llvm-for-llvmta/include/llvm/IR/Instructions.h

5333 lines
198 KiB
C++

//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTIONS_H
#define LLVM_IR_INSTRUCTIONS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Bitfields.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
namespace llvm {
class APInt;
class ConstantInt;
class DataLayout;
class LLVMContext;
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// an instruction to allocate memory on the stack
class AllocaInst : public UnaryInstruction {
Type *AllocatedType;
using AlignmentField = AlignmentBitfieldElementT<0>;
using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
SwiftErrorField>(),
"Bitfields must be contiguous");
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
AllocaInst *cloneImpl() const;
public:
explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
const Twine &Name, Instruction *InsertBefore);
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
Instruction *InsertBefore);
AllocaInst(Type *Ty, unsigned AddrSpace,
const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
const Twine &Name = "", Instruction *InsertBefore = nullptr);
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
const Twine &Name, BasicBlock *InsertAtEnd);
/// Return true if there is an allocation size parameter to the allocation
/// instruction that is not 1.
bool isArrayAllocation() const;
/// Get the number of elements allocated. For a simple allocation of a single
/// element, this will return a constant 1 value.
const Value *getArraySize() const { return getOperand(0); }
Value *getArraySize() { return getOperand(0); }
/// Overload to return most specific pointer type.
PointerType *getType() const {
return cast<PointerType>(Instruction::getType());
}
/// Get allocation size in bits. Returns None if size can't be determined,
/// e.g. in case of a VLA.
Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
/// Return the type that is being allocated by the instruction.
Type *getAllocatedType() const { return AllocatedType; }
/// for use only in special circumstances that need to generically
/// transform a whole instruction (eg: IR linking and vectorization).
void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
/// Return the alignment of the memory that is being allocated by the
/// instruction.
Align getAlign() const {
return Align(1ULL << getSubclassData<AlignmentField>());
}
void setAlignment(Align Align) {
setSubclassData<AlignmentField>(Log2(Align));
}
// FIXME: Remove this one transition to Align is over.
unsigned getAlignment() const { return getAlign().value(); }
/// Return true if this alloca is in the entry block of the function and is a
/// constant size. If so, the code generator will fold it into the
/// prolog/epilog code, so it is basically free.
bool isStaticAlloca() const;
/// Return true if this alloca is used as an inalloca argument to a call. Such
/// allocas are never considered static even if they are in the entry block.
bool isUsedWithInAlloca() const {
return getSubclassData<UsedWithInAllocaField>();
}
/// Specify whether this alloca is used to represent the arguments to a call.
void setUsedWithInAlloca(bool V) {
setSubclassData<UsedWithInAllocaField>(V);
}
/// Return true if this alloca is used as a swifterror argument to a call.
bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
/// Specify whether this alloca is used to represent a swifterror.
void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Alloca);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
};
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// An instruction for reading from memory. This uses the SubclassData field in
/// Value to store whether or not the load is volatile.
class LoadInst : public UnaryInstruction {
using VolatileField = BoolBitfieldElementT<0>;
using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
static_assert(
Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
"Bitfields must be contiguous");
void AssertOK();
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
LoadInst *cloneImpl() const;
public:
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
Instruction *InsertBefore);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Instruction *InsertBefore);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
BasicBlock *InsertAtEnd);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Align Align, Instruction *InsertBefore = nullptr);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Align Align, BasicBlock *InsertAtEnd);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Align Align, AtomicOrdering Order,
SyncScope::ID SSID = SyncScope::System,
Instruction *InsertBefore = nullptr);
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Align Align, AtomicOrdering Order, SyncScope::ID SSID,
BasicBlock *InsertAtEnd);
/// Return true if this is a load from a volatile memory location.
bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile load or not.
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Return the alignment of the access that is being performed.
/// FIXME: Remove this function once transition to Align is over.
/// Use getAlign() instead.
unsigned getAlignment() const { return getAlign().value(); }
/// Return the alignment of the access that is being performed.
Align getAlign() const {
return Align(1ULL << (getSubclassData<AlignmentField>()));
}
void setAlignment(Align Align) {
setSubclassData<AlignmentField>(Log2(Align));
}
/// Returns the ordering constraint of this load instruction.
AtomicOrdering getOrdering() const {
return getSubclassData<OrderingField>();
}
/// Sets the ordering constraint of this load instruction. May not be Release
/// or AcquireRelease.
void setOrdering(AtomicOrdering Ordering) {
setSubclassData<OrderingField>(Ordering);
}
/// Returns the synchronization scope ID of this load instruction.
SyncScope::ID getSyncScopeID() const {
return SSID;
}
/// Sets the synchronization scope ID of this load instruction.
void setSyncScopeID(SyncScope::ID SSID) {
this->SSID = SSID;
}
/// Sets the ordering constraint and the synchronization scope ID of this load
/// instruction.
void setAtomic(AtomicOrdering Ordering,
SyncScope::ID SSID = SyncScope::System) {
setOrdering(Ordering);
setSyncScopeID(SSID);
}
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const {
return (getOrdering() == AtomicOrdering::NotAtomic ||
getOrdering() == AtomicOrdering::Unordered) &&
!isVolatile();
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Load;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
/// The synchronization scope ID of this load instruction. Not quite enough
/// room in SubClassData for everything, so synchronization scope ID gets its
/// own field.
SyncScope::ID SSID;
};
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// An instruction for storing to memory.
class StoreInst : public Instruction {
using VolatileField = BoolBitfieldElementT<0>;
using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
static_assert(
Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
"Bitfields must be contiguous");
void AssertOK();
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
StoreInst *cloneImpl() const;
public:
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
Instruction *InsertBefore = nullptr);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
Instruction *InsertBefore = nullptr);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
/// Return true if this is a store to a volatile memory location.
bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile store or not.
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Return the alignment of the access that is being performed
/// FIXME: Remove this function once transition to Align is over.
/// Use getAlign() instead.
unsigned getAlignment() const { return getAlign().value(); }
Align getAlign() const {
return Align(1ULL << (getSubclassData<AlignmentField>()));
}
void setAlignment(Align Align) {
setSubclassData<AlignmentField>(Log2(Align));
}
/// Returns the ordering constraint of this store instruction.
AtomicOrdering getOrdering() const {
return getSubclassData<OrderingField>();
}
/// Sets the ordering constraint of this store instruction. May not be
/// Acquire or AcquireRelease.
void setOrdering(AtomicOrdering Ordering) {
setSubclassData<OrderingField>(Ordering);
}
/// Returns the synchronization scope ID of this store instruction.
SyncScope::ID getSyncScopeID() const {
return SSID;
}
/// Sets the synchronization scope ID of this store instruction.
void setSyncScopeID(SyncScope::ID SSID) {
this->SSID = SSID;
}
/// Sets the ordering constraint and the synchronization scope ID of this
/// store instruction.
void setAtomic(AtomicOrdering Ordering,
SyncScope::ID SSID = SyncScope::System) {
setOrdering(Ordering);
setSyncScopeID(SSID);
}
bool isSimple() const { return !isAtomic() && !isVolatile(); }
bool isUnordered() const {
return (getOrdering() == AtomicOrdering::NotAtomic ||
getOrdering() == AtomicOrdering::Unordered) &&
!isVolatile();
}
Value *getValueOperand() { return getOperand(0); }
const Value *getValueOperand() const { return getOperand(0); }
Value *getPointerOperand() { return getOperand(1); }
const Value *getPointerOperand() const { return getOperand(1); }
static unsigned getPointerOperandIndex() { return 1U; }
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Store;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
/// The synchronization scope ID of this store instruction. Not quite enough
/// room in SubClassData for everything, so synchronization scope ID gets its
/// own field.
SyncScope::ID SSID;
};
template <>
struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
//===----------------------------------------------------------------------===//
// FenceInst Class
//===----------------------------------------------------------------------===//
/// An instruction for ordering other memory operations.
class FenceInst : public Instruction {
using OrderingField = AtomicOrderingBitfieldElementT<0>;
void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
FenceInst *cloneImpl() const;
public:
// Ordering may only be Acquire, Release, AcquireRelease, or
// SequentiallyConsistent.
FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SyncScope::ID SSID = SyncScope::System,
Instruction *InsertBefore = nullptr);
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
BasicBlock *InsertAtEnd);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
/// Returns the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const {
return getSubclassData<OrderingField>();
}
/// Sets the ordering constraint of this fence instruction. May only be
/// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
void setOrdering(AtomicOrdering Ordering) {
setSubclassData<OrderingField>(Ordering);
}
/// Returns the synchronization scope ID of this fence instruction.
