPOperation(BinOp Op) {
|
|
switch (Op) {
|
|
case AtomicRMWInst::FAdd:
|
|
case AtomicRMWInst::FSub:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void setOperation(BinOp Operation) {
|
|
setSubclassData<OperationField>(Operation);
|
|
}
|
|
|
|
/// Return the alignment of the memory that is being allocated by the
|
|
/// instruction.
|
|
Align getAlign() const {
|
|
return Align(1ULL << getSubclassData<AlignmentField>());
|
|
}
|
|
|
|
void setAlignment(Align Align) {
|
|
setSubclassData<AlignmentField>(Log2(Align));
|
|
}
|
|
|
|
/// Return true if this is a RMW on a volatile memory location.
|
|
///
|
|
bool isVolatile() const { return getSubclassData<VolatileField>(); }
|
|
|
|
/// Specify whether this is a volatile RMW or not.
|
|
///
|
|
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Returns the ordering constraint of this rmw instruction.
|
|
AtomicOrdering getOrdering() const {
|
|
return getSubclassData<AtomicOrderingField>();
|
|
}
|
|
|
|
/// Sets the ordering constraint of this rmw instruction.
|
|
void setOrdering(AtomicOrdering Ordering) {
|
|
assert(Ordering != AtomicOrdering::NotAtomic &&
|
|
"atomicrmw instructions can only be atomic.");
|
|
setSubclassData<AtomicOrderingField>(Ordering);
|
|
}
|
|
|
|
/// Returns the synchronization scope ID of this rmw instruction.
|
|
SyncScope::ID getSyncScopeID() const {
|
|
return SSID;
|
|
}
|
|
|
|
/// Sets the synchronization scope ID of this rmw instruction.
|
|
void setSyncScopeID(SyncScope::ID SSID) {
|
|
this->SSID = SSID;
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
Value *getValOperand() { return getOperand(1); }
|
|
const Value *getValOperand() const { return getOperand(1); }
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
bool isFloatingPointOperation() const {
|
|
return isFPOperation(getOperation());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::AtomicRMW;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
|
|
AtomicOrdering Ordering, SyncScope::ID SSID);
|
|
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
|
|
/// The synchronization scope ID of this rmw instruction. Not quite enough
|
|
/// room in SubClassData for everything, so synchronization scope ID gets its
|
|
/// own field.
|
|
SyncScope::ID SSID;
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<AtomicRMWInst>
|
|
: public FixedNumOperandTraits<AtomicRMWInst,2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// checkGEPType - Simple wrapper function to give a better assertion failure
|
|
// message on bad indexes for a gep instruction.
|
|
//
|
|
inline Type *checkGEPType(Type *Ty) {
|
|
assert(Ty && "Invalid GetElementPtrInst indices for type!");
|
|
return Ty;
|
|
}
|
|
|
|
/// an instruction for type-safe pointer arithmetic to
|
|
/// access elements of arrays and structs
|
|
///
|
|
class GetElementPtrInst : public Instruction {
|
|
Type *SourceElementType;
|
|
Type *ResultElementType;
|
|
|
|
GetElementPtrInst(const GetElementPtrInst &GEPI);
|
|
|
|
/// Constructors - Create a getelementptr instruction with a base pointer an
|
|
/// list of indices. The first ctor can optionally insert before an existing
|
|
/// instruction, the second appends the new instruction to the specified
|
|
/// BasicBlock.
|
|
inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList, unsigned Values,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList, unsigned Values,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
GetElementPtrInst *cloneImpl() const;
|
|
|
|
public:
|
|
static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
unsigned Values = 1 + unsigned(IdxList.size());
|
|
if (!PointeeType)
|
|
PointeeType =
|
|
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
|
|
else
|
|
assert(
|
|
PointeeType ==
|
|
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
|
|
return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
|
|
NameStr, InsertBefore);
|
|
}
|
|
|
|
static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
unsigned Values = 1 + unsigned(IdxList.size());
|
|
if (!PointeeType)
|
|
PointeeType =
|
|
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
|
|
else
|
|
assert(
|
|
PointeeType ==
|
|
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
|
|
return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
|
|
NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Create an "inbounds" getelementptr. See the documentation for the
|
|
/// "inbounds" flag in LangRef.html for details.
|
|
static GetElementPtrInst *CreateInBounds(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr){
|
|
return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
|
|
}
|
|
|
|
static GetElementPtrInst *
|
|
CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
GetElementPtrInst *GEP =
|
|
Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
|
|
GEP->setIsInBounds(true);
|
|
return GEP;
|
|
}
|
|
|
|
static GetElementPtrInst *CreateInBounds(Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
GetElementPtrInst *GEP =
|
|
Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
|
|
GEP->setIsInBounds(true);
|
|
return GEP;
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
Type *getSourceElementType() const { return SourceElementType; }
|
|
|
|
void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
|
|
void setResultElementType(Type *Ty) { ResultElementType = Ty; }
|
|
|
|
Type *getResultElementType() const {
|
|
assert(ResultElementType ==
|
|
cast<PointerType>(getType()->getScalarType())->getElementType());
|
|
return ResultElementType;
|
|
}
|
|
|
|
/// Returns the address space of this instruction's pointer type.
|
|
unsigned getAddressSpace() const {
|
|
// Note that this is always the same as the pointer operand's address space
|
|
// and that is cheaper to compute, so cheat here.
|
|
return getPointerAddressSpace();
|
|
}
|
|
|
|
/// Returns the result type of a getelementptr with the given source
|
|
/// element type and indexes.
|
|
///
|
|
/// Null is returned if the indices are invalid for the specified
|
|
/// source element type.
|
|
static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
|
|
static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
|
|
static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
|
|
|
|
/// Return the type of the element at the given index of an indexable
|
|
/// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
|
|
///
|
|
/// Returns null if the type can't be indexed, or the given index is not
|
|
/// legal for the given type.
|
|
static Type *getTypeAtIndex(Type *Ty, Value *Idx);
|
|
static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
|
|
|
|
inline op_iterator idx_begin() { return op_begin()+1; }
|
|
inline const_op_iterator idx_begin() const { return op_begin()+1; }
|
|
inline op_iterator idx_end() { return op_end(); }
|
|
inline const_op_iterator idx_end() const { return op_end(); }
|
|
|
|
inline iterator_range<op_iterator> indices() {
|
|
return make_range(idx_begin(), idx_end());
|
|
}
|
|
|
|
inline iterator_range<const_op_iterator> indices() const {
|
|
return make_range(idx_begin(), idx_end());
|
|
}
|
|
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U; // get index for modifying correct operand.
|
|
}
|
|
|
|
/// Method to return the pointer operand as a
|
|
/// PointerType.
|
|
Type *getPointerOperandType() const {
|
|
return getPointerOperand()->getType();
|
|
}
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperandType()->getPointerAddressSpace();
|
|
}
|
|
|
|
/// Returns the pointer type returned by the GEP
|
|
/// instruction, which may be a vector of pointers.
|
|
static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
|
|
ArrayRef<Value *> IdxList) {
|
|
Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
|
|
Ptr->getType()->getPointerAddressSpace());
|
|
// Vector GEP
|
|
if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
|
|
ElementCount EltCount = PtrVTy->getElementCount();
|
|
return VectorType::get(PtrTy, EltCount);
|
|
}
|
|
for (Value *Index : IdxList)
|
|
if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
|
|
ElementCount EltCount = IndexVTy->getElementCount();
|
|
return VectorType::get(PtrTy, EltCount);
|
|
}
|
|
// Scalar GEP
|
|
return PtrTy;
|
|
}
|
|
|
|
unsigned getNumIndices() const { // Note: always non-negative
|
|
return getNumOperands() - 1;
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return getNumOperands() > 1;
|
|
}
|
|
|
|
/// Return true if all of the indices of this GEP are
|
|
/// zeros. If so, the result pointer and the first operand have the same
|
|
/// value, just potentially different types.
|
|
bool hasAllZeroIndices() const;
|
|
|
|
/// Return true if all of the indices of this GEP are
|
|
/// constant integers. If so, the result pointer and the first operand have
|
|
/// a constant offset between them.
|
|
bool hasAllConstantIndices() const;
|
|
|
|
/// Set or clear the inbounds flag on this GEP instruction.
|
|
/// See LangRef.html for the meaning of inbounds on a getelementptr.
|
|
void setIsInBounds(bool b = true);
|
|
|
|
/// Determine whether the GEP has the inbounds flag.
|
|
bool isInBounds() const;
|
|
|
|
/// Accumulate the constant address offset of this GEP if possible.
|
|
///
|
|
/// This routine accepts an APInt into which it will accumulate the constant
|
|
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
|
|
/// all-constant, it returns false and the value of the offset APInt is
|
|
/// undefined (it is *not* preserved!). The APInt passed into this routine
|
|
/// must be at least as wide as the IntPtr type for the address space of
|
|
/// the base GEP pointer.
|
|
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::GetElementPtr);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<GetElementPtrInst> :
|
|
public VariadicOperandTraits<GetElementPtrInst, 1> {
|
|
};
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList, unsigned Values,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
|
|
Values, InsertBefore),
|
|
SourceElementType(PointeeType),
|
|
ResultElementType(getIndexedType(PointeeType, IdxList)) {
|
|
assert(ResultElementType ==
|
|
cast<PointerType>(getType()->getScalarType())->getElementType());
|
|
init(Ptr, IdxList, NameStr);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
|
|
ArrayRef<Value *> IdxList, unsigned Values,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
|
|
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
|
|
Values, InsertAtEnd),
|
|
SourceElementType(PointeeType),
|
|
ResultElementType(getIndexedType(PointeeType, IdxList)) {
|
|
assert(ResultElementType ==
|
|
cast<PointerType>(getType()->getScalarType())->getElementType());
|
|
init(Ptr, IdxList, NameStr);
|
|
}
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ICmpInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction compares its operands according to the predicate given
|
|
/// to the constructor. It only operates on integers or pointers. The operands
|
|
/// must be identical types.
|
|
/// Represent an integer comparison operator.
|
|
class ICmpInst: public CmpInst {
|
|
void AssertOK() {
|
|
assert(isIntPredicate() &&
|
|
"Invalid ICmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to ICmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
|
|
getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
|
|
"Invalid operand types for ICmp instruction");
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical ICmpInst
|
|
ICmpInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics.
|
|
ICmpInst(
|
|
Instruction *InsertBefore, ///< Where to insert
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr,
|
|
InsertBefore) {
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
/// Constructor with insert-at-end semantics.
|
|
ICmpInst(
|
|
BasicBlock &InsertAtEnd, ///< Block to insert into.
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr,
|
|
&InsertAtEnd) {
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
/// Constructor with no-insertion semantics
|
|
ICmpInst(
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::ICmp, pred, LHS, RHS, NameStr) {
|
|
#ifndef NDEBUG
|
|
AssertOK();
|
|
#endif
|
|
}
|
|
|
|
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
|
|
/// @returns the predicate that would be the result if the operand were
|
|
/// regarded as signed.
|
|
/// Return the signed version of the predicate
|
|
Predicate getSignedPredicate() const {
|
|
return getSignedPredicate(getPredicate());
|
|
}
|
|
|
|
/// This is a static version that you can use without an instruction.
|
|
/// Return the signed version of the predicate.
|
|
static Predicate getSignedPredicate(Predicate pred);
|
|
|
|
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
|
|
/// @returns the predicate that would be the result if the operand were
|
|
/// regarded as unsigned.
|
|
/// Return the unsigned version of the predicate
|
|
Predicate getUnsignedPredicate() const {
|
|
return getUnsignedPredicate(getPredicate());
|
|
}
|
|
|
|
/// This is a static version that you can use without an instruction.
|
|
/// Return the unsigned version of the predicate.
|
|
static Predicate getUnsignedPredicate(Predicate pred);
|
|
|
|
/// Return true if this predicate is either EQ or NE. This also
|
|
/// tests for commutativity.
|
|
static bool isEquality(Predicate P) {
|
|
return P == ICMP_EQ || P == ICMP_NE;
|
|
}
|
|
|
|
/// Return true if this predicate is either EQ or NE. This also
|
|
/// tests for commutativity.
|
|
bool isEquality() const {
|
|
return isEquality(getPredicate());
|
|
}
|
|
|
|
/// @returns true if the predicate of this ICmpInst is commutative
|
|
/// Determine if this relation is commutative.
|
|
bool isCommutative() const { return isEquality(); }
|
|
|
|
/// Return true if the predicate is relational (not EQ or NE).
|
|
///
|
|
bool isRelational() const {
|
|
return !isEquality();
|
|
}
|
|
|
|
/// Return true if the predicate is relational (not EQ or NE).
|
|
///
|
|
static bool isRelational(Predicate P) {
|
|
return !isEquality(P);
|
|
}
|
|
|
|
/// Return true if the predicate is SGT or UGT.
|
|
///
|
|
static bool isGT(Predicate P) {
|
|
return P == ICMP_SGT || P == ICMP_UGT;
|
|
}
|
|
|
|
/// Return true if the predicate is SLT or ULT.