SyncScope::ID getSyncScopeID() const {
return SSID;
}
/// Sets the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID) {
this->SSID = SSID;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Fence;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
/// The synchronization scope ID of this fence instruction. Not quite enough
/// room in SubClassData for everything, so synchronization scope ID gets its
/// own field.
SyncScope::ID SSID;
};
//===----------------------------------------------------------------------===//
// AtomicCmpXchgInst Class
//===----------------------------------------------------------------------===//
/// An instruction that atomically checks whether a
/// specified value is in a memory location, and, if it is, stores a new value
/// there. The value returned by this instruction is a pair containing the
/// original value as first element, and an i1 indicating success (true) or
/// failure (false) as second element.
///
class AtomicCmpXchgInst : public Instruction {
void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
SyncScope::ID SSID);
template <unsigned Offset>
using AtomicOrderingBitfieldElement =
typename Bitfield::Element<AtomicOrdering, Offset, 3,
AtomicOrdering::LAST>;
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
AtomicCmpXchgInst *cloneImpl() const;
public:
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering, SyncScope::ID SSID,
Instruction *InsertBefore = nullptr);
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering, SyncScope::ID SSID,
BasicBlock *InsertAtEnd);
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
using VolatileField = BoolBitfieldElementT<0>;
using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
using SuccessOrderingField =
AtomicOrderingBitfieldElementT<WeakField::NextBit>;
using FailureOrderingField =
AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
using AlignmentField =
AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
static_assert(
Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
FailureOrderingField, AlignmentField>(),
"Bitfields must be contiguous");
/// Return the alignment of the memory that is being allocated by the
/// instruction.
Align getAlign() const {
return Align(1ULL << getSubclassData<AlignmentField>());
}
void setAlignment(Align Align) {
setSubclassData<AlignmentField>(Log2(Align));
}
/// Return true if this is a cmpxchg from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile cmpxchg.
///
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Return true if this cmpxchg may spuriously fail.
bool isWeak() const { return getSubclassData<WeakField>(); }
void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Returns the success ordering constraint of this cmpxchg instruction.
AtomicOrdering getSuccessOrdering() const {
return getSubclassData<SuccessOrderingField>();
}
/// Sets the success ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering) {
assert(Ordering != AtomicOrdering::NotAtomic &&
"CmpXchg instructions can only be atomic.");
setSubclassData<SuccessOrderingField>(Ordering);
}
/// Returns the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const {
return getSubclassData<FailureOrderingField>();
}
/// Sets the failure ordering constraint of this cmpxchg instruction.
void setFailureOrdering(AtomicOrdering Ordering) {
assert(Ordering != AtomicOrdering::NotAtomic &&
"CmpXchg instructions can only be atomic.");
setSubclassData<FailureOrderingField>(Ordering);
}
/// Returns the synchronization scope ID of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const {
return SSID;
}
/// Sets the synchronization scope ID of this cmpxchg instruction.
void setSyncScopeID(SyncScope::ID SSID) {
this->SSID = SSID;
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
Value *getCompareOperand() { return getOperand(1); }
const Value *getCompareOperand() const { return getOperand(1); }
Value *getNewValOperand() { return getOperand(2); }
const Value *getNewValOperand() const { return getOperand(2); }
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
/// Returns the strongest permitted ordering on failure, given the
/// desired ordering on success.
///
/// If the comparison in a cmpxchg operation fails, there is no atomic store
/// so release semantics cannot be provided. So this function drops explicit
/// Release requests from the AtomicOrdering. A SequentiallyConsistent
/// operation would remain SequentiallyConsistent.
static AtomicOrdering
getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
switch (SuccessOrdering) {
default:
llvm_unreachable("invalid cmpxchg success ordering");
case AtomicOrdering::Release:
case AtomicOrdering::Monotonic:
return AtomicOrdering::Monotonic;
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::Acquire:
return AtomicOrdering::Acquire;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::AtomicCmpXchg;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
/// The synchronization scope ID of this cmpxchg instruction. Not quite
/// enough room in SubClassData for everything, so synchronization scope ID
/// gets its own field.
SyncScope::ID SSID;
};
template <>
struct OperandTraits<AtomicCmpXchgInst> :
public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
//===----------------------------------------------------------------------===//
// AtomicRMWInst Class
//===----------------------------------------------------------------------===//
/// an instruction that atomically reads a memory location,
/// combines it with another value, and then stores the result back. Returns
/// the old value.
///
class AtomicRMWInst : public Instruction {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
AtomicRMWInst *cloneImpl() const;
public:
/// This enumeration lists the possible modifications atomicrmw can make. In
/// the descriptions, 'p' is the pointer to the instruction's memory location,
/// 'old' is the initial value of *p, and 'v' is the other value passed to the
/// instruction. These instructions always return 'old'.
enum BinOp : unsigned {
/// *p = v
Xchg,
/// *p = old + v
Add,
/// *p = old - v
Sub,
/// *p = old & v
And,
/// *p = ~(old & v)
Nand,
/// *p = old | v
Or,
/// *p = old ^ v
Xor,
/// *p = old >signed v ? old : v
Max,
/// *p = old <signed v ? old : v
Min,
/// *p = old >unsigned v ? old : v
UMax,
/// *p = old <unsigned v ? old : v
UMin,
/// *p = old + v
FAdd,
/// *p = old - v
FSub,
FIRST_BINOP = Xchg,
LAST_BINOP = FSub,
BAD_BINOP
};
private:
template <unsigned Offset>
using AtomicOrderingBitfieldElement =
typename Bitfield::Element<AtomicOrdering, Offset, 3,
AtomicOrdering::LAST>;
template <unsigned Offset>
using BinOpBitfieldElement =
typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
public:
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
AtomicOrdering Ordering, SyncScope::ID SSID,
Instruction *InsertBefore = nullptr);
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
AtomicOrdering Ordering, SyncScope::ID SSID,
BasicBlock *InsertAtEnd);
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
using VolatileField = BoolBitfieldElementT<0>;
using AtomicOrderingField =
AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
OperationField, AlignmentField>(),
"Bitfields must be contiguous");
BinOp getOperation() const { return getSubclassData<OperationField>(); }
static StringRef getOperationName(BinOp Op);
static bool isFPOperation(BinOp Op) {
switch (Op) {
case AtomicRMWInst::FAdd:
case AtomicRMWInst::FSub:
return true;
default:
return false;
}
}
void setOperation(BinOp Operation) {
setSubclassData<OperationField>(Operation);
}
/// Return the alignment of the memory that is being allocated by the
/// instruction.
Align getAlign() const {
return Align(1ULL << getSubclassData<AlignmentField>());
}
void setAlignment(Align Align) {
setSubclassData<AlignmentField>(Log2(Align));
}
/// Return true if this is a RMW on a volatile memory location.
///
bool isVolatile() const { return getSubclassData<VolatileField>(); }
/// Specify whether this is a volatile RMW or not.
///
void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Returns the ordering constraint of this rmw instruction.
AtomicOrdering getOrdering() const {
return getSubclassData<AtomicOrderingField>();
}
/// Sets the ordering constraint of this rmw instruction.
void setOrdering(AtomicOrdering Ordering) {
assert(Ordering != AtomicOrdering::NotAtomic &&
"atomicrmw instructions can only be atomic.");
setSubclassData<AtomicOrderingField>(Ordering);
}
/// Returns the synchronization scope ID of this rmw instruction.
SyncScope::ID getSyncScopeID() const {
return SSID;
}
/// Sets the synchronization scope ID of this rmw instruction.
void setSyncScopeID(SyncScope::ID SSID) {
this->SSID = SSID;
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
Value *getValOperand() { return getOperand(1); }
const Value *getValOperand() const { return getOperand(1); }
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
bool isFloatingPointOperation() const {
return isFPOperation(getOperation());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::AtomicRMW;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
AtomicOrdering Ordering, SyncScope::ID SSID);
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
/// The synchronization scope ID of this rmw instruction. Not quite enough
/// room in SubClassData for everything, so synchronization scope ID gets its
/// own field.