|
|
///
|
|
static bool isLT(Predicate P) {
|
|
return P == ICMP_SLT || P == ICMP_ULT;
|
|
}
|
|
|
|
/// Return true if the predicate is SGE or UGE.
|
|
///
|
|
static bool isGE(Predicate P) {
|
|
return P == ICMP_SGE || P == ICMP_UGE;
|
|
}
|
|
|
|
/// Return true if the predicate is SLE or ULE.
|
|
///
|
|
static bool isLE(Predicate P) {
|
|
return P == ICMP_SLE || P == ICMP_ULE;
|
|
}
|
|
|
|
/// Exchange the two operands to this instruction in such a way that it does
|
|
/// not modify the semantics of the instruction. The predicate value may be
|
|
/// changed to retain the same result if the predicate is order dependent
|
|
/// (e.g. ult).
|
|
/// Swap operands and adjust predicate.
|
|
void swapOperands() {
|
|
setPredicate(getSwappedPredicate());
|
|
Op<0>().swap(Op<1>());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ICmp;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FCmpInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction compares its operands according to the predicate given
|
|
/// to the constructor. It only operates on floating point values or packed
|
|
/// vectors of floating point values. The operands must be identical types.
|
|
/// Represents a floating point comparison operator.
|
|
class FCmpInst: public CmpInst {
|
|
void AssertOK() {
|
|
assert(isFPPredicate() && "Invalid FCmp predicate value");
|
|
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
|
|
"Both operands to FCmp instruction are not of the same type!");
|
|
// Check that the operands are the right type
|
|
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
|
|
"Invalid operand types for FCmp instruction");
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FCmpInst
|
|
FCmpInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics.
|
|
FCmpInst(
|
|
Instruction *InsertBefore, ///< Where to insert
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::FCmp, pred, LHS, RHS, NameStr,
|
|
InsertBefore) {
|
|
AssertOK();
|
|
}
|
|
|
|
/// Constructor with insert-at-end semantics.
|
|
FCmpInst(
|
|
BasicBlock &InsertAtEnd, ///< Block to insert into.
|
|
Predicate pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "" ///< Name of the instruction
|
|
) : CmpInst(makeCmpResultType(LHS->getType()),
|
|
Instruction::FCmp, pred, LHS, RHS, NameStr,
|
|
&InsertAtEnd) {
|
|
AssertOK();
|
|
}
|
|
|
|
/// Constructor with no-insertion semantics
|
|
FCmpInst(
|
|
Predicate Pred, ///< The predicate to use for the comparison
|
|
Value *LHS, ///< The left-hand-side of the expression
|
|
Value *RHS, ///< The right-hand-side of the expression
|
|
const Twine &NameStr = "", ///< Name of the instruction
|
|
Instruction *FlagsSource = nullptr
|
|
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
|
|
RHS, NameStr, nullptr, FlagsSource) {
|
|
AssertOK();
|
|
}
|
|
|
|
/// @returns true if the predicate of this instruction is EQ or NE.
|
|
/// Determine if this is an equality predicate.
|
|
static bool isEquality(Predicate Pred) {
|
|
return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
|
|
Pred == FCMP_UNE;
|
|
}
|
|
|
|
/// @returns true if the predicate of this instruction is EQ or NE.
|
|
/// Determine if this is an equality predicate.
|
|
bool isEquality() const { return isEquality(getPredicate()); }
|
|
|
|
/// @returns true if the predicate of this instruction is commutative.
|
|
/// Determine if this is a commutative predicate.
|
|
bool isCommutative() const {
|
|
return isEquality() ||
|
|
getPredicate() == FCMP_FALSE ||
|
|
getPredicate() == FCMP_TRUE ||
|
|
getPredicate() == FCMP_ORD ||
|
|
getPredicate() == FCMP_UNO;
|
|
}
|
|
|
|
/// @returns true if the predicate is relational (not EQ or NE).
|
|
/// Determine if this a relational predicate.
|
|
bool isRelational() const { return !isEquality(); }
|
|
|
|
/// Exchange the two operands to this instruction in such a way that it does
|
|
/// not modify the semantics of the instruction. The predicate value may be
|
|
/// changed to retain the same result if the predicate is order dependent
|
|
/// (e.g. ult).
|
|
/// Swap operands and adjust predicate.
|
|
void swapOperands() {
|
|
setPredicate(getSwappedPredicate());
|
|
Op<0>().swap(Op<1>());
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::FCmp;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// This class represents a function call, abstracting a target
|
|
/// machine's calling convention. This class uses low bit of the SubClassData
|
|
/// field to indicate whether or not this is a tail call. The rest of the bits
|
|
/// hold the calling convention of the call.
|
|
///
|
|
class CallInst : public CallBase {
|
|
CallInst(const CallInst &CI);
|
|
|
|
/// Construct a CallInst given a range of arguments.
|
|
/// Construct a CallInst from a range of arguments
|
|
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
|
|
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
|
|
|
|
/// Construct a CallInst given a range of arguments.
|
|
/// Construct a CallInst from a range of arguments
|
|
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
|
|
CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
|
|
void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
|
|
|
|
/// Compute the number of operands to allocate.
|
|
static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
|
|
// We need one operand for the called function, plus the input operand
|
|
// counts provided.
|
|
return 1 + NumArgs + NumBundleInputs;
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
CallInst *cloneImpl() const;
|
|
|
|
public:
|
|
static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new (ComputeNumOperands(Args.size()))
|
|
CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
const int NumOperands =
|
|
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
|
|
const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return new (ComputeNumOperands(Args.size()))
|
|
CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
const int NumOperands =
|
|
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
|
|
const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
|
|
InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
|
|
NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
|
|
InsertBefore);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
|
|
InsertAtEnd);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
|
|
InsertAtEnd);
|
|
}
|
|
|
|
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
|
|
NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Create a clone of \p CI with a different set of operand bundles and
|
|
/// insert it before \p InsertPt.
|
|
///
|
|
/// The returned call instruction is identical \p CI in every way except that
|
|
/// the operand bundles for the new instruction are set to the operand bundles
|
|
/// in \p Bundles.
|
|
static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertPt = nullptr);
|
|
|
|
/// Create a clone of \p CI with a different set of operand bundles and
|
|
/// insert it before \p InsertPt.
|
|
///
|
|
/// The returned call instruction is identical \p CI in every way except that
|
|
/// the operand bundle for the new instruction is set to the operand bundle
|
|
/// in \p Bundle.
|
|
static CallInst *CreateWithReplacedBundle(CallInst *CI,
|
|
OperandBundleDef Bundle,
|
|
Instruction *InsertPt = nullptr);
|
|
|
|
/// Generate the IR for a call to malloc:
|
|
/// 1. Compute the malloc call's argument as the specified type's size,
|
|
/// possibly multiplied by the array size if the array size is not
|
|
/// constant 1.
|
|
/// 2. Call malloc with that argument.
|
|
/// 3. Bitcast the result of the malloc call to the specified type.
|
|
static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
|
|
Type *AllocTy, Value *AllocSize,
|
|
Value *ArraySize = nullptr,
|
|
Function *MallocF = nullptr,
|
|
const Twine &Name = "");
|
|
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
|
|
Type *AllocTy, Value *AllocSize,
|
|
Value *ArraySize = nullptr,
|
|
Function *MallocF = nullptr,
|
|
const Twine &Name = "");
|
|
static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
|
|
Type *AllocTy, Value *AllocSize,
|
|
Value *ArraySize = nullptr,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
Function *MallocF = nullptr,
|
|
const Twine &Name = "");
|
|
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
|
|
Type *AllocTy, Value *AllocSize,
|
|
Value *ArraySize = nullptr,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
Function *MallocF = nullptr,
|
|
const Twine &Name = "");
|
|
/// Generate the IR for a call to the builtin free function.
|
|
static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
|
|
static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
|
|
static Instruction *CreateFree(Value *Source,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertBefore);
|
|
static Instruction *CreateFree(Value *Source,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// Note that 'musttail' implies 'tail'.
|
|
enum TailCallKind : unsigned {
|
|
TCK_None = 0,
|
|
TCK_Tail = 1,
|
|
TCK_MustTail = 2,
|
|
TCK_NoTail = 3,
|
|
TCK_LAST = TCK_NoTail
|
|
};
|
|
|
|
using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
|
|
static_assert(
|
|
Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
|
|
"Bitfields must be contiguous");
|
|
|
|
TailCallKind getTailCallKind() const {
|
|
return getSubclassData<TailCallKindField>();
|
|
}
|
|
|
|
bool isTailCall() const {
|
|
TailCallKind Kind = getTailCallKind();
|
|
return Kind == TCK_Tail || Kind == TCK_MustTail;
|
|
}
|
|
|
|
bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
|
|
|
|
bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
|
|
|
|
void setTailCallKind(TailCallKind TCK) {
|
|
setSubclassData<TailCallKindField>(TCK);
|
|
}
|
|
|
|
void setTailCall(bool IsTc = true) {
|
|
setTailCallKind(IsTc ? TCK_Tail : TCK_None);
|
|
}
|
|
|
|
/// Return true if the call can return twice
|
|
bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
|
|
void setCanReturnTwice() {
|
|
addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Call;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
/// Updates profile metadata by scaling it by \p S / \p T.
|
|
void updateProfWeight(uint64_t S, uint64_t T);
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
};
|
|
|
|
CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: CallBase(Ty->getReturnType(), Instruction::Call,
|
|
OperandTraits<CallBase>::op_end(this) -
|
|
(Args.size() + CountBundleInputs(Bundles) + 1),
|
|
unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
|
|
InsertAtEnd) {
|
|
init(Ty, Func, Args, Bundles, NameStr);
|
|
}
|
|
|
|
CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: CallBase(Ty->getReturnType(), Instruction::Call,
|
|
OperandTraits<CallBase>::op_end(this) -
|
|
(Args.size() + CountBundleInputs(Bundles) + 1),
|
|
unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
|
|
InsertBefore) {
|
|
init(Ty, Func, Args, Bundles, NameStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents the LLVM 'select' instruction.
|
|
///
|
|
class SelectInst : public Instruction {
|
|
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(S1->getType(), Instruction::Select,
|
|
&Op<0>(), 3, InsertBefore) {
|
|
init(C, S1, S2);
|
|
setName(NameStr);
|
|
}
|
|
|
|
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(S1->getType(), Instruction::Select,
|
|
&Op<0>(), 3, InsertAtEnd) {
|
|
init(C, S1, S2);
|
|
setName(NameStr);
|
|
}
|
|
|
|
void init(Value *C, Value *S1, Value *S2) {
|
|
assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
|
|
Op<0>() = C;
|
|
Op<1>() = S1;
|
|
Op<2>() = S2;
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
SelectInst *cloneImpl() const;
|
|
|
|
public:
|
|
static SelectInst *Create(Value *C, Value *S1, Value *S2,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr,
|
|
Instruction *MDFrom = nullptr) {
|
|
SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
|
|
if (MDFrom)
|
|
Sel->copyMetadata(*MDFrom);
|
|
return Sel;
|
|
}
|
|
|
|
static SelectInst *Create(Value *C, Value *S1, Value *S2,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
const Value *getCondition() const { return Op<0>(); }
|
|
const Value *getTrueValue() const { return Op<1>(); }
|
|
const Value *getFalseValue() const { return Op<2>(); }
|
|
Value *getCondition() { return Op<0>(); }
|
|
Value *getTrueValue() { return Op<1>(); }
|
|
Value *getFalseValue() { return Op<2>(); }
|
|
|
|
void setCondition(Value *V) { Op<0>() = V; }
|
|
void setTrueValue(Value *V) { Op<1>() = V; }
|
|
void setFalseValue(Value *V) { Op<2>() = V; }
|
|
|
|
/// Swap the true and false values of the select instruction.
|
|
/// This doesn't swap prof metadata.
|
|
void swapValues() { Op<1>().swap(Op<2>()); }
|
|
|
|
/// Return a string if the specified operands are invalid
|
|
/// for a select operation, otherwise return null.
|
|
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
OtherOps getOpcode() const {
|
|
return static_cast<OtherOps>(Instruction::getOpcode());
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Select;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VAArgInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents the va_arg llvm instruction, which returns
|
|
/// an argument of the specified type given a va_list and increments that list
|
|
///
|
|
class VAArgInst : public UnaryInstruction {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
VAArgInst *cloneImpl() const;
|
|
|
|
public:
|
|
VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr)
|
|
: UnaryInstruction(Ty, VAArg, List, InsertBefore) {
|
|
setName(NameStr);
|
|
}
|
|
|
|
VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
|
|
setName(NameStr);
|
|
}
|
|
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == VAArg;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction extracts a single (scalar)
|
|
/// element from a VectorType value
|
|
///
|
|
class ExtractElementInst : public Instruction {
|
|
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr);
|
|
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
ExtractElementInst *cloneImpl() const;
|
|
|
|
public:
|
|
static ExtractElementInst *Create(Value *Vec, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
|
|
}
|
|
|
|
static ExtractElementInst *Create(Value *Vec, Value *Idx,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Return true if an extractelement instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *Vec, const Value *Idx);
|
|
|
|
Value *getVectorOperand() { return Op<0>(); }
|
|
Value *getIndexOperand() { return Op<1>(); }
|
|
const Value *getVectorOperand() const { return Op<0>(); }
|
|
const Value *getIndexOperand() const { return Op<1>(); }
|
|
|
|
VectorType *getVectorOperandType() const {
|
|
return cast<VectorType>(getVectorOperand()->getType());
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ExtractElement;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ExtractElementInst> :
|
|
public FixedNumOperandTraits<ExtractElementInst, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction inserts a single (scalar)
|
|
/// element into a VectorType value
|
|
///
|
|
class InsertElementInst : public Instruction {
|
|
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr);
|
|
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
InsertElementInst *cloneImpl() const;
|
|
|
|
public:
|
|
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
|
|
}
|
|
|
|
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Return true if an insertelement instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *Vec, const Value *NewElt,
|
|
const Value *Idx);
|
|
|
|
/// Overload to return most specific vector type.
|
|
///
|
|
VectorType *getType() const {
|
|
return cast<VectorType>(Instruction::getType());
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::InsertElement;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<InsertElementInst> :
|
|
public FixedNumOperandTraits<InsertElementInst, 3> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
constexpr int UndefMaskElem = -1;
|
|
|
|
/// This instruction constructs a fixed permutation of two
|
|
/// input vectors.
|
|
///
|
|
/// For each element of the result vector, the shuffle mask selects an element
|
|
/// from one of the input vectors to copy to the result. Non-negative elements
|
|
/// in the mask represent an index into the concatenated pair of input vectors.
|
|
/// UndefMaskElem (-1) specifies that the result element is undefined.
|
|
///
|
|
/// For scalable vectors, all the elements of the mask must be 0 or -1. This
|
|
/// requirement may be relaxed in the future.
|
|
class ShuffleVectorInst : public Instruction {
|
|
SmallVector<int, 4> ShuffleMask;
|
|
Constant *ShuffleMaskForBitcode;
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
ShuffleVectorInst *cloneImpl() const;
|
|
|
|
public:
|
|
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefor = nullptr);
|
|
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefor = nullptr);
|
|
ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
void *operator new(size_t s) { return User::operator new(s, 2); }
|
|
|
|
/// Swap the operands and adjust the mask to preserve the semantics
|
|
/// of the instruction.
|
|
void commute();
|
|
|
|
/// Return true if a shufflevector instruction can be
|
|
/// formed with the specified operands.
|
|
static bool isValidOperands(const Value *V1, const Value *V2,
|
|
const Value *Mask);
|
|
static bool isValidOperands(const Value *V1, const Value *V2,
|
|
ArrayRef<int> Mask);
|
|
|
|
/// Overload to return most specific vector type.
|
|
///
|
|
VectorType *getType() const {
|
|
return cast<VectorType>(Instruction::getType());
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Return the shuffle mask value of this instruction for the given element
|
|
/// index. Return UndefMaskElem if the element is undef.
|
|
int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
|
|
|
|
/// Convert the input shuffle mask operand to a vector of integers. Undefined
|
|
/// elements of the mask are returned as UndefMaskElem.
|
|
static void getShuffleMask(const Constant *Mask,
|
|
SmallVectorImpl<int> &Result);
|
|
|
|
/// Return the mask for this instruction as a vector of integers. Undefined
|
|
/// elements of the mask are returned as UndefMaskElem.
|
|
void getShuffleMask(SmallVectorImpl<int> &Result) const {
|
|
Result.assign(ShuffleMask.begin(), ShuffleMask.end());
|
|
}
|
|
|
|
/// Return the mask for this instruction, for use in bitcode.
|
|
///
|
|
/// TODO: This is temporary until we decide a new bitcode encoding for
|
|
/// shufflevector.
|
|
Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
|
|
|
|
static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
|
|
Type *ResultTy);
|
|
|
|
void setShuffleMask(ArrayRef<int> Mask);
|
|
|
|
ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
|
|
|
|
/// Return true if this shuffle returns a vector with a different number of
|
|
/// elements than its source vectors.
|
|
/// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
|
|
/// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
|
|
bool changesLength() const {
|
|
unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
|
|
->getElementCount()
|
|
.getKnownMinValue();
|
|
unsigned NumMaskElts = ShuffleMask.size();
|
|
return NumSourceElts != NumMaskElts;
|
|
}
|
|
|
|
/// Return true if this shuffle returns a vector with a greater number of
|
|
/// elements than its source vectors.
|
|
/// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
|
|
bool increasesLength() const {
|
|
unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
|
|
->getElementCount()
|
|
.getKnownMinValue();
|
|
unsigned NumMaskElts = ShuffleMask.size();
|
|
return NumSourceElts < NumMaskElts;
|
|
}
|
|
|
|
/// Return true if this shuffle mask chooses elements from exactly one source
|
|
/// vector.
|
|
/// Example: <7,5,undef,7>
|
|
/// This assumes that vector operands are the same length as the mask.
|
|
static bool isSingleSourceMask(ArrayRef<int> Mask);
|
|
static bool isSingleSourceMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isSingleSourceMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if this shuffle chooses elements from exactly one source
|
|
/// vector without changing the length of that vector.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
|
|
/// TODO: Optionally allow length-changing shuffles.
|
|
bool isSingleSource() const {
|
|
return !changesLength() && isSingleSourceMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle mask chooses elements from exactly one source
|
|
/// vector without lane crossings. A shuffle using this mask is not
|
|
/// necessarily a no-op because it may change the number of elements from its
|
|
/// input vectors or it may provide demanded bits knowledge via undef lanes.
|
|
/// Example: <undef,undef,2,3>
|
|
static bool isIdentityMask(ArrayRef<int> Mask);
|
|
static bool isIdentityMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isIdentityMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if this shuffle chooses elements from exactly one source
|
|
/// vector without lane crossings and does not change the number of elements
|
|
/// from its input vectors.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
|
|
bool isIdentity() const {
|
|
return !changesLength() && isIdentityMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle lengthens exactly one source vector with
|
|
/// undefs in the high elements.
|
|
bool isIdentityWithPadding() const;
|
|
|
|
/// Return true if this shuffle extracts the first N elements of exactly one
|
|
/// source vector.
|
|
bool isIdentityWithExtract() const;
|
|
|
|
/// Return true if this shuffle concatenates its 2 source vectors. This
|
|
/// returns false if either input is undefined. In that case, the shuffle is
|
|
/// is better classified as an identity with padding operation.
|
|
bool isConcat() const;
|
|
|
|
/// Return true if this shuffle mask chooses elements from its source vectors
|
|
/// without lane crossings. A shuffle using this mask would be
|
|
/// equivalent to a vector select with a constant condition operand.
|
|
/// Example: <4,1,6,undef>
|
|
/// This returns false if the mask does not choose from both input vectors.
|
|
/// In that case, the shuffle is better classified as an identity shuffle.
|
|
/// This assumes that vector operands are the same length as the mask
|
|
/// (a length-changing shuffle can never be equivalent to a vector select).
|
|
static bool isSelectMask(ArrayRef<int> Mask);
|
|
static bool isSelectMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isSelectMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if this shuffle chooses elements from its source vectors
|
|
/// without lane crossings and all operands have the same number of elements.
|
|
/// In other words, this shuffle is equivalent to a vector select with a
|
|
/// constant condition operand.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
|
|
/// This returns false if the mask does not choose from both input vectors.
|
|
/// In that case, the shuffle is better classified as an identity shuffle.
|
|
/// TODO: Optionally allow length-changing shuffles.
|
|
bool isSelect() const {
|
|
return !changesLength() && isSelectMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle mask swaps the order of elements from exactly
|
|
/// one source vector.
|
|
/// Example: <7,6,undef,4>
|
|
/// This assumes that vector operands are the same length as the mask.
|
|
static bool isReverseMask(ArrayRef<int> Mask);
|
|
static bool isReverseMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isReverseMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if this shuffle swaps the order of elements from exactly
|
|
/// one source vector.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
|
|
/// TODO: Optionally allow length-changing shuffles.
|
|
bool isReverse() const {
|
|
return !changesLength() && isReverseMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle mask chooses all elements with the same value
|
|
/// as the first element of exactly one source vector.
|
|
/// Example: <4,undef,undef,4>
|
|
/// This assumes that vector operands are the same length as the mask.
|
|
static bool isZeroEltSplatMask(ArrayRef<int> Mask);
|
|
static bool isZeroEltSplatMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isZeroEltSplatMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if all elements of this shuffle are the same value as the
|
|
/// first element of exactly one source vector without changing the length
|
|
/// of that vector.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
|
|
/// TODO: Optionally allow length-changing shuffles.
|
|
/// TODO: Optionally allow splats from other elements.
|
|
bool isZeroEltSplat() const {
|
|
return !changesLength() && isZeroEltSplatMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle mask is a transpose mask.
|
|
/// Transpose vector masks transpose a 2xn matrix. They read corresponding
|
|
/// even- or odd-numbered vector elements from two n-dimensional source
|
|
/// vectors and write each result into consecutive elements of an
|
|
/// n-dimensional destination vector. Two shuffles are necessary to complete
|
|
/// the transpose, one for the even elements and another for the odd elements.
|
|
/// This description closely follows how the TRN1 and TRN2 AArch64
|
|
/// instructions operate.
|
|
///
|
|
/// For example, a simple 2x2 matrix can be transposed with:
|
|
///
|
|
/// ; Original matrix
|
|
/// m0 = < a, b >
|
|
/// m1 = < c, d >
|
|
///
|
|
/// ; Transposed matrix
|
|
/// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
|
|
/// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
|
|
///
|
|
/// For matrices having greater than n columns, the resulting nx2 transposed
|
|
/// matrix is stored in two result vectors such that one vector contains
|
|
/// interleaved elements from all the even-numbered rows and the other vector
|
|
/// contains interleaved elements from all the odd-numbered rows. For example,
|
|
/// a 2x4 matrix can be transposed with:
|
|
///
|
|
/// ; Original matrix
|
|
/// m0 = < a, b, c, d >
|
|
/// m1 = < e, f, g, h >
|
|
///
|
|
/// ; Transposed matrix
|
|
/// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
|
|
/// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
|
|
static bool isTransposeMask(ArrayRef<int> Mask);
|
|
static bool isTransposeMask(const Constant *Mask) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isTransposeMask(MaskAsInts);
|
|
}
|
|
|
|
/// Return true if this shuffle transposes the elements of its inputs without
|
|
/// changing the length of the vectors. This operation may also be known as a
|
|
/// merge or interleave. See the description for isTransposeMask() for the
|
|
/// exact specification.
|
|
/// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
|
|
bool isTranspose() const {
|
|
return !changesLength() && isTransposeMask(ShuffleMask);
|
|
}
|
|
|
|
/// Return true if this shuffle mask is an extract subvector mask.
|
|
/// A valid extract subvector mask returns a smaller vector from a single
|
|
/// source operand. The base extraction index is returned as well.
|
|
static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
|
|
int &Index);
|
|
static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
|
|
int &Index) {
|
|
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
|
|
// Not possible to express a shuffle mask for a scalable vector for this
|
|
// case.
|
|
if (isa<ScalableVectorType>(Mask->getType()))
|
|
return false;
|
|
SmallVector<int, 16> MaskAsInts;
|
|
getShuffleMask(Mask, MaskAsInts);
|
|
return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
|
|
}
|
|
|
|
/// Return true if this shuffle mask is an extract subvector mask.
|
|
bool isExtractSubvectorMask(int &Index) const {
|
|
// Not possible to express a shuffle mask for a scalable vector for this
|
|
// case.
|
|
if (isa<ScalableVectorType>(getType()))
|
|
return false;
|
|
|
|
int NumSrcElts =
|
|
cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
|
|
return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
|
|
}
|
|
|
|
/// Change values in a shuffle permute mask assuming the two vector operands
|
|
/// of length InVecNumElts have swapped position.
|
|
static void commuteShuffleMask(MutableArrayRef<int> Mask,
|
|
unsigned InVecNumElts) {
|
|
for (int &Idx : Mask) {
|
|
if (Idx == -1)
|
|
continue;
|
|
Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
|
|
assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
|
|
"shufflevector mask index out of range");
|
|
}
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ShuffleVector;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ShuffleVectorInst>
|
|
: public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction extracts a struct member or array
|
|
/// element value from an aggregate value.
|
|
///
|
|
class ExtractValueInst : public UnaryInstruction {
|
|
SmallVector<unsigned, 4> Indices;
|
|
|
|
ExtractValueInst(const ExtractValueInst &EVI);
|
|
|
|
/// Constructors - Create a extractvalue instruction with a base aggregate
|
|
/// value and a list of indices. The first ctor can optionally insert before
|
|
/// an existing instruction, the second appends the new instruction to the
|
|
/// specified BasicBlock.