SyncScope::ID SSID;
};
template <>
struct OperandTraits<AtomicRMWInst>
: public FixedNumOperandTraits<AtomicRMWInst,2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
// checkGEPType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
inline Type *checkGEPType(Type *Ty) {
assert(Ty && "Invalid GetElementPtrInst indices for type!");
return Ty;
}
/// an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
Type *SourceElementType;
Type *ResultElementType;
GetElementPtrInst(const GetElementPtrInst &GEPI);
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList, unsigned Values,
const Twine &NameStr, Instruction *InsertBefore);
inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList, unsigned Values,
const Twine &NameStr, BasicBlock *InsertAtEnd);
void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
GetElementPtrInst *cloneImpl() const;
public:
static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
unsigned Values = 1 + unsigned(IdxList.size());
if (!PointeeType)
PointeeType =
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
else
assert(
PointeeType ==
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
NameStr, InsertBefore);
}
static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
unsigned Values = 1 + unsigned(IdxList.size());
if (!PointeeType)
PointeeType =
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
else
assert(
PointeeType ==
cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
NameStr, InsertAtEnd);
}
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
static GetElementPtrInst *CreateInBounds(Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr){
return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
}
static GetElementPtrInst *
CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
GetElementPtrInst *GEP =
Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
}
static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP =
Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
GEP->setIsInBounds(true);
return GEP;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Type *getSourceElementType() const { return SourceElementType; }
void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
void setResultElementType(Type *Ty) { ResultElementType = Ty; }
Type *getResultElementType() const {
assert(ResultElementType ==
cast<PointerType>(getType()->getScalarType())->getElementType());
return ResultElementType;
}
/// Returns the address space of this instruction's pointer type.
unsigned getAddressSpace() const {
// Note that this is always the same as the pointer operand's address space
// and that is cheaper to compute, so cheat here.
return getPointerAddressSpace();
}
/// Returns the result type of a getelementptr with the given source
/// element type and indexes.
///
/// Null is returned if the indices are invalid for the specified
/// source element type.
static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
/// Return the type of the element at the given index of an indexable
/// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
///
/// Returns null if the type can't be indexed, or the given index is not
/// legal for the given type.
static Type *getTypeAtIndex(Type *Ty, Value *Idx);
static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
inline iterator_range<op_iterator> indices() {
return make_range(idx_begin(), idx_end());
}
inline iterator_range<const_op_iterator> indices() const {
return make_range(idx_begin(), idx_end());
}
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand.
}
/// Method to return the pointer operand as a
/// PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
/// Returns the pointer type returned by the GEP
/// instruction, which may be a vector of pointers.
static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
ArrayRef<Value *> IdxList) {
Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
Ptr->getType()->getPointerAddressSpace());
// Vector GEP
if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
ElementCount EltCount = PtrVTy->getElementCount();
return VectorType::get(PtrTy, EltCount);
}
for (Value *Index : IdxList)
if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
ElementCount EltCount = IndexVTy->getElementCount();
return VectorType::get(PtrTy, EltCount);
}
// Scalar GEP
return PtrTy;
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const;
/// Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const;
/// Set or clear the inbounds flag on this GEP instruction.
/// See LangRef.html for the meaning of inbounds on a getelementptr.
void setIsInBounds(bool b = true);
/// Determine whether the GEP has the inbounds flag.
bool isInBounds() const;
/// Accumulate the constant address offset of this GEP if possible.
///
/// This routine accepts an APInt into which it will accumulate the constant
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
/// all-constant, it returns false and the value of the offset APInt is
/// undefined (it is *not* preserved!). The APInt passed into this routine
/// must be at least as wide as the IntPtr type for the address space of
/// the base GEP pointer.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::GetElementPtr);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<GetElementPtrInst> :
public VariadicOperandTraits<GetElementPtrInst, 1> {
};
GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList, unsigned Values,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertBefore),
SourceElementType(PointeeType),
ResultElementType(getIndexedType(PointeeType, IdxList)) {
assert(ResultElementType ==
cast<PointerType>(getType()->getScalarType())->getElementType());
init(Ptr, IdxList, NameStr);
}
GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
ArrayRef<Value *> IdxList, unsigned Values,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertAtEnd),
SourceElementType(PointeeType),
ResultElementType(getIndexedType(PointeeType, IdxList)) {
assert(ResultElementType ==
cast<PointerType>(getType()->getScalarType())->getElementType());
init(Ptr, IdxList, NameStr);
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
//===----------------------------------------------------------------------===//
// ICmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers or pointers. The operands
/// must be identical types.
/// Represent an integer comparison operator.
class ICmpInst: public CmpInst {
void AssertOK() {
assert(isIntPredicate() &&
"Invalid ICmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction");
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical ICmpInst
ICmpInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics.
ICmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
InsertBefore) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// Constructor with insert-at-end semantics.
ICmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// Constructor with no-insertion semantics
ICmpInst(
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr) {
#ifndef NDEBUG
AssertOK();
#endif
}
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as signed.
/// Return the signed version of the predicate
Predicate getSignedPredicate() const {
return getSignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// Return the signed version of the predicate.
static Predicate getSignedPredicate(Predicate pred);
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as unsigned.
/// Return the unsigned version of the predicate
Predicate getUnsignedPredicate() const {
return getUnsignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// Return the unsigned version of the predicate.
static Predicate getUnsignedPredicate(Predicate pred);
/// Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
static bool isEquality(Predicate P) {
return P == ICMP_EQ || P == ICMP_NE;
}
/// Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
bool isEquality() const {
return isEquality(getPredicate());
}
/// @returns true if the predicate of this ICmpInst is commutative
/// Determine if this relation is commutative.
bool isCommutative() const { return isEquality(); }
/// Return true if the predicate is relational (not EQ or NE).
///
bool isRelational() const {
return !isEquality();
}
/// Return true if the predicate is relational (not EQ or NE).
///
static bool isRelational(Predicate P) {
return !isEquality(P);
}
/// Return true if the predicate is SGT or UGT.
///
static bool isGT(Predicate P) {
return P == ICMP_SGT || P == ICMP_UGT;
}
/// Return true if the predicate is SLT or ULT.
///
static bool isLT(Predicate P) {
return P == ICMP_SLT || P == ICMP_ULT;
}
/// Return true if the predicate is SGE or UGE.
///
static bool isGE(Predicate P) {
return P == ICMP_SGE || P == ICMP_UGE;
}
/// Return true if the predicate is SLE or ULE.
///
static bool isLE(Predicate P) {
return P == ICMP_SLE || P == ICMP_ULE;
}
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FCmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed
/// vectors of floating point values. The operands must be identical types.
/// Represents a floating point comparison operator.
class FCmpInst: public CmpInst {
void AssertOK() {
assert(isFPPredicate() && "Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FCmpInst
FCmpInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics.
FCmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
InsertBefore) {
AssertOK();
}
/// Constructor with insert-at-end semantics.
FCmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
AssertOK();
}
/// Constructor with no-insertion semantics
FCmpInst(
Predicate Pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "", ///< Name of the instruction
Instruction *FlagsSource = nullptr
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
RHS, NameStr, nullptr, FlagsSource) {
AssertOK();
}
/// @returns true if the predicate of this instruction is EQ or NE.
/// Determine if this is an equality predicate.
static bool isEquality(Predicate Pred) {
return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
Pred == FCMP_UNE;
}
/// @returns true if the predicate of this instruction is EQ or NE.
/// Determine if this is an equality predicate.
bool isEquality() const { return isEquality(getPredicate()); }
/// @returns true if the predicate of this instruction is commutative.
/// Determine if this is a commutative predicate.
bool isCommutative() const {
return isEquality() ||
getPredicate() == FCMP_FALSE ||
getPredicate() == FCMP_TRUE ||
getPredicate() == FCMP_ORD ||
getPredicate() == FCMP_UNO;
}
/// @returns true if the predicate is relational (not EQ or NE).
/// Determine if this a relational predicate.
bool isRelational() const { return !isEquality(); }
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::FCmp;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
/// This class represents a function call, abstracting a target
/// machine's calling convention. This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call. The rest of the bits
/// hold the calling convention of the call.
///
class CallInst : public CallBase {
CallInst(const CallInst &CI);
/// Construct a CallInst given a range of arguments.
/// Construct a CallInst from a range of arguments
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
Instruction *InsertBefore);
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, Instruction *InsertBefore)
: CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
/// Construct a CallInst given a range of arguments.
/// Construct a CallInst from a range of arguments
inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
BasicBlock *InsertAtEnd);
explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
Instruction *InsertBefore);
CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
BasicBlock *InsertAtEnd);
void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
/// Compute the number of operands to allocate.
static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
// We need one operand for the called function, plus the input operand
// counts provided.
return 1 + NumArgs + NumBundleInputs;
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
CallInst *cloneImpl() const;
public:
static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
}
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
return new (ComputeNumOperands(Args.size()))
CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
}
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
const int NumOperands =
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
}
static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
}
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return new (ComputeNumOperands(Args.size()))
CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
}
static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
const int NumOperands =
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
}
static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
InsertBefore);
}
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
NameStr, InsertBefore);
}
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
InsertBefore);
}
static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
InsertAtEnd);
}
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
InsertAtEnd);
}
static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
NameStr, InsertAtEnd);
}
/// Create a clone of \p CI with a different set of operand bundles and
/// insert it before \p InsertPt.
///
/// The returned call instruction is identical \p CI in every way except that
/// the operand bundles for the new instruction are set to the operand bundles
/// in \p Bundles.
static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertPt = nullptr);
/// Create a clone of \p CI with a different set of operand bundles and
/// insert it before \p InsertPt.
///
/// The returned call instruction is identical \p CI in every way except that
/// the operand bundle for the new instruction is set to the operand bundle
/// in \p Bundle.
static CallInst *CreateWithReplacedBundle(CallInst *CI,
OperandBundleDef Bundle,
Instruction *InsertPt = nullptr);
/// Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize = nullptr,
Function *MallocF = nullptr,
const Twine &Name = "");
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize = nullptr,
Function *MallocF = nullptr,
const Twine &Name = "");
static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize = nullptr,
ArrayRef<OperandBundleDef> Bundles = None,
Function *MallocF = nullptr,
const Twine &Name = "");
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize = nullptr,
ArrayRef<OperandBundleDef> Bundles = None,
Function *MallocF = nullptr,
const Twine &Name = "");
/// Generate the IR for a call to the builtin free function.
static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
static Instruction *CreateFree(Value *Source,
ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertBefore);
static Instruction *CreateFree(Value *Source,
ArrayRef<OperandBundleDef> Bundles,
BasicBlock *InsertAtEnd);
// Note that 'musttail' implies 'tail'.
enum TailCallKind : unsigned {
TCK_None = 0,
TCK_Tail = 1,
TCK_MustTail = 2,
TCK_NoTail = 3,
TCK_LAST = TCK_NoTail
};
using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
static_assert(
Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
"Bitfields must be contiguous");
TailCallKind getTailCallKind() const {
return getSubclassData<TailCallKindField>();
}
bool isTailCall() const {
TailCallKind Kind = getTailCallKind();
return Kind == TCK_Tail || Kind == TCK_MustTail;
}
bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
void setTailCallKind(TailCallKind TCK) {
setSubclassData<TailCallKindField>(TCK);
}
void setTailCall(bool IsTc = true) {
setTailCallKind(IsTc ? TCK_Tail : TCK_None);
}
/// Return true if the call can return twice
bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
void setCanReturnTwice() {
addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Call;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
/// Updates profile metadata by scaling it by \p S / \p T.
void updateProfWeight(uint64_t S, uint64_t T);
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
};
CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: CallBase(Ty->getReturnType(), Instruction::Call,
OperandTraits<CallBase>::op_end(this) -
(Args.size() + CountBundleInputs(Bundles) + 1),
unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
InsertAtEnd) {
init(Ty, Func, Args, Bundles, NameStr);
}
CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
Instruction *InsertBefore)
: CallBase(Ty->getReturnType(), Instruction::Call,
OperandTraits<CallBase>::op_end(this) -
(Args.size() + CountBundleInputs(Bundles) + 1),
unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
InsertBefore) {
init(Ty, Func, Args, Bundles, NameStr);
}
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertBefore) {
init(C, S1, S2);
setName(NameStr);
}
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertAtEnd) {
init(C, S1, S2);
setName(NameStr);
}
void init(Value *C, Value *S1, Value *S2) {
assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
Op<0>() = C;
Op<1>() = S1;
Op<2>() = S2;
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
SelectInst *cloneImpl() const;
public:
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr,
Instruction *MDFrom = nullptr) {
SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
if (MDFrom)
Sel->copyMetadata(*MDFrom);
return Sel;
}
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
}
const Value *getCondition() const { return Op<0>(); }
const Value *getTrueValue() const { return Op<1>(); }
const Value *getFalseValue() const { return Op<2>(); }
Value *getCondition() { return Op<0>(); }
Value *getTrueValue() { return Op<1>(); }
Value *getFalseValue() { return Op<2>(); }
void setCondition(Value *V) { Op<0>() = V; }
void setTrueValue(Value *V) { Op<1>() = V; }
void setFalseValue(Value *V) { Op<2>() = V; }
/// Swap the true and false values of the select instruction.
/// This doesn't swap prof metadata.
void swapValues() { Op<1>().swap(Op<2>()); }
/// Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Select;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
VAArgInst *cloneImpl() const;
public:
VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr)
: UnaryInstruction(Ty, VAArg, List, InsertBefore) {
setName(NameStr);
}
VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
setName(NameStr);
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == VAArg;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ExtractElementInst Class
//===----------------------------------------------------------------------===//
/// This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction {
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
ExtractElementInst *cloneImpl() const;
public:
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
}
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
}
/// Return true if an extractelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *Idx);
Value *getVectorOperand() { return Op<0>(); }
Value *getIndexOperand() { return Op<1>(); }
const Value *getVectorOperand() const { return Op<0>(); }
const Value *getIndexOperand() const { return Op<1>(); }
VectorType *getVectorOperandType() const {
return cast<VectorType>(getVectorOperand()->getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractElement;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ExtractElementInst> :
public FixedNumOperandTraits<ExtractElementInst, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
//===----------------------------------------------------------------------===//
// InsertElementInst Class
//===----------------------------------------------------------------------===//
/// This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction {
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
InsertElementInst *cloneImpl() const;
public:
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
}
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
}
/// Return true if an insertelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *NewElt,
const Value *Idx);
/// Overload to return most specific vector type.
///
VectorType *getType() const {
return cast<VectorType>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertElement;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertElementInst> :
public FixedNumOperandTraits<InsertElementInst, 3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Class
//===----------------------------------------------------------------------===//
constexpr int UndefMaskElem = -1;
/// This instruction constructs a fixed permutation of two
/// input vectors.
///
/// For each element of the result vector, the shuffle mask selects an element
/// from one of the input vectors to copy to the result. Non-negative elements
/// in the mask represent an index into the concatenated pair of input vectors.
/// UndefMaskElem (-1) specifies that the result element is undefined.
///
/// For scalable vectors, all the elements of the mask must be 0 or -1. This
/// requirement may be relaxed in the future.
class ShuffleVectorInst : public Instruction {
SmallVector<int, 4> ShuffleMask;
Constant *ShuffleMaskForBitcode;
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
ShuffleVectorInst *cloneImpl() const;
public:
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr = "",
Instruction *InsertBefor = nullptr);
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr, BasicBlock *InsertAtEnd);
ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
const Twine &NameStr = "",
Instruction *InsertBefor = nullptr);
ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
const Twine &NameStr, BasicBlock *InsertAtEnd);
void *operator new(size_t s) { return User::operator new(s, 2); }
/// Swap the operands and adjust the mask to preserve the semantics
/// of the instruction.
void commute();
/// Return true if a shufflevector instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *V1, const Value *V2,
const Value *Mask);
static bool isValidOperands(const Value *V1, const Value *V2,
ArrayRef<int> Mask);
/// Overload to return most specific vector type.
///
VectorType *getType() const {
return cast<VectorType>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Return the shuffle mask value of this instruction for the given element
/// index. Return UndefMaskElem if the element is undef.
int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
/// Convert the input shuffle mask operand to a vector of integers. Undefined
/// elements of the mask are returned as UndefMaskElem.
static void getShuffleMask(const Constant *Mask,
SmallVectorImpl<int> &Result);
/// Return the mask for this instruction as a vector of integers. Undefined
/// elements of the mask are returned as UndefMaskElem.
void getShuffleMask(SmallVectorImpl<int> &Result) const {
Result.assign(ShuffleMask.begin(), ShuffleMask.end());
}
/// Return the mask for this instruction, for use in bitcode.
///
/// TODO: This is temporary until we decide a new bitcode encoding for
/// shufflevector.
Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
Type *ResultTy);
void setShuffleMask(ArrayRef<int> Mask);
ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
/// Return true if this shuffle returns a vector with a different number of
/// elements than its source vectors.
/// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
/// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
bool changesLength() const {
unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
->getElementCount()
.getKnownMinValue();
unsigned NumMaskElts = ShuffleMask.size();
return NumSourceElts != NumMaskElts;
}
/// Return true if this shuffle returns a vector with a greater number of
/// elements than its source vectors.
/// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
bool increasesLength() const {
unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
->getElementCount()
.getKnownMinValue();
unsigned NumMaskElts = ShuffleMask.size();
return NumSourceElts < NumMaskElts;
}
/// Return true if this shuffle mask chooses elements from exactly one source
/// vector.
/// Example: <7,5,undef,7>
/// This assumes that vector operands are the same length as the mask.
static bool isSingleSourceMask(ArrayRef<int> Mask);
static bool isSingleSourceMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isSingleSourceMask(MaskAsInts);
}
/// Return true if this shuffle chooses elements from exactly one source
/// vector without changing the length of that vector.
/// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
/// TODO: Optionally allow length-changing shuffles.
bool isSingleSource() const {
return !changesLength() && isSingleSourceMask(ShuffleMask);
}
/// Return true if this shuffle mask chooses elements from exactly one source
/// vector without lane crossings. A shuffle using this mask is not
/// necessarily a no-op because it may change the number of elements from its
/// input vectors or it may provide demanded bits knowledge via undef lanes.
/// Example: <undef,undef,2,3>
static bool isIdentityMask(ArrayRef<int> Mask);
static bool isIdentityMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isIdentityMask(MaskAsInts);
}
/// Return true if this shuffle chooses elements from exactly one source
/// vector without lane crossings and does not change the number of elements
/// from its input vectors.
/// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
bool isIdentity() const {
return !changesLength() && isIdentityMask(ShuffleMask);
}
/// Return true if this shuffle lengthens exactly one source vector with
/// undefs in the high elements.
bool isIdentityWithPadding() const;
/// Return true if this shuffle extracts the first N elements of exactly one
/// source vector.
bool isIdentityWithExtract() const;
/// Return true if this shuffle concatenates its 2 source vectors. This
/// returns false if either input is undefined. In that case, the shuffle is
/// is better classified as an identity with padding operation.
bool isConcat() const;
/// Return true if this shuffle mask chooses elements from its source vectors
/// without lane crossings. A shuffle using this mask would be
/// equivalent to a vector select with a constant condition operand.
/// Example: <4,1,6,undef>
/// This returns false if the mask does not choose from both input vectors.
/// In that case, the shuffle is better classified as an identity shuffle.
/// This assumes that vector operands are the same length as the mask
/// (a length-changing shuffle can never be equivalent to a vector select).
static bool isSelectMask(ArrayRef<int> Mask);
static bool isSelectMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isSelectMask(MaskAsInts);
}
/// Return true if this shuffle chooses elements from its source vectors
/// without lane crossings and all operands have the same number of elements.
/// In other words, this shuffle is equivalent to a vector select with a
/// constant condition operand.
/// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
/// This returns false if the mask does not choose from both input vectors.
/// In that case, the shuffle is better classified as an identity shuffle.
/// TODO: Optionally allow length-changing shuffles.
bool isSelect() const {
return !changesLength() && isSelectMask(ShuffleMask);
}
/// Return true if this shuffle mask swaps the order of elements from exactly
/// one source vector.
/// Example: <7,6,undef,4>
/// This assumes that vector operands are the same length as the mask.
static bool isReverseMask(ArrayRef<int> Mask);
static bool isReverseMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isReverseMask(MaskAsInts);
}
/// Return true if this shuffle swaps the order of elements from exactly
/// one source vector.
/// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
/// TODO: Optionally allow length-changing shuffles.
bool isReverse() const {
return !changesLength() && isReverseMask(ShuffleMask);
}
/// Return true if this shuffle mask chooses all elements with the same value
/// as the first element of exactly one source vector.
/// Example: <4,undef,undef,4>
/// This assumes that vector operands are the same length as the mask.
static bool isZeroEltSplatMask(ArrayRef<int> Mask);
static bool isZeroEltSplatMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isZeroEltSplatMask(MaskAsInts);
}
/// Return true if all elements of this shuffle are the same value as the
/// first element of exactly one source vector without changing the length
/// of that vector.
/// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
/// TODO: Optionally allow length-changing shuffles.
/// TODO: Optionally allow splats from other elements.
bool isZeroEltSplat() const {
return !changesLength() && isZeroEltSplatMask(ShuffleMask);
}
/// Return true if this shuffle mask is a transpose mask.
/// Transpose vector masks transpose a 2xn matrix. They read corresponding
/// even- or odd-numbered vector elements from two n-dimensional source
/// vectors and write each result into consecutive elements of an
/// n-dimensional destination vector. Two shuffles are necessary to complete
/// the transpose, one for the even elements and another for the odd elements.
/// This description closely follows how the TRN1 and TRN2 AArch64
/// instructions operate.
///
/// For example, a simple 2x2 matrix can be transposed with:
///
/// ; Original matrix
/// m0 = < a, b >
/// m1 = < c, d >
///
/// ; Transposed matrix
/// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
/// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
///
/// For matrices having greater than n columns, the resulting nx2 transposed
/// matrix is stored in two result vectors such that one vector contains
/// interleaved elements from all the even-numbered rows and the other vector
/// contains interleaved elements from all the odd-numbered rows. For example,
/// a 2x4 matrix can be transposed with:
///
/// ; Original matrix
/// m0 = < a, b, c, d >
/// m1 = < e, f, g, h >
///
/// ; Transposed matrix
/// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
/// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
static bool isTransposeMask(ArrayRef<int> Mask);
static bool isTransposeMask(const Constant *Mask) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isTransposeMask(MaskAsInts);
}
/// Return true if this shuffle transposes the elements of its inputs without
/// changing the length of the vectors. This operation may also be known as a
/// merge or interleave. See the description for isTransposeMask() for the
/// exact specification.
/// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
bool isTranspose() const {
return !changesLength() && isTransposeMask(ShuffleMask);
}
/// Return true if this shuffle mask is an extract subvector mask.
/// A valid extract subvector mask returns a smaller vector from a single
/// source operand. The base extraction index is returned as well.
static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
int &Index);
static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
int &Index) {
assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
// Not possible to express a shuffle mask for a scalable vector for this
// case.
if (isa<ScalableVectorType>(Mask->getType()))
return false;
SmallVector<int, 16> MaskAsInts;
getShuffleMask(Mask, MaskAsInts);
return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
}
/// Return true if this shuffle mask is an extract subvector mask.
bool isExtractSubvectorMask(int &Index) const {
// Not possible to express a shuffle mask for a scalable vector for this
// case.
if (isa<ScalableVectorType>(getType()))
return false;
int NumSrcElts =
cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
}
/// Change values in a shuffle permute mask assuming the two vector operands
/// of length InVecNumElts have swapped position.
static void commuteShuffleMask(MutableArrayRef<int> Mask,
unsigned InVecNumElts) {
for (int &Idx : Mask) {
if (Idx == -1)
continue;
Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range");
}
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ShuffleVector;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ShuffleVectorInst>
: public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
/// This instruction extracts a struct member or array
/// element value from an aggregate value.
///
class ExtractValueInst : public UnaryInstruction {
SmallVector<unsigned, 4> Indices;
ExtractValueInst(const ExtractValueInst &EVI);
/// Constructors - Create a extractvalue instruction with a base aggregate
/// value and a list of indices. The first ctor can optionally insert before
/// an existing instruction, the second appends the new instruction to the
/// specified BasicBlock.
inline ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore);
inline ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr, BasicBlock *InsertAtEnd);
void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
ExtractValueInst *cloneImpl() const;
public:
static ExtractValueInst *Create(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new
ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
}
static ExtractValueInst *Create(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
}
/// Returns the type of the element that would be extracted
/// with an extractvalue instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified type.
static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
using idx_iterator = const unsigned*;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
inline iterator_range<idx_iterator> indices() const {
return make_range(idx_begin(), idx_end());
}
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const {
return Indices;
}
unsigned getNumIndices() const {
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractValue;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
ExtractValueInst::ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore)
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
ExtractValue, Agg, InsertBefore) {
init(Idxs, NameStr);
}
ExtractValueInst::ExtractValueInst(Value *Agg,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
ExtractValue, Agg, InsertAtEnd) {
init(Idxs, NameStr);
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
/// This instruction inserts a struct field of array element
/// value into an aggregate value.