|
|
inline ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
inline ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
ExtractValueInst *cloneImpl() const;
|
|
|
|
public:
|
|
static ExtractValueInst *Create(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new
|
|
ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
|
|
}
|
|
|
|
static ExtractValueInst *Create(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Returns the type of the element that would be extracted
|
|
/// with an extractvalue instruction with the specified parameters.
|
|
///
|
|
/// Null is returned if the indices are invalid for the specified type.
|
|
static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
|
|
|
|
using idx_iterator = const unsigned*;
|
|
|
|
inline idx_iterator idx_begin() const { return Indices.begin(); }
|
|
inline idx_iterator idx_end() const { return Indices.end(); }
|
|
inline iterator_range<idx_iterator> indices() const {
|
|
return make_range(idx_begin(), idx_end());
|
|
}
|
|
|
|
Value *getAggregateOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getAggregateOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getAggregateOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
ArrayRef<unsigned> getIndices() const {
|
|
return Indices;
|
|
}
|
|
|
|
unsigned getNumIndices() const {
|
|
return (unsigned)Indices.size();
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return true;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ExtractValue;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
ExtractValueInst::ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
|
|
ExtractValue, Agg, InsertBefore) {
|
|
init(Idxs, NameStr);
|
|
}
|
|
|
|
ExtractValueInst::ExtractValueInst(Value *Agg,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
|
|
ExtractValue, Agg, InsertAtEnd) {
|
|
init(Idxs, NameStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertValueInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This instruction inserts a struct field of array element
|
|
/// value into an aggregate value.
|
|
///
|
|
class InsertValueInst : public Instruction {
|
|
SmallVector<unsigned, 4> Indices;
|
|
|
|
InsertValueInst(const InsertValueInst &IVI);
|
|
|
|
/// Constructors - Create a insertvalue instruction with a base aggregate
|
|
/// value, a value to insert, and a list of indices. The first ctor can
|
|
/// optionally insert before an existing instruction, the second appends
|
|
/// the new instruction to the specified BasicBlock.
|
|
inline InsertValueInst(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
inline InsertValueInst(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
/// Constructors - These two constructors are convenience methods because one
|
|
/// and two index insertvalue instructions are so common.
|
|
InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr);
|
|
InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
InsertValueInst *cloneImpl() const;
|
|
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
|
|
static InsertValueInst *Create(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
|
|
}
|
|
|
|
static InsertValueInst *Create(Value *Agg, Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
using idx_iterator = const unsigned*;
|
|
|
|
inline idx_iterator idx_begin() const { return Indices.begin(); }
|
|
inline idx_iterator idx_end() const { return Indices.end(); }
|
|
inline iterator_range<idx_iterator> indices() const {
|
|
return make_range(idx_begin(), idx_end());
|
|
}
|
|
|
|
Value *getAggregateOperand() {
|
|
return getOperand(0);
|
|
}
|
|
const Value *getAggregateOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
static unsigned getAggregateOperandIndex() {
|
|
return 0U; // get index for modifying correct operand
|
|
}
|
|
|
|
Value *getInsertedValueOperand() {
|
|
return getOperand(1);
|
|
}
|
|
const Value *getInsertedValueOperand() const {
|
|
return getOperand(1);
|
|
}
|
|
static unsigned getInsertedValueOperandIndex() {
|
|
return 1U; // get index for modifying correct operand
|
|
}
|
|
|
|
ArrayRef<unsigned> getIndices() const {
|
|
return Indices;
|
|
}
|
|
|
|
unsigned getNumIndices() const {
|
|
return (unsigned)Indices.size();
|
|
}
|
|
|
|
bool hasIndices() const {
|
|
return true;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::InsertValue;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<InsertValueInst> :
|
|
public FixedNumOperandTraits<InsertValueInst, 2> {
|
|
};
|
|
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertBefore) {
|
|
init(Agg, Val, Idxs, NameStr);
|
|
}
|
|
|
|
InsertValueInst::InsertValueInst(Value *Agg,
|
|
Value *Val,
|
|
ArrayRef<unsigned> Idxs,
|
|
const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Agg->getType(), InsertValue,
|
|
OperandTraits<InsertValueInst>::op_begin(this),
|
|
2, InsertAtEnd) {
|
|
init(Agg, Val, Idxs, NameStr);
|
|
}
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PHINode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PHINode - The PHINode class is used to represent the magical mystical PHI
|
|
// node, that can not exist in nature, but can be synthesized in a computer
|
|
// scientist's overactive imagination.
|
|
//
|
|
class PHINode : public Instruction {
|
|
/// The number of operands actually allocated. NumOperands is
|
|
/// the number actually in use.
|
|
unsigned ReservedSpace;
|
|
|
|
PHINode(const PHINode &PN);
|
|
|
|
explicit PHINode(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr)
|
|
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
|
|
ReservedSpace(NumReservedValues) {
|
|
setName(NameStr);
|
|
allocHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
|
|
ReservedSpace(NumReservedValues) {
|
|
setName(NameStr);
|
|
allocHungoffUses(ReservedSpace);
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
PHINode *cloneImpl() const;
|
|
|
|
// allocHungoffUses - this is more complicated than the generic
|
|
// User::allocHungoffUses, because we have to allocate Uses for the incoming
|
|
// values and pointers to the incoming blocks, all in one allocation.
|
|
void allocHungoffUses(unsigned N) {
|
|
User::allocHungoffUses(N, /* IsPhi */ true);
|
|
}
|
|
|
|
public:
|
|
/// Constructors - NumReservedValues is a hint for the number of incoming
|
|
/// edges that this phi node will have (use 0 if you really have no idea).
|
|
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
|
|
}
|
|
|
|
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Block iterator interface. This provides access to the list of incoming
|
|
// basic blocks, which parallels the list of incoming values.
|
|
|
|
using block_iterator = BasicBlock **;
|
|
using const_block_iterator = BasicBlock * const *;
|
|
|
|
block_iterator block_begin() {
|
|
return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
|
|
}
|
|
|
|
const_block_iterator block_begin() const {
|
|
return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
|
|
}
|
|
|
|
block_iterator block_end() {
|
|
return block_begin() + getNumOperands();
|
|
}
|
|
|
|
const_block_iterator block_end() const {
|
|
return block_begin() + getNumOperands();
|
|
}
|
|
|
|
iterator_range<block_iterator> blocks() {
|
|
return make_range(block_begin(), block_end());
|
|
}
|
|
|
|
iterator_range<const_block_iterator> blocks() const {
|
|
return make_range(block_begin(), block_end());
|
|
}
|
|
|
|
op_range incoming_values() { return operands(); }
|
|
|
|
const_op_range incoming_values() const { return operands(); }
|
|
|
|
/// Return the number of incoming edges
|
|
///
|
|
unsigned getNumIncomingValues() const { return getNumOperands(); }
|
|
|
|
/// Return incoming value number x
|
|
///
|
|
Value *getIncomingValue(unsigned i) const {
|
|
return getOperand(i);
|
|
}
|
|
void setIncomingValue(unsigned i, Value *V) {
|
|
assert(V && "PHI node got a null value!");
|
|
assert(getType() == V->getType() &&
|
|
"All operands to PHI node must be the same type as the PHI node!");
|
|
setOperand(i, V);
|
|
}
|
|
|
|
static unsigned getOperandNumForIncomingValue(unsigned i) {
|
|
return i;
|
|
}
|
|
|
|
static unsigned getIncomingValueNumForOperand(unsigned i) {
|
|
return i;
|
|
}
|
|
|
|
/// Return incoming basic block number @p i.
|
|
///
|
|
BasicBlock *getIncomingBlock(unsigned i) const {
|
|
return block_begin()[i];
|
|
}
|
|
|
|
/// Return incoming basic block corresponding
|
|
/// to an operand of the PHI.
|
|
///
|
|
BasicBlock *getIncomingBlock(const Use &U) const {
|
|
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
|
|
return getIncomingBlock(unsigned(&U - op_begin()));
|
|
}
|
|
|
|
/// Return incoming basic block corresponding
|
|
/// to value use iterator.
|
|
///
|
|
BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
|
|
return getIncomingBlock(I.getUse());
|
|
}
|
|
|
|
void setIncomingBlock(unsigned i, BasicBlock *BB) {
|
|
assert(BB && "PHI node got a null basic block!");
|
|
block_begin()[i] = BB;
|
|
}
|
|
|
|
/// Replace every incoming basic block \p Old to basic block \p New.
|
|
void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
|
|
assert(New && Old && "PHI node got a null basic block!");
|
|
for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
|
|
if (getIncomingBlock(Op) == Old)
|
|
setIncomingBlock(Op, New);
|
|
}
|
|
|
|
/// Add an incoming value to the end of the PHI list
|
|
///
|
|
void addIncoming(Value *V, BasicBlock *BB) {
|
|
if (getNumOperands() == ReservedSpace)
|
|
growOperands(); // Get more space!
|
|
// Initialize some new operands.
|
|
setNumHungOffUseOperands(getNumOperands() + 1);
|
|
setIncomingValue(getNumOperands() - 1, V);
|
|
setIncomingBlock(getNumOperands() - 1, BB);
|
|
}
|
|
|
|
/// Remove an incoming value. This is useful if a
|
|
/// predecessor basic block is deleted. The value removed is returned.
|
|
///
|
|
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
|
|
/// is true), the PHI node is destroyed and any uses of it are replaced with
|
|
/// dummy values. The only time there should be zero incoming values to a PHI
|
|
/// node is when the block is dead, so this strategy is sound.
|
|
///
|
|
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
|
|
|
|
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
|
|
int Idx = getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "Invalid basic block argument to remove!");
|
|
return removeIncomingValue(Idx, DeletePHIIfEmpty);
|
|
}
|
|
|
|
/// Return the first index of the specified basic
|
|
/// block in the value list for this PHI. Returns -1 if no instance.
|
|
///
|
|
int getBasicBlockIndex(const BasicBlock *BB) const {
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (block_begin()[i] == BB)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
|
|
int Idx = getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "Invalid basic block argument!");
|
|
return getIncomingValue(Idx);
|
|
}
|
|
|
|
/// Set every incoming value(s) for block \p BB to \p V.
|
|
void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
|
|
assert(BB && "PHI node got a null basic block!");
|
|
bool Found = false;
|
|
for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
|
|
if (getIncomingBlock(Op) == BB) {
|
|
Found = true;
|
|
setIncomingValue(Op, V);
|
|
}
|
|
(void)Found;
|
|
assert(Found && "Invalid basic block argument to set!");
|
|
}
|
|
|
|
/// If the specified PHI node always merges together the
|
|
/// same value, return the value, otherwise return null.
|
|
Value *hasConstantValue() const;
|
|
|
|
/// Whether the specified PHI node always merges
|
|
/// together the same value, assuming undefs are equal to a unique
|
|
/// non-undef value.
|
|
bool hasConstantOrUndefValue() const;
|
|
|
|
/// If the PHI node is complete which means all of its parent's predecessors
|
|
/// have incoming value in this PHI, return true, otherwise return false.
|
|
bool isComplete() const {
|
|
return llvm::all_of(predecessors(getParent()),
|
|
[this](const BasicBlock *Pred) {
|
|
return getBasicBlockIndex(Pred) >= 0;
|
|
});
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::PHI;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
void growOperands();
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LandingPadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// The landingpad instruction holds all of the information
|
|
/// necessary to generate correct exception handling. The landingpad instruction
|
|
/// cannot be moved from the top of a landing pad block, which itself is
|
|
/// accessible only from the 'unwind' edge of an invoke. This uses the
|
|
/// SubclassData field in Value to store whether or not the landingpad is a
|
|
/// cleanup.
|
|
///
|
|
class LandingPadInst : public Instruction {
|
|
using CleanupField = BoolBitfieldElementT<0>;
|
|
|
|
/// The number of operands actually allocated. NumOperands is
|
|
/// the number actually in use.
|
|
unsigned ReservedSpace;
|
|
|
|
LandingPadInst(const LandingPadInst &LP);
|
|
|
|
public:
|
|
enum ClauseType { Catch, Filter };
|
|
|
|
private:
|
|
explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
// Allocate space for exactly zero operands.
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s);
|
|
}
|
|
|
|
void growOperands(unsigned Size);
|
|
void init(unsigned NumReservedValues, const Twine &NameStr);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
LandingPadInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructors - NumReservedClauses is a hint for the number of incoming
|
|
/// clauses that this landingpad will have (use 0 if you really have no idea).
|
|
static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr);
|
|
static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Return 'true' if this landingpad instruction is a
|
|
/// cleanup. I.e., it should be run when unwinding even if its landing pad
|
|
/// doesn't catch the exception.
|
|
bool isCleanup() const { return getSubclassData<CleanupField>(); }
|
|
|
|
/// Indicate that this landingpad instruction is a cleanup.
|
|
void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
|
|
|
|
/// Add a catch or filter clause to the landing pad.
|
|
void addClause(Constant *ClauseVal);
|
|
|
|
/// Get the value of the clause at index Idx. Use isCatch/isFilter to
|
|
/// determine what type of clause this is.
|
|
Constant *getClause(unsigned Idx) const {
|
|
return cast<Constant>(getOperandList()[Idx]);
|
|
}
|
|
|
|
/// Return 'true' if the clause and index Idx is a catch clause.
|
|
bool isCatch(unsigned Idx) const {
|
|
return !isa<ArrayType>(getOperandList()[Idx]->getType());
|
|
}
|
|
|
|
/// Return 'true' if the clause and index Idx is a filter clause.
|
|
bool isFilter(unsigned Idx) const {
|
|
return isa<ArrayType>(getOperandList()[Idx]->getType());
|
|
}
|
|
|
|
/// Get the number of clauses for this landing pad.
|
|
unsigned getNumClauses() const { return getNumOperands(); }
|
|
|
|
/// Grow the size of the operand list to accommodate the new
|
|
/// number of clauses.
|
|
void reserveClauses(unsigned Size) { growOperands(Size); }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::LandingPad;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// Return a value (possibly void), from a function. Execution
|
|
/// does not continue in this function any longer.
|
|
///
|
|
class ReturnInst : public Instruction {
|
|
ReturnInst(const ReturnInst &RI);
|
|
|
|
private:
|
|
// ReturnInst constructors:
|
|
// ReturnInst() - 'ret void' instruction
|
|
// ReturnInst( null) - 'ret void' instruction
|
|
// ReturnInst(Value* X) - 'ret X' instruction
|
|
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
|
|
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
|
|
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
|
|
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
|
|
//
|
|
// NOTE: If the Value* passed is of type void then the constructor behaves as
|
|
// if it was passed NULL.
|
|
explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
|
|
Instruction *InsertBefore = nullptr);
|
|
ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
|
|
explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
ReturnInst *cloneImpl() const;
|
|
|
|
public:
|
|
static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
|
|
}
|
|
|
|
static ReturnInst* Create(LLVMContext &C, Value *retVal,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
|
|
}
|
|
|
|
static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
|
|
return new(0) ReturnInst(C, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Convenience accessor. Returns null if there is no return value.
|
|
Value *getReturnValue() const {
|
|
return getNumOperands() != 0 ? getOperand(0) : nullptr;
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Ret);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
llvm_unreachable("ReturnInst has no successors!");
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *B) {
|
|
llvm_unreachable("ReturnInst has no successors!");
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BranchInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// Conditional or Unconditional Branch instruction.
|
|
///
|
|
class BranchInst : public Instruction {
|
|
/// Ops list - Branches are strange. The operands are ordered:
|
|
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
|
|
/// they don't have to check for cond/uncond branchness. These are mostly
|
|
/// accessed relative from op_end().
|
|
BranchInst(const BranchInst &BI);
|
|
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
|
|
// BranchInst(BB *B) - 'br B'
|
|
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
|
|
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
|
|
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
|
|
// BranchInst(BB* B, BB *I) - 'br B' insert at end
|
|
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
|
|
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
Instruction *InsertBefore = nullptr);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
|
|
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
void AssertOK();
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
BranchInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Iterator type that casts an operand to a basic block.
|
|
///
|
|
/// This only makes sense because the successors are stored as adjacent
|
|
/// operands for branch instructions.
|
|
struct succ_op_iterator
|
|
: iterator_adaptor_base<succ_op_iterator, value_op_iterator,
|
|
std::random_access_iterator_tag, BasicBlock *,
|
|
ptrdiff_t, BasicBlock *, BasicBlock *> {
|
|
explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
|
|
|
|
BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
|
|
BasicBlock *operator->() const { return operator*(); }
|
|
};
|
|
|
|
/// The const version of `succ_op_iterator`.
|
|
struct const_succ_op_iterator
|
|
: iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
|
|
std::random_access_iterator_tag,
|
|
const BasicBlock *, ptrdiff_t, const BasicBlock *,
|
|
const BasicBlock *> {
|
|
explicit const_succ_op_iterator(const_value_op_iterator I)
|
|
: iterator_adaptor_base(I) {}
|
|
|
|
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
|
|
const BasicBlock *operator->() const { return operator*(); }
|
|
};
|
|
|
|
static BranchInst *Create(BasicBlock *IfTrue,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new(1) BranchInst(IfTrue, InsertBefore);
|
|
}
|
|
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
|
|
Value *Cond, Instruction *InsertBefore = nullptr) {
|
|
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
|
|
}
|
|
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
|
|
return new(1) BranchInst(IfTrue, InsertAtEnd);
|
|
}
|
|
|
|
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
|
|
Value *Cond, BasicBlock *InsertAtEnd) {
|
|
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
bool isUnconditional() const { return getNumOperands() == 1; }
|
|
bool isConditional() const { return getNumOperands() == 3; }
|
|
|
|
Value *getCondition() const {
|
|
assert(isConditional() && "Cannot get condition of an uncond branch!");
|
|
return Op<-3>();
|
|
}
|
|
|
|
void setCondition(Value *V) {
|
|
assert(isConditional() && "Cannot set condition of unconditional branch!");
|
|
Op<-3>() = V;
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 1+isConditional(); }
|
|
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
|
|
return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
|
|
*(&Op<-1>() - idx) = NewSucc;
|
|
}
|
|
|
|
/// Swap the successors of this branch instruction.
|
|
///
|
|
/// Swaps the successors of the branch instruction. This also swaps any
|
|
/// branch weight metadata associated with the instruction so that it
|
|
/// continues to map correctly to each operand.
|
|
void swapSuccessors();
|
|
|
|
iterator_range<succ_op_iterator> successors() {
|
|
return make_range(
|
|
succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
|
|
succ_op_iterator(value_op_end()));
|
|
}
|
|
|
|
iterator_range<const_succ_op_iterator> successors() const {
|
|
return make_range(const_succ_op_iterator(
|
|
std::next(value_op_begin(), isConditional() ? 1 : 0)),
|
|
const_succ_op_iterator(value_op_end()));
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Br);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// Multiway switch
|
|
///
|
|
class SwitchInst : public Instruction {
|
|
unsigned ReservedSpace;
|
|
|
|
// Operand[0] = Value to switch on
|
|
// Operand[1] = Default basic block destination
|
|
// Operand[2n ] = Value to match
|
|
// Operand[2n+1] = BasicBlock to go to on match
|
|
SwitchInst(const SwitchInst &SI);
|
|
|
|
/// Create a new switch instruction, specifying a value to switch on and a
|
|
/// default destination. The number of additional cases can be specified here
|
|
/// to make memory allocation more efficient. This constructor can also
|
|
/// auto-insert before another instruction.
|
|
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
Instruction *InsertBefore);
|
|
|
|
/// Create a new switch instruction, specifying a value to switch on and a
|
|
/// default destination. The number of additional cases can be specified here
|
|
/// to make memory allocation more efficient. This constructor also
|
|
/// auto-inserts at the end of the specified BasicBlock.
|
|
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s);
|
|
}
|
|
|
|
void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
|
|
void growOperands();
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
SwitchInst *cloneImpl() const;
|
|
|
|
public:
|
|
// -2
|
|
static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
|
|
|
|
template <typename CaseHandleT> class CaseIteratorImpl;
|
|
|
|
/// A handle to a particular switch case. It exposes a convenient interface
|
|
/// to both the case value and the successor block.
|
|
///
|
|
/// We define this as a template and instantiate it to form both a const and
|
|
/// non-const handle.
|
|
template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
|
|
class CaseHandleImpl {
|
|
// Directly befriend both const and non-const iterators.
|
|
friend class SwitchInst::CaseIteratorImpl<
|
|
CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
|
|
|
|
protected:
|
|
// Expose the switch type we're parameterized with to the iterator.
|
|
using SwitchInstType = SwitchInstT;
|
|
|
|
SwitchInstT *SI;
|
|
ptrdiff_t Index;
|
|
|
|
CaseHandleImpl() = default;
|
|
CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
|
|
|
|
public:
|
|
/// Resolves case value for current case.
|
|
ConstantIntT *getCaseValue() const {
|
|
assert((unsigned)Index < SI->getNumCases() &&
|
|
"Index out the number of cases.");
|
|
return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
|
|
}
|
|
|
|
/// Resolves successor for current case.
|
|
BasicBlockT *getCaseSuccessor() const {
|
|
assert(((unsigned)Index < SI->getNumCases() ||
|
|
(unsigned)Index == DefaultPseudoIndex) &&
|
|
"Index out the number of cases.");
|
|
return SI->getSuccessor(getSuccessorIndex());
|
|
}
|
|
|
|
/// Returns number of current case.
|
|
unsigned getCaseIndex() const { return Index; }
|
|
|
|
/// Returns successor index for current case successor.
|
|
unsigned getSuccessorIndex() const {
|
|
assert(((unsigned)Index == DefaultPseudoIndex ||
|
|
(unsigned)Index < SI->getNumCases()) &&
|
|
"Index out the number of cases.");
|
|
return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
|
|
}
|
|
|
|
bool operator==(const CaseHandleImpl &RHS) const {
|
|
assert(SI == RHS.SI && "Incompatible operators.");
|
|
return Index == RHS.Index;
|
|
}
|
|
};
|
|
|
|
using ConstCaseHandle =
|
|
CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
|
|
|
|
class CaseHandle
|
|
: public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
|
|
friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
|
|
|
|
public:
|
|
CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
|
|
|
|
/// Sets the new value for current case.
|
|
void setValue(ConstantInt *V) {
|
|
assert((unsigned)Index < SI->getNumCases() &&
|
|
"Index out the number of cases.");
|
|
SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
|
|
}
|
|
|
|
/// Sets the new successor for current case.
|
|
void setSuccessor(BasicBlock *S) {
|
|
SI->setSuccessor(getSuccessorIndex(), S);
|
|
}
|
|
};
|
|
|
|
template <typename CaseHandleT>
|
|
class CaseIteratorImpl
|
|
: public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
|
|
std::random_access_iterator_tag,
|
|
CaseHandleT> {
|
|
using SwitchInstT = typename CaseHandleT::SwitchInstType;
|
|
|
|
CaseHandleT Case;
|
|
|
|
public:
|
|
/// Default constructed iterator is in an invalid state until assigned to
|
|
/// a case for a particular switch.
|
|
CaseIteratorImpl() = default;
|
|
|
|
/// Initializes case iterator for given SwitchInst and for given
|
|
/// case number.
|
|
CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
|
|
|
|
/// Initializes case iterator for given SwitchInst and for given
|
|
/// successor index.
|
|
static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
|
|
unsigned SuccessorIndex) {
|
|
assert(SuccessorIndex < SI->getNumSuccessors() &&
|
|
"Successor index # out of range!");
|
|
return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
|
|
: CaseIteratorImpl(SI, DefaultPseudoIndex);
|
|
}
|
|
|
|
/// Support converting to the const variant. This will be a no-op for const
|
|
/// variant.
|
|
operator CaseIteratorImpl<ConstCaseHandle>() const {
|
|
return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
|
|
}
|
|
|
|
CaseIteratorImpl &operator+=(ptrdiff_t N) {
|
|
// Check index correctness after addition.
|
|
// Note: Index == getNumCases() means end().
|
|
assert(Case.Index + N >= 0 &&
|
|
(unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
|
|
"Case.Index out the number of cases.");
|
|
Case.Index += N;
|
|
return *this;
|
|
}
|
|
CaseIteratorImpl &operator-=(ptrdiff_t N) {
|
|
// Check index correctness after subtraction.
|
|
// Note: Case.Index == getNumCases() means end().
|
|
assert(Case.Index - N >= 0 &&
|
|
(unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
|
|
"Case.Index out the number of cases.");
|
|
Case.Index -= N;
|
|
return *this;
|
|
}
|
|
ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
|
|
assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
|
|
return Case.Index - RHS.Case.Index;
|
|
}
|
|
bool operator==(const CaseIteratorImpl &RHS) const {
|
|
return Case == RHS.Case;
|
|
}
|
|
bool operator<(const CaseIteratorImpl &RHS) const {
|
|
assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
|
|
return Case.Index < RHS.Case.Index;
|
|
}
|
|
CaseHandleT &operator*() { return Case; }
|
|
const CaseHandleT &operator*() const { return Case; }
|
|
};
|
|
|
|
using CaseIt = CaseIteratorImpl<CaseHandle>;
|
|
using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
|
|
|
|
static SwitchInst *Create(Value *Value, BasicBlock *Default,
|
|
unsigned NumCases,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new SwitchInst(Value, Default, NumCases, InsertBefore);
|
|
}
|
|
|
|
static SwitchInst *Create(Value *Value, BasicBlock *Default,
|
|
unsigned NumCases, BasicBlock *InsertAtEnd) {
|
|
return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Accessor Methods for Switch stmt
|
|
Value *getCondition() const { return getOperand(0); }
|
|
void setCondition(Value *V) { setOperand(0, V); }
|
|
|
|
BasicBlock *getDefaultDest() const {
|
|
return cast<BasicBlock>(getOperand(1));
|
|
}
|
|
|
|
void setDefaultDest(BasicBlock *DefaultCase) {
|
|
setOperand(1, reinterpret_cast<Value*>(DefaultCase));
|
|
}
|
|
|
|
/// Return the number of 'cases' in this switch instruction, excluding the
|
|
/// default case.