///
class InsertValueInst : public Instruction {
SmallVector<unsigned, 4> Indices;
InsertValueInst(const InsertValueInst &IVI);
/// Constructors - Create a insertvalue instruction with a base aggregate
/// value, a value to insert, and a list of indices. The first ctor can
/// optionally insert before an existing instruction, the second appends
/// the new instruction to the specified BasicBlock.
inline InsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore);
inline InsertValueInst(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because one
/// and two index insertvalue instructions are so common.
InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
BasicBlock *InsertAtEnd);
void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
const Twine &NameStr);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
InsertValueInst *cloneImpl() const;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
static InsertValueInst *Create(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
}
static InsertValueInst *Create(Value *Agg, Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
using idx_iterator = const unsigned*;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
inline iterator_range<idx_iterator> indices() const {
return make_range(idx_begin(), idx_end());
}
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
Value *getInsertedValueOperand() {
return getOperand(1);
}
const Value *getInsertedValueOperand() const {
return getOperand(1);
}
static unsigned getInsertedValueOperandIndex() {
return 1U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const {
return Indices;
}
unsigned getNumIndices() const {
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertValue;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertValueInst> :
public FixedNumOperandTraits<InsertValueInst, 2> {
};
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertBefore) {
init(Agg, Val, Idxs, NameStr);
}
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
ArrayRef<unsigned> Idxs,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertAtEnd) {
init(Agg, Val, Idxs, NameStr);
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
/// The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
PHINode(const PHINode &PN);
explicit PHINode(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr)
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
ReservedSpace(NumReservedValues) {
setName(NameStr);
allocHungoffUses(ReservedSpace);
}
PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
ReservedSpace(NumReservedValues) {
setName(NameStr);
allocHungoffUses(ReservedSpace);
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
PHINode *cloneImpl() const;
// allocHungoffUses - this is more complicated than the generic
// User::allocHungoffUses, because we have to allocate Uses for the incoming
// values and pointers to the incoming blocks, all in one allocation.
void allocHungoffUses(unsigned N) {
User::allocHungoffUses(N, /* IsPhi */ true);
}
public:
/// Constructors - NumReservedValues is a hint for the number of incoming
/// edges that this phi node will have (use 0 if you really have no idea).
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
}
static PHINode *Create(Type *Ty, unsigned NumReservedValues,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
using block_iterator = BasicBlock **;
using const_block_iterator = BasicBlock * const *;
block_iterator block_begin() {
return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
}
const_block_iterator block_begin() const {
return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
}
block_iterator block_end() {
return block_begin() + getNumOperands();
}
const_block_iterator block_end() const {
return block_begin() + getNumOperands();
}
iterator_range<block_iterator> blocks() {
return make_range(block_begin(), block_end());
}
iterator_range<const_block_iterator> blocks() const {
return make_range(block_begin(), block_end());
}
op_range incoming_values() { return operands(); }
const_op_range incoming_values() const { return operands(); }
/// Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// Return incoming value number x
///
Value *getIncomingValue(unsigned i) const {
return getOperand(i);
}
void setIncomingValue(unsigned i, Value *V) {
assert(V && "PHI node got a null value!");
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
setOperand(i, V);
}
static unsigned getOperandNumForIncomingValue(unsigned i) {
return i;
}
static unsigned getIncomingValueNumForOperand(unsigned i) {
return i;
}
/// Return incoming basic block number @p i.
///
BasicBlock *getIncomingBlock(unsigned i) const {
return block_begin()[i];
}
/// Return incoming basic block corresponding
/// to an operand of the PHI.
///
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return getIncomingBlock(unsigned(&U - op_begin()));
}
/// Return incoming basic block corresponding
/// to value use iterator.
///
BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned i, BasicBlock *BB) {
assert(BB && "PHI node got a null basic block!");
block_begin()[i] = BB;
}
/// Replace every incoming basic block \p Old to basic block \p New.
void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
assert(New && Old && "PHI node got a null basic block!");
for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
if (getIncomingBlock(Op) == Old)
setIncomingBlock(Op, New);
}
/// Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) {
if (getNumOperands() == ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
setNumHungOffUseOperands(getNumOperands() + 1);
setIncomingValue(getNumOperands() - 1, V);
setIncomingBlock(getNumOperands() - 1, BB);
}
/// Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument to remove!");
return removeIncomingValue(Idx, DeletePHIIfEmpty);
}
/// Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (block_begin()[i] == BB)
return i;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument!");
return getIncomingValue(Idx);
}
/// Set every incoming value(s) for block \p BB to \p V.
void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
assert(BB && "PHI node got a null basic block!");
bool Found = false;
for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
if (getIncomingBlock(Op) == BB) {
Found = true;
setIncomingValue(Op, V);
}
(void)Found;
assert(Found && "Invalid basic block argument to set!");
}
/// If the specified PHI node always merges together the
/// same value, return the value, otherwise return null.
Value *hasConstantValue() const;
/// Whether the specified PHI node always merges
/// together the same value, assuming undefs are equal to a unique
/// non-undef value.
bool hasConstantOrUndefValue() const;
/// If the PHI node is complete which means all of its parent's predecessors
/// have incoming value in this PHI, return true, otherwise return false.
bool isComplete() const {
return llvm::all_of(predecessors(getParent()),
[this](const BasicBlock *Pred) {
return getBasicBlockIndex(Pred) >= 0;
});
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::PHI;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void growOperands();
};
template <>
struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
//===----------------------------------------------------------------------===//
// LandingPadInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// The landingpad instruction holds all of the information
/// necessary to generate correct exception handling. The landingpad instruction
/// cannot be moved from the top of a landing pad block, which itself is
/// accessible only from the 'unwind' edge of an invoke. This uses the
/// SubclassData field in Value to store whether or not the landingpad is a
/// cleanup.
///
class LandingPadInst : public Instruction {
using CleanupField = BoolBitfieldElementT<0>;
/// The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
LandingPadInst(const LandingPadInst &LP);
public:
enum ClauseType { Catch, Filter };
private:
explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
const Twine &NameStr, Instruction *InsertBefore);
explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
const Twine &NameStr, BasicBlock *InsertAtEnd);
// Allocate space for exactly zero operands.
void *operator new(size_t s) {
return User::operator new(s);
}
void growOperands(unsigned Size);
void init(unsigned NumReservedValues, const Twine &NameStr);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
LandingPadInst *cloneImpl() const;
public:
/// Constructors - NumReservedClauses is a hint for the number of incoming
/// clauses that this landingpad will have (use 0 if you really have no idea).
static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Return 'true' if this landingpad instruction is a
/// cleanup. I.e., it should be run when unwinding even if its landing pad
/// doesn't catch the exception.
bool isCleanup() const { return getSubclassData<CleanupField>(); }
/// Indicate that this landingpad instruction is a cleanup.
void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
/// Add a catch or filter clause to the landing pad.
void addClause(Constant *ClauseVal);
/// Get the value of the clause at index Idx. Use isCatch/isFilter to
/// determine what type of clause this is.
Constant *getClause(unsigned Idx) const {
return cast<Constant>(getOperandList()[Idx]);
}
/// Return 'true' if the clause and index Idx is a catch clause.
bool isCatch(unsigned Idx) const {
return !isa<ArrayType>(getOperandList()[Idx]->getType());
}
/// Return 'true' if the clause and index Idx is a filter clause.
bool isFilter(unsigned Idx) const {
return isa<ArrayType>(getOperandList()[Idx]->getType());
}
/// Get the number of clauses for this landing pad.
unsigned getNumClauses() const { return getNumOperands(); }
/// Grow the size of the operand list to accommodate the new
/// number of clauses.
void reserveClauses(unsigned Size) { growOperands(Size); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::LandingPad;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public Instruction {
ReturnInst(const ReturnInst &RI);
private:
// ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst( null) - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
//
// NOTE: If the Value* passed is of type void then the constructor behaves as
// if it was passed NULL.
explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
Instruction *InsertBefore = nullptr);
ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
ReturnInst *cloneImpl() const;
public:
static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
Instruction *InsertBefore = nullptr) {
return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
}
static ReturnInst* Create(LLVMContext &C, Value *retVal,
BasicBlock *InsertAtEnd) {
return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
}
static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
return new(0) ReturnInst(C, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Returns null if there is no return value.