|
|
unsigned getNumCases() const {
|
|
return getNumOperands()/2 - 1;
|
|
}
|
|
|
|
/// Returns a read/write iterator that points to the first case in the
|
|
/// SwitchInst.
|
|
CaseIt case_begin() {
|
|
return CaseIt(this, 0);
|
|
}
|
|
|
|
/// Returns a read-only iterator that points to the first case in the
|
|
/// SwitchInst.
|
|
ConstCaseIt case_begin() const {
|
|
return ConstCaseIt(this, 0);
|
|
}
|
|
|
|
/// Returns a read/write iterator that points one past the last in the
|
|
/// SwitchInst.
|
|
CaseIt case_end() {
|
|
return CaseIt(this, getNumCases());
|
|
}
|
|
|
|
/// Returns a read-only iterator that points one past the last in the
|
|
/// SwitchInst.
|
|
ConstCaseIt case_end() const {
|
|
return ConstCaseIt(this, getNumCases());
|
|
}
|
|
|
|
/// Iteration adapter for range-for loops.
|
|
iterator_range<CaseIt> cases() {
|
|
return make_range(case_begin(), case_end());
|
|
}
|
|
|
|
/// Constant iteration adapter for range-for loops.
|
|
iterator_range<ConstCaseIt> cases() const {
|
|
return make_range(case_begin(), case_end());
|
|
}
|
|
|
|
/// Returns an iterator that points to the default case.
|
|
/// Note: this iterator allows to resolve successor only. Attempt
|
|
/// to resolve case value causes an assertion.
|
|
/// Also note, that increment and decrement also causes an assertion and
|
|
/// makes iterator invalid.
|
|
CaseIt case_default() {
|
|
return CaseIt(this, DefaultPseudoIndex);
|
|
}
|
|
ConstCaseIt case_default() const {
|
|
return ConstCaseIt(this, DefaultPseudoIndex);
|
|
}
|
|
|
|
/// Search all of the case values for the specified constant. If it is
|
|
/// explicitly handled, return the case iterator of it, otherwise return
|
|
/// default case iterator to indicate that it is handled by the default
|
|
/// handler.
|
|
CaseIt findCaseValue(const ConstantInt *C) {
|
|
CaseIt I = llvm::find_if(
|
|
cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
|
|
if (I != case_end())
|
|
return I;
|
|
|
|
return case_default();
|
|
}
|
|
ConstCaseIt findCaseValue(const ConstantInt *C) const {
|
|
ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
|
|
return Case.getCaseValue() == C;
|
|
});
|
|
if (I != case_end())
|
|
return I;
|
|
|
|
return case_default();
|
|
}
|
|
|
|
/// Finds the unique case value for a given successor. Returns null if the
|
|
/// successor is not found, not unique, or is the default case.
|
|
ConstantInt *findCaseDest(BasicBlock *BB) {
|
|
if (BB == getDefaultDest())
|
|
return nullptr;
|
|
|
|
ConstantInt *CI = nullptr;
|
|
for (auto Case : cases()) {
|
|
if (Case.getCaseSuccessor() != BB)
|
|
continue;
|
|
|
|
if (CI)
|
|
return nullptr; // Multiple cases lead to BB.
|
|
|
|
CI = Case.getCaseValue();
|
|
}
|
|
|
|
return CI;
|
|
}
|
|
|
|
/// Add an entry to the switch instruction.
|
|
/// Note:
|
|
/// This action invalidates case_end(). Old case_end() iterator will
|
|
/// point to the added case.
|
|
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
|
|
|
|
/// This method removes the specified case and its successor from the switch
|
|
/// instruction. Note that this operation may reorder the remaining cases at
|
|
/// index idx and above.
|
|
/// Note:
|
|
/// This action invalidates iterators for all cases following the one removed,
|
|
/// including the case_end() iterator. It returns an iterator for the next
|
|
/// case.
|
|
CaseIt removeCase(CaseIt I);
|
|
|
|
unsigned getNumSuccessors() const { return getNumOperands()/2; }
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
|
|
return cast<BasicBlock>(getOperand(idx*2+1));
|
|
}
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
|
|
setOperand(idx * 2 + 1, NewSucc);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Switch;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
/// A wrapper class to simplify modification of SwitchInst cases along with
|
|
/// their prof branch_weights metadata.
|
|
class SwitchInstProfUpdateWrapper {
|
|
SwitchInst &SI;
|
|
Optional<SmallVector<uint32_t, 8> > Weights = None;
|
|
bool Changed = false;
|
|
|
|
protected:
|
|
static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
|
|
|
|
MDNode *buildProfBranchWeightsMD();
|
|
|
|
void init();
|
|
|
|
public:
|
|
using CaseWeightOpt = Optional<uint32_t>;
|
|
SwitchInst *operator->() { return &SI; }
|
|
SwitchInst &operator*() { return SI; }
|
|
operator SwitchInst *() { return &SI; }
|
|
|
|
SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
|
|
|
|
~SwitchInstProfUpdateWrapper() {
|
|
if (Changed)
|
|
SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
|
|
}
|
|
|
|
/// Delegate the call to the underlying SwitchInst::removeCase() and remove
|
|
/// correspondent branch weight.
|
|
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
|
|
|
|
/// Delegate the call to the underlying SwitchInst::addCase() and set the
|
|
/// specified branch weight for the added case.
|
|
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
|
|
|
|
/// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
|
|
/// this object to not touch the underlying SwitchInst in destructor.
|
|
SymbolTableList<Instruction>::iterator eraseFromParent();
|
|
|
|
void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
|
|
CaseWeightOpt getSuccessorWeight(unsigned idx);
|
|
|
|
static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndirectBrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// Indirect Branch Instruction.
|
|
///
|
|
class IndirectBrInst : public Instruction {
|
|
unsigned ReservedSpace;
|
|
|
|
// Operand[0] = Address to jump to
|
|
// Operand[n+1] = n-th destination
|
|
IndirectBrInst(const IndirectBrInst &IBI);
|
|
|
|
/// Create a new indirectbr instruction, specifying an
|
|
/// Address to jump to. The number of expected destinations can be specified
|
|
/// here to make memory allocation more efficient. This constructor can also
|
|
/// autoinsert before another instruction.
|
|
IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
|
|
|
|
/// Create a new indirectbr instruction, specifying an
|
|
/// Address to jump to. The number of expected destinations can be specified
|
|
/// here to make memory allocation more efficient. This constructor also
|
|
/// autoinserts at the end of the specified BasicBlock.
|
|
IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s);
|
|
}
|
|
|
|
void init(Value *Address, unsigned NumDests);
|
|
void growOperands();
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
IndirectBrInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Iterator type that casts an operand to a basic block.
|
|
///
|
|
/// This only makes sense because the successors are stored as adjacent
|
|
/// operands for indirectbr instructions.
|
|
struct succ_op_iterator
|
|
: iterator_adaptor_base<succ_op_iterator, value_op_iterator,
|
|
std::random_access_iterator_tag, BasicBlock *,
|
|
ptrdiff_t, BasicBlock *, BasicBlock *> {
|
|
explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
|
|
|
|
BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
|
|
BasicBlock *operator->() const { return operator*(); }
|
|
};
|
|
|
|
/// The const version of `succ_op_iterator`.
|
|
struct const_succ_op_iterator
|
|
: iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
|
|
std::random_access_iterator_tag,
|
|
const BasicBlock *, ptrdiff_t, const BasicBlock *,
|
|
const BasicBlock *> {
|
|
explicit const_succ_op_iterator(const_value_op_iterator I)
|
|
: iterator_adaptor_base(I) {}
|
|
|
|
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
|
|
const BasicBlock *operator->() const { return operator*(); }
|
|
};
|
|
|
|
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new IndirectBrInst(Address, NumDests, InsertBefore);
|
|
}
|
|
|
|
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new IndirectBrInst(Address, NumDests, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Accessor Methods for IndirectBrInst instruction.
|
|
Value *getAddress() { return getOperand(0); }
|
|
const Value *getAddress() const { return getOperand(0); }
|
|
void setAddress(Value *V) { setOperand(0, V); }
|
|
|
|
/// return the number of possible destinations in this
|
|
/// indirectbr instruction.
|
|
unsigned getNumDestinations() const { return getNumOperands()-1; }
|
|
|
|
/// Return the specified destination.
|
|
BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
|
|
const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
|
|
|
|
/// Add a destination.
|
|
///
|
|
void addDestination(BasicBlock *Dest);
|
|
|
|
/// This method removes the specified successor from the
|
|
/// indirectbr instruction.
|
|
void removeDestination(unsigned i);
|
|
|
|
unsigned getNumSuccessors() const { return getNumOperands()-1; }
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
return cast<BasicBlock>(getOperand(i+1));
|
|
}
|
|
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
|
|
setOperand(i + 1, NewSucc);
|
|
}
|
|
|
|
iterator_range<succ_op_iterator> successors() {
|
|
return make_range(succ_op_iterator(std::next(value_op_begin())),
|
|
succ_op_iterator(value_op_end()));
|
|
}
|
|
|
|
iterator_range<const_succ_op_iterator> successors() const {
|
|
return make_range(const_succ_op_iterator(std::next(value_op_begin())),
|
|
const_succ_op_iterator(value_op_end()));
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::IndirectBr;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InvokeInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Invoke instruction. The SubclassData field is used to hold the
|
|
/// calling convention of the call.
|
|
///
|
|
class InvokeInst : public CallBase {
|
|
/// The number of operands for this call beyond the called function,
|
|
/// arguments, and operand bundles.
|
|
static constexpr int NumExtraOperands = 2;
|
|
|
|
/// The index from the end of the operand array to the normal destination.
|
|
static constexpr int NormalDestOpEndIdx = -3;
|
|
|
|
/// The index from the end of the operand array to the unwind destination.
|
|
static constexpr int UnwindDestOpEndIdx = -2;
|
|
|
|
InvokeInst(const InvokeInst &BI);
|
|
|
|
/// Construct an InvokeInst given a range of arguments.
|
|
///
|
|
/// Construct an InvokeInst from a range of arguments
|
|
inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
|
|
inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
|
|
|
|
/// Compute the number of operands to allocate.
|
|
static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
|
|
// We need one operand for the called function, plus our extra operands and
|
|
// the input operand counts provided.
|
|
return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
InvokeInst *cloneImpl() const;
|
|
|
|
public:
|
|
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
int NumOperands = ComputeNumOperands(Args.size());
|
|
return new (NumOperands)
|
|
InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
|
|
NameStr, InsertBefore);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
int NumOperands =
|
|
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
|
|
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
|
|
NameStr, InsertBefore);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
int NumOperands = ComputeNumOperands(Args.size());
|
|
return new (NumOperands)
|
|
InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
|
|
NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
int NumOperands =
|
|
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
|
|
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
|
|
NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
|
|
IfException, Args, None, NameStr, InsertBefore);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
|
|
IfException, Args, Bundles, NameStr, InsertBefore);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
|
|
IfException, Args, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
|
|
IfException, Args, Bundles, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Create a clone of \p II with a different set of operand bundles and
|
|
/// insert it before \p InsertPt.
|
|
///
|
|
/// The returned invoke instruction is identical to \p II in every way except
|
|
/// that the operand bundles for the new instruction are set to the operand
|
|
/// bundles in \p Bundles.
|
|
static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertPt = nullptr);
|
|
|
|
/// Create a clone of \p II with a different set of operand bundles and
|
|
/// insert it before \p InsertPt.
|
|
///
|
|
/// The returned invoke instruction is identical to \p II in every way except
|
|
/// that the operand bundle for the new instruction is set to the operand
|
|
/// bundle in \p Bundle.
|
|
static InvokeInst *CreateWithReplacedBundle(InvokeInst *II,
|
|
OperandBundleDef Bundles,
|
|
Instruction *InsertPt = nullptr);
|
|
|
|
// get*Dest - Return the destination basic blocks...
|
|
BasicBlock *getNormalDest() const {
|
|
return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
|
|
}
|
|
BasicBlock *getUnwindDest() const {
|
|
return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
|
|
}
|
|
void setNormalDest(BasicBlock *B) {
|
|
Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
|
|
}
|
|
void setUnwindDest(BasicBlock *B) {
|
|
Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
|
|
}
|
|
|
|
/// Get the landingpad instruction from the landing pad
|
|
/// block (the unwind destination).
|
|
LandingPadInst *getLandingPadInst() const;
|
|
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
assert(i < 2 && "Successor # out of range for invoke!");
|
|
return i == 0 ? getNormalDest() : getUnwindDest();
|
|
}
|
|
|
|
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
|
|
assert(i < 2 && "Successor # out of range for invoke!");
|
|
if (i == 0)
|
|
setNormalDest(NewSucc);
|
|
else
|
|
setUnwindDest(NewSucc);
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 2; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::Invoke);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
};
|
|
|
|
InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: CallBase(Ty->getReturnType(), Instruction::Invoke,
|
|
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
|
|
InsertBefore) {
|
|
init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
|
|
}
|
|
|
|
InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
|
|
BasicBlock *IfException, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: CallBase(Ty->getReturnType(), Instruction::Invoke,
|
|
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
|
|
InsertAtEnd) {
|
|
init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallBrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CallBr instruction, tracking function calls that may not return control but
|
|
/// instead transfer it to a third location. The SubclassData field is used to
|
|
/// hold the calling convention of the call.
|
|
///
|
|
class CallBrInst : public CallBase {
|
|
|
|
unsigned NumIndirectDests;
|
|
|
|
CallBrInst(const CallBrInst &BI);
|
|
|
|
/// Construct a CallBrInst given a range of arguments.
|
|
///
|
|
/// Construct a CallBrInst from a range of arguments
|
|
inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, Instruction *InsertBefore);
|
|
|
|
inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
|
|
|
|
/// Should the Indirect Destinations change, scan + update the Arg list.
|
|
void updateArgBlockAddresses(unsigned i, BasicBlock *B);
|
|
|
|
/// Compute the number of operands to allocate.
|
|
static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
|
|
int NumBundleInputs = 0) {
|
|
// We need one operand for the called function, plus our extra operands and
|
|
// the input operand counts provided.
|
|
return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
|
|
}
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
CallBrInst *cloneImpl() const;
|
|
|
|
public:
|
|
static CallBrInst *Create(FunctionType *Ty, Value *Func,
|
|
BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args, const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
|
|
return new (NumOperands)
|
|
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
|
|
NumOperands, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionType *Ty, Value *Func,
|
|
BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
|
|
CountBundleInputs(Bundles));
|
|
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
|
|
NumOperands, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionType *Ty, Value *Func,
|
|
BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
|
|
return new (NumOperands)
|
|
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
|
|
NumOperands, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionType *Ty, Value *Func,
|
|
BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
|
|
CountBundleInputs(Bundles));
|
|
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
|
|
|
|
return new (NumOperands, DescriptorBytes)
|
|
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
|
|
NumOperands, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args, const Twine &NameStr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
|
|
IndirectDests, Args, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
|
|
IndirectDests, Args, Bundles, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
|
|
IndirectDests, Args, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
static CallBrInst *Create(FunctionCallee Func,
|
|
BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
|
|
IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Create a clone of \p CBI with a different set of operand bundles and
|
|
/// insert it before \p InsertPt.
|
|
///
|
|
/// The returned callbr instruction is identical to \p CBI in every way
|
|
/// except that the operand bundles for the new instruction are set to the
|
|
/// operand bundles in \p Bundles.
|
|
static CallBrInst *Create(CallBrInst *CBI,
|
|
ArrayRef<OperandBundleDef> Bundles,
|
|
Instruction *InsertPt = nullptr);
|
|
|
|
/// Return the number of callbr indirect dest labels.
|
|
///
|
|
unsigned getNumIndirectDests() const { return NumIndirectDests; }
|
|
|
|
/// getIndirectDestLabel - Return the i-th indirect dest label.
|
|
///
|
|
Value *getIndirectDestLabel(unsigned i) const {
|
|
assert(i < getNumIndirectDests() && "Out of bounds!");
|
|
return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
|
|
1);
|
|
}
|
|
|
|
Value *getIndirectDestLabelUse(unsigned i) const {
|
|
assert(i < getNumIndirectDests() && "Out of bounds!");
|
|
return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
|
|
1);
|
|
}
|
|
|
|
// Return the destination basic blocks...
|
|
BasicBlock *getDefaultDest() const {
|
|
return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
|
|
}
|
|
BasicBlock *getIndirectDest(unsigned i) const {
|
|
return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
|
|
}
|
|
SmallVector<BasicBlock *, 16> getIndirectDests() const {
|
|
SmallVector<BasicBlock *, 16> IndirectDests;
|
|
for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
|
|
IndirectDests.push_back(getIndirectDest(i));
|
|
return IndirectDests;
|
|
}
|
|
void setDefaultDest(BasicBlock *B) {
|
|
*(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
|
|
}
|
|
void setIndirectDest(unsigned i, BasicBlock *B) {
|
|
updateArgBlockAddresses(i, B);
|
|
*(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
|
|
}
|
|
|
|
BasicBlock *getSuccessor(unsigned i) const {
|
|
assert(i < getNumSuccessors() + 1 &&
|
|
"Successor # out of range for callbr!");
|
|
return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
|
|
}
|
|
|
|
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
|
|
assert(i < getNumIndirectDests() + 1 &&
|
|
"Successor # out of range for callbr!");
|
|
return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::CallBr);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
};
|
|
|
|
CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, Instruction *InsertBefore)
|
|
: CallBase(Ty->getReturnType(), Instruction::CallBr,
|
|
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
|
|
InsertBefore) {
|
|
init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
|
|
}
|
|
|
|
CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
|
|
ArrayRef<BasicBlock *> IndirectDests,
|
|
ArrayRef<Value *> Args,
|
|
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: CallBase(Ty->getReturnType(), Instruction::CallBr,
|
|
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
|
|
InsertAtEnd) {
|
|
init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ResumeInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// Resume the propagation of an exception.
|
|
///
|
|
class ResumeInst : public Instruction {
|
|
ResumeInst(const ResumeInst &RI);
|
|
|
|
explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
|
|
ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
ResumeInst *cloneImpl() const;
|
|
|
|
public:
|
|
static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
|
|
return new(1) ResumeInst(Exn, InsertBefore);
|
|
}
|
|
|
|
static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
|
|
return new(1) ResumeInst(Exn, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Convenience accessor.
|
|
Value *getValue() const { return Op<0>(); }
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Resume;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
llvm_unreachable("ResumeInst has no successors!");
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
|
|
llvm_unreachable("ResumeInst has no successors!");
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ResumeInst> :
|
|
public FixedNumOperandTraits<ResumeInst, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CatchSwitchInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
class CatchSwitchInst : public Instruction {
|
|
using UnwindDestField = BoolBitfieldElementT<0>;
|
|
|
|
/// The number of operands actually allocated. NumOperands is
|
|
/// the number actually in use.
|
|
unsigned ReservedSpace;
|
|
|
|
// Operand[0] = Outer scope
|
|
// Operand[1] = Unwind block destination
|
|
// Operand[n] = BasicBlock to go to on match
|
|
CatchSwitchInst(const CatchSwitchInst &CSI);
|
|
|
|
/// Create a new switch instruction, specifying a
|
|
/// default destination. The number of additional handlers can be specified
|
|
/// here to make memory allocation more efficient.
|
|
/// This constructor can also autoinsert before another instruction.
|
|
CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumHandlers, const Twine &NameStr,
|
|
Instruction *InsertBefore);
|
|
|
|
/// Create a new switch instruction, specifying a
|
|
/// default destination. The number of additional handlers can be specified
|
|
/// here to make memory allocation more efficient.
|
|
/// This constructor also autoinserts at the end of the specified BasicBlock.
|
|
CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumHandlers, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) { return User::operator new(s); }
|
|
|
|
void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
|
|
void growOperands(unsigned Size);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
CatchSwitchInst *cloneImpl() const;
|
|
|
|
public:
|
|
static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumHandlers,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
|
|
InsertBefore);
|
|
}
|
|
|
|
static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
|
|
unsigned NumHandlers, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd) {
|
|
return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
|
|
InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Accessor Methods for CatchSwitch stmt
|
|
Value *getParentPad() const { return getOperand(0); }
|
|
void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
|
|
|
|
// Accessor Methods for CatchSwitch stmt
|
|
bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
|
|
bool unwindsToCaller() const { return !hasUnwindDest(); }
|
|
BasicBlock *getUnwindDest() const {
|
|
if (hasUnwindDest())
|
|
return cast<BasicBlock>(getOperand(1));
|
|
return nullptr;
|
|
}
|
|
void setUnwindDest(BasicBlock *UnwindDest) {
|
|
assert(UnwindDest);
|
|
assert(hasUnwindDest());
|
|
setOperand(1, UnwindDest);
|
|
}
|
|
|
|
/// return the number of 'handlers' in this catchswitch
|
|
/// instruction, except the default handler
|
|
unsigned getNumHandlers() const {
|
|
if (hasUnwindDest())
|
|
return getNumOperands() - 2;
|
|
return getNumOperands() - 1;
|
|
}
|
|
|
|
private:
|
|
static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
|
|
static const BasicBlock *handler_helper(const Value *V) {
|
|
return cast<BasicBlock>(V);
|
|
}
|
|
|
|
public:
|
|
using DerefFnTy = BasicBlock *(*)(Value *);
|
|
using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
|
|
using handler_range = iterator_range<handler_iterator>;
|
|
using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
|
|
using const_handler_iterator =
|
|
mapped_iterator<const_op_iterator, ConstDerefFnTy>;
|
|
using const_handler_range = iterator_range<const_handler_iterator>;
|
|
|
|
/// Returns an iterator that points to the first handler in CatchSwitchInst.
|
|
handler_iterator handler_begin() {
|
|
op_iterator It = op_begin() + 1;
|
|
if (hasUnwindDest())
|
|
++It;
|
|
return handler_iterator(It, DerefFnTy(handler_helper));
|
|
}
|
|
|
|
/// Returns an iterator that points to the first handler in the
|
|
/// CatchSwitchInst.
|
|
const_handler_iterator handler_begin() const {
|
|
const_op_iterator It = op_begin() + 1;
|
|
if (hasUnwindDest())
|
|
++It;
|
|
return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
|
|
}
|
|
|
|
/// Returns a read-only iterator that points one past the last
|
|
/// handler in the CatchSwitchInst.
|
|
handler_iterator handler_end() {
|
|
return handler_iterator(op_end(), DerefFnTy(handler_helper));
|
|
}
|
|
|
|
/// Returns an iterator that points one past the last handler in the
|
|
/// CatchSwitchInst.
|
|
const_handler_iterator handler_end() const {
|
|
return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
|
|
}
|
|
|
|
/// iteration adapter for range-for loops.
|
|
handler_range handlers() {
|
|
return make_range(handler_begin(), handler_end());
|
|
}
|
|
|
|
/// iteration adapter for range-for loops.
|
|
const_handler_range handlers() const {
|
|
return make_range(handler_begin(), handler_end());
|
|
}
|
|
|
|
/// Add an entry to the switch instruction...
|
|
/// Note:
|
|
/// This action invalidates handler_end(). Old handler_end() iterator will
|
|
/// point to the added handler.
|
|
void addHandler(BasicBlock *Dest);
|
|
|
|
void removeHandler(handler_iterator HI);
|
|
|
|
unsigned getNumSuccessors() const { return getNumOperands() - 1; }
|
|
BasicBlock *getSuccessor(unsigned Idx) const {
|
|
assert(Idx < getNumSuccessors() &&
|
|
"Successor # out of range for catchswitch!");
|
|
return cast<BasicBlock>(getOperand(Idx + 1));
|
|
}
|
|
void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
|
|
assert(Idx < getNumSuccessors() &&
|
|
"Successor # out of range for catchswitch!");
|
|
setOperand(Idx + 1, NewSucc);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::CatchSwitch;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CleanupPadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
class CleanupPadInst : public FuncletPadInst {
|
|
private:
|
|
explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
|
|
unsigned Values, const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
|
|
NameStr, InsertBefore) {}
|
|
explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
|
|
unsigned Values, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
|
|
NameStr, InsertAtEnd) {}
|
|
|
|
public:
|
|
static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
unsigned Values = 1 + Args.size();
|
|
return new (Values)
|
|
CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
unsigned Values = 1 + Args.size();
|
|
return new (Values)
|
|
CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::CleanupPad;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CatchPadInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
class CatchPadInst : public FuncletPadInst {
|
|
private:
|
|
explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
|
|
unsigned Values, const Twine &NameStr,
|
|
Instruction *InsertBefore)
|
|
: FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
|
|
NameStr, InsertBefore) {}
|
|
explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
|
|
unsigned Values, const Twine &NameStr,
|
|
BasicBlock *InsertAtEnd)
|
|
: FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
|
|
NameStr, InsertAtEnd) {}
|
|
|
|
public:
|
|
static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr) {
|
|
unsigned Values = 1 + Args.size();
|
|
return new (Values)
|
|
CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
|
|
}
|
|
|
|
static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd) {
|
|
unsigned Values = 1 + Args.size();
|
|
return new (Values)
|
|
CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
|
|
}
|
|
|
|
/// Convenience accessors
|
|
CatchSwitchInst *getCatchSwitch() const {
|
|
return cast<CatchSwitchInst>(Op<-1>());
|
|
}
|
|
void setCatchSwitch(Value *CatchSwitch) {
|
|
assert(CatchSwitch);
|
|
Op<-1>() = CatchSwitch;
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::CatchPad;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CatchReturnInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class CatchReturnInst : public Instruction {
|
|
CatchReturnInst(const CatchReturnInst &RI);
|
|
CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
|
|
CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
|
|
|
|
void init(Value *CatchPad, BasicBlock *BB);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
CatchReturnInst *cloneImpl() const;
|
|
|
|
public:
|
|
static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
|
|
Instruction *InsertBefore = nullptr) {
|
|
assert(CatchPad);
|
|
assert(BB);
|
|
return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
|
|
}
|
|
|
|
static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(CatchPad);
|
|
assert(BB);
|
|
return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Convenience accessors.