Value *getReturnValue() const {
return getNumOperands() != 0 ? getOperand(0) : nullptr;
}
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Ret);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessor(unsigned idx) const {
llvm_unreachable("ReturnInst has no successors!");
}
void setSuccessor(unsigned idx, BasicBlock *B) {
llvm_unreachable("ReturnInst has no successors!");
}
};
template <>
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// Conditional or Unconditional Branch instruction.
///
class BranchInst : public Instruction {
/// Ops list - Branches are strange. The operands are ordered:
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
/// they don't have to check for cond/uncond branchness. These are mostly
/// accessed relative from op_end().
BranchInst(const BranchInst &BI);
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore = nullptr);
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd);
void AssertOK();
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
BranchInst *cloneImpl() const;
public:
/// Iterator type that casts an operand to a basic block.
///
/// This only makes sense because the successors are stored as adjacent
/// operands for branch instructions.
struct succ_op_iterator
: iterator_adaptor_base<succ_op_iterator, value_op_iterator,
std::random_access_iterator_tag, BasicBlock *,
ptrdiff_t, BasicBlock *, BasicBlock *> {
explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
BasicBlock *operator->() const { return operator*(); }
};
/// The const version of `succ_op_iterator`.
struct const_succ_op_iterator
: iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
std::random_access_iterator_tag,
const BasicBlock *, ptrdiff_t, const BasicBlock *,
const BasicBlock *> {
explicit const_succ_op_iterator(const_value_op_iterator I)
: iterator_adaptor_base(I) {}
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
const BasicBlock *operator->() const { return operator*(); }
};
static BranchInst *Create(BasicBlock *IfTrue,
Instruction *InsertBefore = nullptr) {
return new(1) BranchInst(IfTrue, InsertBefore);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
Value *Cond, Instruction *InsertBefore = nullptr) {
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
return new(1) BranchInst(IfTrue, InsertAtEnd);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
Value *Cond, BasicBlock *InsertAtEnd) {
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool isUnconditional() const { return getNumOperands() == 1; }
bool isConditional() const { return getNumOperands() == 3; }
Value *getCondition() const {
assert(isConditional() && "Cannot get condition of an uncond branch!");
return Op<-3>();
}
void setCondition(Value *V) {
assert(isConditional() && "Cannot set condition of unconditional branch!");
Op<-3>() = V;
}
unsigned getNumSuccessors() const { return 1+isConditional(); }
BasicBlock *getSuccessor(unsigned i) const {
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
*(&Op<-1>() - idx) = NewSucc;
}
/// Swap the successors of this branch instruction.
///
/// Swaps the successors of the branch instruction. This also swaps any
/// branch weight metadata associated with the instruction so that it
/// continues to map correctly to each operand.
void swapSuccessors();
iterator_range<succ_op_iterator> successors() {
return make_range(
succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
succ_op_iterator(value_op_end()));
}
iterator_range<const_succ_op_iterator> successors() const {
return make_range(const_succ_op_iterator(
std::next(value_op_begin(), isConditional() ? 1 : 0)),
const_succ_op_iterator(value_op_end()));
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Br);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
//===----------------------------------------------------------------------===//
// SwitchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// Multiway switch
///
class SwitchInst : public Instruction {
unsigned ReservedSpace;
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
SwitchInst(const SwitchInst &SI);
/// Create a new switch instruction, specifying a value to switch on and a
/// default destination. The number of additional cases can be specified here
/// to make memory allocation more efficient. This constructor can also
/// auto-insert before another instruction.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore);
/// Create a new switch instruction, specifying a value to switch on and a
/// default destination. The number of additional cases can be specified here
/// to make memory allocation more efficient. This constructor also
/// auto-inserts at the end of the specified BasicBlock.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s);
}
void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
void growOperands();
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
SwitchInst *cloneImpl() const;
public:
// -2
static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
template <typename CaseHandleT> class CaseIteratorImpl;
/// A handle to a particular switch case. It exposes a convenient interface
/// to both the case value and the successor block.
///
/// We define this as a template and instantiate it to form both a const and
/// non-const handle.
template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
class CaseHandleImpl {
// Directly befriend both const and non-const iterators.
friend class SwitchInst::CaseIteratorImpl<
CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
protected:
// Expose the switch type we're parameterized with to the iterator.
using SwitchInstType = SwitchInstT;
SwitchInstT *SI;
ptrdiff_t Index;
CaseHandleImpl() = default;
CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
public:
/// Resolves case value for current case.
ConstantIntT *getCaseValue() const {
assert((unsigned)Index < SI->getNumCases() &&
"Index out the number of cases.");
return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
}
/// Resolves successor for current case.
BasicBlockT *getCaseSuccessor() const {
assert(((unsigned)Index < SI->getNumCases() ||
(unsigned)Index == DefaultPseudoIndex) &&
"Index out the number of cases.");
return SI->getSuccessor(getSuccessorIndex());
}
/// Returns number of current case.
unsigned getCaseIndex() const { return Index; }
/// Returns successor index for current case successor.
unsigned getSuccessorIndex() const {
assert(((unsigned)Index == DefaultPseudoIndex ||
(unsigned)Index < SI->getNumCases()) &&
"Index out the number of cases.");
return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
}
bool operator==(const CaseHandleImpl &RHS) const {
assert(SI == RHS.SI && "Incompatible operators.");
return Index == RHS.Index;
}
};
using ConstCaseHandle =
CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
class CaseHandle
: public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
public:
CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
/// Sets the new value for current case.
void setValue(ConstantInt *V) {
assert((unsigned)Index < SI->getNumCases() &&
"Index out the number of cases.");
SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
}
/// Sets the new successor for current case.
void setSuccessor(BasicBlock *S) {
SI->setSuccessor(getSuccessorIndex(), S);
}
};
template <typename CaseHandleT>
class CaseIteratorImpl
: public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
std::random_access_iterator_tag,
CaseHandleT> {
using SwitchInstT = typename CaseHandleT::SwitchInstType;
CaseHandleT Case;
public:
/// Default constructed iterator is in an invalid state until assigned to
/// a case for a particular switch.
CaseIteratorImpl() = default;
/// Initializes case iterator for given SwitchInst and for given
/// case number.
CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
/// Initializes case iterator for given SwitchInst and for given
/// successor index.
static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
unsigned SuccessorIndex) {
assert(SuccessorIndex < SI->getNumSuccessors() &&
"Successor index # out of range!");
return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
: CaseIteratorImpl(SI, DefaultPseudoIndex);
}
/// Support converting to the const variant. This will be a no-op for const
/// variant.
operator CaseIteratorImpl<ConstCaseHandle>() const {
return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
}
CaseIteratorImpl &operator+=(ptrdiff_t N) {
// Check index correctness after addition.
// Note: Index == getNumCases() means end().
assert(Case.Index + N >= 0 &&
(unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.");
Case.Index += N;
return *this;
}
CaseIteratorImpl &operator-=(ptrdiff_t N) {
// Check index correctness after subtraction.
// Note: Case.Index == getNumCases() means end().
assert(Case.Index - N >= 0 &&
(unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.");
Case.Index -= N;
return *this;
}
ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
return Case.Index - RHS.Case.Index;
}
bool operator==(const CaseIteratorImpl &RHS) const {
return Case == RHS.Case;
}
bool operator<(const CaseIteratorImpl &RHS) const {
assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
return Case.Index < RHS.Case.Index;
}
CaseHandleT &operator*() { return Case; }
const CaseHandleT &operator*() const { return Case; }
};
using CaseIt = CaseIteratorImpl<CaseHandle>;
using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
static SwitchInst *Create(Value *Value, BasicBlock *Default,
unsigned NumCases,
Instruction *InsertBefore = nullptr) {
return new SwitchInst(Value, Default, NumCases, InsertBefore);
}
static SwitchInst *Create(Value *Value, BasicBlock *Default,
unsigned NumCases, BasicBlock *InsertAtEnd) {
return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for Switch stmt
Value *getCondition() const { return getOperand(0); }
void setCondition(Value *V) { setOperand(0, V); }
BasicBlock *getDefaultDest() const {
return cast<BasicBlock>(getOperand(1));
}
void setDefaultDest(BasicBlock *DefaultCase) {
setOperand(1, reinterpret_cast<Value*>(DefaultCase));
}
/// Return the number of 'cases' in this switch instruction, excluding the
/// default case.
unsigned getNumCases() const {
return getNumOperands()/2 - 1;
}
/// Returns a read/write iterator that points to the first case in the
/// SwitchInst.