|
|
CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
|
|
void setCatchPad(CatchPadInst *CatchPad) {
|
|
assert(CatchPad);
|
|
Op<0>() = CatchPad;
|
|
}
|
|
|
|
BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
|
|
void setSuccessor(BasicBlock *NewSucc) {
|
|
assert(NewSucc);
|
|
Op<1>() = NewSucc;
|
|
}
|
|
unsigned getNumSuccessors() const { return 1; }
|
|
|
|
/// Get the parentPad of this catchret's catchpad's catchswitch.
|
|
/// The successor block is implicitly a member of this funclet.
|
|
Value *getCatchSwitchParentPad() const {
|
|
return getCatchPad()->getCatchSwitch()->getParentPad();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::CatchRet);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
BasicBlock *getSuccessor(unsigned Idx) const {
|
|
assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
|
|
return getSuccessor();
|
|
}
|
|
|
|
void setSuccessor(unsigned Idx, BasicBlock *B) {
|
|
assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
|
|
setSuccessor(B);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<CatchReturnInst>
|
|
: public FixedNumOperandTraits<CatchReturnInst, 2> {};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CleanupReturnInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class CleanupReturnInst : public Instruction {
|
|
using UnwindDestField = BoolBitfieldElementT<0>;
|
|
|
|
private:
|
|
CleanupReturnInst(const CleanupReturnInst &RI);
|
|
CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
|
|
Instruction *InsertBefore = nullptr);
|
|
CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
void init(Value *CleanupPad, BasicBlock *UnwindBB);
|
|
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
CleanupReturnInst *cloneImpl() const;
|
|
|
|
public:
|
|
static CleanupReturnInst *Create(Value *CleanupPad,
|
|
BasicBlock *UnwindBB = nullptr,
|
|
Instruction *InsertBefore = nullptr) {
|
|
assert(CleanupPad);
|
|
unsigned Values = 1;
|
|
if (UnwindBB)
|
|
++Values;
|
|
return new (Values)
|
|
CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
|
|
}
|
|
|
|
static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
|
|
BasicBlock *InsertAtEnd) {
|
|
assert(CleanupPad);
|
|
unsigned Values = 1;
|
|
if (UnwindBB)
|
|
++Values;
|
|
return new (Values)
|
|
CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
|
|
}
|
|
|
|
/// Provide fast operand accessors
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
|
|
bool unwindsToCaller() const { return !hasUnwindDest(); }
|
|
|
|
/// Convenience accessor.
|
|
CleanupPadInst *getCleanupPad() const {
|
|
return cast<CleanupPadInst>(Op<0>());
|
|
}
|
|
void setCleanupPad(CleanupPadInst *CleanupPad) {
|
|
assert(CleanupPad);
|
|
Op<0>() = CleanupPad;
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
|
|
|
|
BasicBlock *getUnwindDest() const {
|
|
return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
|
|
}
|
|
void setUnwindDest(BasicBlock *NewDest) {
|
|
assert(NewDest);
|
|
assert(hasUnwindDest());
|
|
Op<1>() = NewDest;
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return (I->getOpcode() == Instruction::CleanupRet);
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
BasicBlock *getSuccessor(unsigned Idx) const {
|
|
assert(Idx == 0);
|
|
return getUnwindDest();
|
|
}
|
|
|
|
void setSuccessor(unsigned Idx, BasicBlock *B) {
|
|
assert(Idx == 0);
|
|
setUnwindDest(B);
|
|
}
|
|
|
|
// Shadow Instruction::setInstructionSubclassData with a private forwarding
|
|
// method so that subclasses cannot accidentally use it.
|
|
template <typename Bitfield>
|
|
void setSubclassData(typename Bitfield::Type Value) {
|
|
Instruction::setSubclassData<Bitfield>(Value);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<CleanupReturnInst>
|
|
: public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnreachableInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===---------------------------------------------------------------------------
|
|
/// This function has undefined behavior. In particular, the
|
|
/// presence of this instruction indicates some higher level knowledge that the
|
|
/// end of the block cannot be reached.
|
|
///
|
|
class UnreachableInst : public Instruction {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
UnreachableInst *cloneImpl() const;
|
|
|
|
public:
|
|
explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
|
|
explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
|
|
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
|
|
unsigned getNumSuccessors() const { return 0; }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Unreachable;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
private:
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
llvm_unreachable("UnreachableInst has no successors!");
|
|
}
|
|
|
|
void setSuccessor(unsigned idx, BasicBlock *B) {
|
|
llvm_unreachable("UnreachableInst has no successors!");
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TruncInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a truncation of integer types.
|
|
class TruncInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical TruncInst
|
|
TruncInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
TruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The (smaller) type to truncate to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
TruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The (smaller) type to truncate to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Trunc;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ZExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents zero extension of integer types.
|
|
class ZExtInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical ZExtInst
|
|
ZExtInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
ZExtInst(
|
|
Value *S, ///< The value to be zero extended
|
|
Type *Ty, ///< The type to zero extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end semantics.
|
|
ZExtInst(
|
|
Value *S, ///< The value to be zero extended
|
|
Type *Ty, ///< The type to zero extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == ZExt;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a sign extension of integer types.
|
|
class SExtInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical SExtInst
|
|
SExtInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
SExtInst(
|
|
Value *S, ///< The value to be sign extended
|
|
Type *Ty, ///< The type to sign extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
SExtInst(
|
|
Value *S, ///< The value to be sign extended
|
|
Type *Ty, ///< The type to sign extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == SExt;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPTruncInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a truncation of floating point types.
|
|
class FPTruncInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FPTruncInst
|
|
FPTruncInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
FPTruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The type to truncate to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-before-instruction semantics
|
|
FPTruncInst(
|
|
Value *S, ///< The value to be truncated
|
|
Type *Ty, ///< The type to truncate to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPTrunc;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPExtInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents an extension of floating point types.
|
|
class FPExtInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FPExtInst
|
|
FPExtInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
FPExtInst(
|
|
Value *S, ///< The value to be extended
|
|
Type *Ty, ///< The type to extend to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
FPExtInst(
|
|
Value *S, ///< The value to be extended
|
|
Type *Ty, ///< The type to extend to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPExt;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UIToFPInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast unsigned integer to floating point.
|
|
class UIToFPInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical UIToFPInst
|
|
UIToFPInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
UIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
UIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == UIToFP;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SIToFPInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast from signed integer to floating point.
|
|
class SIToFPInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical SIToFPInst
|
|
SIToFPInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
SIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
SIToFPInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == SIToFP;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToUIInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast from floating point to unsigned integer
|
|
class FPToUIInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FPToUIInst
|
|
FPToUIInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
FPToUIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
FPToUIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPToUI;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPToSIInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast from floating point to signed integer.
|
|
class FPToSIInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FPToSIInst
|
|
FPToSIInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
FPToSIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
FPToSIInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == FPToSI;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntToPtrInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast from an integer to a pointer.
|
|
class IntToPtrInst : public CastInst {
|
|
public:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Constructor with insert-before-instruction semantics
|
|
IntToPtrInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
IntToPtrInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Clone an identical IntToPtrInst.
|
|
IntToPtrInst *cloneImpl() const;
|
|
|
|
/// Returns the address space of this instruction's pointer type.
|
|
unsigned getAddressSpace() const {
|
|
return getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == IntToPtr;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PtrToIntInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a cast from a pointer to an integer.
|
|
class PtrToIntInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical PtrToIntInst.
|
|
PtrToIntInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
PtrToIntInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
PtrToIntInst(
|
|
Value *S, ///< The value to be converted
|
|
Type *Ty, ///< The type to convert to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// Gets the pointer operand.
|
|
Value *getPointerOperand() { return getOperand(0); }
|
|
/// Gets the pointer operand.
|
|
const Value *getPointerOperand() const { return getOperand(0); }
|
|
/// Gets the operand index of the pointer operand.
|
|
static unsigned getPointerOperandIndex() { return 0U; }
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getPointerAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == PtrToInt;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BitCastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a no-op cast from one type to another.
|
|
class BitCastInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical BitCastInst.
|
|
BitCastInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
BitCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
BitCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == BitCast;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AddrSpaceCastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a conversion between pointers from one address space
|
|
/// to another.
|
|
class AddrSpaceCastInst : public CastInst {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical AddrSpaceCastInst.
|
|
AddrSpaceCastInst *cloneImpl() const;
|
|
|
|
public:
|
|
/// Constructor with insert-before-instruction semantics
|
|
AddrSpaceCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr = "", ///< A name for the new instruction
|
|
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
|
|
);
|
|
|
|
/// Constructor with insert-at-end-of-block semantics
|
|
AddrSpaceCastInst(
|
|
Value *S, ///< The value to be casted
|
|
Type *Ty, ///< The type to casted to
|
|
const Twine &NameStr, ///< A name for the new instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static bool classof(const Instruction *I) {
|
|
return I->getOpcode() == AddrSpaceCast;
|
|
}
|
|
static bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
/// Gets the pointer operand.
|
|
Value *getPointerOperand() {
|
|
return getOperand(0);
|
|
}
|
|
|
|
/// Gets the pointer operand.
|
|
const Value *getPointerOperand() const {
|
|
return getOperand(0);
|
|
}
|
|
|
|
/// Gets the operand index of the pointer operand.
|
|
static unsigned getPointerOperandIndex() {
|
|
return 0U;
|
|
}
|
|
|
|
/// Returns the address space of the pointer operand.
|
|
unsigned getSrcAddressSpace() const {
|
|
return getPointerOperand()->getType()->getPointerAddressSpace();
|
|
}
|
|
|
|
/// Returns the address space of the result.
|
|
unsigned getDestAddressSpace() const {
|
|
return getType()->getPointerAddressSpace();
|
|
}
|
|
};
|
|
|
|
/// A helper function that returns the pointer operand of a load or store
|
|
/// instruction. Returns nullptr if not load or store.
|
|
inline const Value *getLoadStorePointerOperand(const Value *V) {
|
|
if (auto *Load = dyn_cast<LoadInst>(V))
|
|
return Load->getPointerOperand();
|
|
if (auto *Store = dyn_cast<StoreInst>(V))
|
|
return Store->getPointerOperand();
|
|
return nullptr;
|
|
}
|
|
inline Value *getLoadStorePointerOperand(Value *V) {
|
|
return const_cast<Value *>(
|
|
getLoadStorePointerOperand(static_cast<const Value *>(V)));
|
|
}
|
|
|
|
/// A helper function that returns the pointer operand of a load, store
|
|
/// or GEP instruction. Returns nullptr if not load, store, or GEP.
|
|
inline const Value *getPointerOperand(const Value *V) {
|
|
if (auto *Ptr = getLoadStorePointerOperand(V))
|
|
return Ptr;
|
|
if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
|
|
return Gep->getPointerOperand();
|
|
return nullptr;
|
|
}
|
|
inline Value *getPointerOperand(Value *V) {
|
|
return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
|
|
}
|
|
|
|
/// A helper function that returns the alignment of load or store instruction.
|
|
inline Align getLoadStoreAlignment(Value *I) {
|
|
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
|
|
"Expected Load or Store instruction");
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
return LI->getAlign();
|
|
return cast<StoreInst>(I)->getAlign();
|
|
}
|
|
|
|
/// A helper function that returns the address space of the pointer operand of
|
|
/// load or store instruction.
|
|
inline unsigned getLoadStoreAddressSpace(Value *I) {
|
|
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
|
|
"Expected Load or Store instruction");
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
return LI->getPointerAddressSpace();
|
|
return cast<StoreInst>(I)->getPointerAddressSpace();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FreezeInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class represents a freeze function that returns random concrete
|
|
/// value if an operand is either a poison value or an undef value
|
|
class FreezeInst : public UnaryInstruction {
|
|
protected:
|
|
// Note: Instruction needs to be a friend here to call cloneImpl.
|
|
friend class Instruction;
|
|
|
|
/// Clone an identical FreezeInst
|
|
FreezeInst *cloneImpl() const;
|
|
|
|
public:
|
|
explicit FreezeInst(Value *S,
|
|
const Twine &NameStr = "",
|
|
Instruction *InsertBefore = nullptr);
|
|
FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Freeze;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_INSTRUCTIONS_H
|