CaseIt case_begin() {
return CaseIt(this, 0);
}
/// Returns a read-only iterator that points to the first case in the
/// SwitchInst.
ConstCaseIt case_begin() const {
return ConstCaseIt(this, 0);
}
/// Returns a read/write iterator that points one past the last in the
/// SwitchInst.
CaseIt case_end() {
return CaseIt(this, getNumCases());
}
/// Returns a read-only iterator that points one past the last in the
/// SwitchInst.
ConstCaseIt case_end() const {
return ConstCaseIt(this, getNumCases());
}
/// Iteration adapter for range-for loops.
iterator_range<CaseIt> cases() {
return make_range(case_begin(), case_end());
}
/// Constant iteration adapter for range-for loops.
iterator_range<ConstCaseIt> cases() const {
return make_range(case_begin(), case_end());
}
/// Returns an iterator that points to the default case.
/// Note: this iterator allows to resolve successor only. Attempt
/// to resolve case value causes an assertion.
/// Also note, that increment and decrement also causes an assertion and
/// makes iterator invalid.
CaseIt case_default() {
return CaseIt(this, DefaultPseudoIndex);
}
ConstCaseIt case_default() const {
return ConstCaseIt(this, DefaultPseudoIndex);
}
/// Search all of the case values for the specified constant. If it is
/// explicitly handled, return the case iterator of it, otherwise return
/// default case iterator to indicate that it is handled by the default
/// handler.
CaseIt findCaseValue(const ConstantInt *C) {
CaseIt I = llvm::find_if(
cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
if (I != case_end())
return I;
return case_default();
}
ConstCaseIt findCaseValue(const ConstantInt *C) const {
ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
return Case.getCaseValue() == C;
});
if (I != case_end())
return I;
return case_default();
}
/// Finds the unique case value for a given successor. Returns null if the
/// successor is not found, not unique, or is the default case.
ConstantInt *findCaseDest(BasicBlock *BB) {
if (BB == getDefaultDest())
return nullptr;
ConstantInt *CI = nullptr;
for (auto Case : cases()) {
if (Case.getCaseSuccessor() != BB)
continue;
if (CI)
return nullptr; // Multiple cases lead to BB.
CI = Case.getCaseValue();
}
return CI;
}
/// Add an entry to the switch instruction.
/// Note:
/// This action invalidates case_end(). Old case_end() iterator will
/// point to the added case.
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
/// This method removes the specified case and its successor from the switch
/// instruction. Note that this operation may reorder the remaining cases at
/// index idx and above.
/// Note:
/// This action invalidates iterators for all cases following the one removed,
/// including the case_end() iterator. It returns an iterator for the next
/// case.
CaseIt removeCase(CaseIt I);
unsigned getNumSuccessors() const { return getNumOperands()/2; }
BasicBlock *getSuccessor(unsigned idx) const {
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
return cast<BasicBlock>(getOperand(idx*2+1));
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
setOperand(idx * 2 + 1, NewSucc);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Switch;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
/// A wrapper class to simplify modification of SwitchInst cases along with
/// their prof branch_weights metadata.
class SwitchInstProfUpdateWrapper {
SwitchInst &SI;
Optional<SmallVector<uint32_t, 8> > Weights = None;
bool Changed = false;
protected:
static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
MDNode *buildProfBranchWeightsMD();
void init();
public:
using CaseWeightOpt = Optional<uint32_t>;
SwitchInst *operator->() { return &SI; }
SwitchInst &operator*() { return SI; }
operator SwitchInst *() { return &SI; }
SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
~SwitchInstProfUpdateWrapper() {
if (Changed)
SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
}
/// Delegate the call to the underlying SwitchInst::removeCase() and remove
/// correspondent branch weight.
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
/// Delegate the call to the underlying SwitchInst::addCase() and set the
/// specified branch weight for the added case.
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
/// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
/// this object to not touch the underlying SwitchInst in destructor.
SymbolTableList<Instruction>::iterator eraseFromParent();
void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
CaseWeightOpt getSuccessorWeight(unsigned idx);
static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
};
template <>
struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
//===----------------------------------------------------------------------===//
// IndirectBrInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// Indirect Branch Instruction.
///
class IndirectBrInst : public Instruction {
unsigned ReservedSpace;
// Operand[0] = Address to jump to
// Operand[n+1] = n-th destination
IndirectBrInst(const IndirectBrInst &IBI);
/// Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor can also
/// autoinsert before another instruction.
IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
/// Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor also
/// autoinserts at the end of the specified BasicBlock.
IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s);
}
void init(Value *Address, unsigned NumDests);
void growOperands();
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
IndirectBrInst *cloneImpl() const;
public:
/// Iterator type that casts an operand to a basic block.
///
/// This only makes sense because the successors are stored as adjacent
/// operands for indirectbr instructions.
struct succ_op_iterator
: iterator_adaptor_base<succ_op_iterator, value_op_iterator,
std::random_access_iterator_tag, BasicBlock *,
ptrdiff_t, BasicBlock *, BasicBlock *> {
explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
BasicBlock *operator->() const { return operator*(); }
};
/// The const version of `succ_op_iterator`.
struct const_succ_op_iterator
: iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
std::random_access_iterator_tag,
const BasicBlock *, ptrdiff_t, const BasicBlock *,
const BasicBlock *> {
explicit const_succ_op_iterator(const_value_op_iterator I)
: iterator_adaptor_base(I) {}
const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
const BasicBlock *operator->() const { return operator*(); }
};
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
Instruction *InsertBefore = nullptr) {
return new IndirectBrInst(Address, NumDests, InsertBefore);
}
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
BasicBlock *InsertAtEnd) {
return new IndirectBrInst(Address, NumDests, InsertAtEnd);
}
/// Provide fast operand accessors.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for IndirectBrInst instruction.
Value *getAddress() { return getOperand(0); }
const Value *getAddress() const { return getOperand(0); }
void setAddress(Value *V) { setOperand(0, V); }
/// return the number of possible destinations in this
/// indirectbr instruction.
unsigned getNumDestinations() const { return getNumOperands()-1; }
/// Return the specified destination.
BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
/// Add a destination.
///
void addDestination(BasicBlock *Dest);
/// This method removes the specified successor from the
/// indirectbr instruction.
void removeDestination(unsigned i);
unsigned getNumSuccessors() const { return getNumOperands()-1; }
BasicBlock *getSuccessor(unsigned i) const {
return cast<BasicBlock>(getOperand(i+1));
}
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
setOperand(i + 1, NewSucc);
}
iterator_range<succ_op_iterator> successors() {
return make_range(succ_op_iterator(std::next(value_op_begin())),
succ_op_iterator(value_op_end()));
}
iterator_range<const_succ_op_iterator> successors() const {
return make_range(const_succ_op_iterator(std::next(value_op_begin())),
const_succ_op_iterator(value_op_end()));
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::IndirectBr;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
//===----------------------------------------------------------------------===//
// InvokeInst Class
//===----------------------------------------------------------------------===//
/// Invoke instruction. The SubclassData field is used to hold the
/// calling convention of the call.
///
class InvokeInst : public CallBase {
/// The number of operands for this call beyond the called function,
/// arguments, and operand bundles.
static constexpr int NumExtraOperands = 2;
/// The index from the end of the operand array to the normal destination.
static constexpr int NormalDestOpEndIdx = -3;
/// The index from the end of the operand array to the unwind destination.
static constexpr int UnwindDestOpEndIdx = -2;
InvokeInst(const InvokeInst &BI);
/// Construct an InvokeInst given a range of arguments.
///
/// Construct an InvokeInst from a range of arguments
inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, Instruction *InsertBefore);
inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, BasicBlock *InsertAtEnd);
void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
/// Compute the number of operands to allocate.
static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
// We need one operand for the called function, plus our extra operands and
// the input operand counts provided.
return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
InvokeInst *cloneImpl() const;
public:
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
int NumOperands = ComputeNumOperands(Args.size());
return new (NumOperands)
InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
NameStr, InsertBefore);
}
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
int NumOperands =
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
NameStr, InsertBefore);
}
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
int NumOperands = ComputeNumOperands(Args.size());
return new (NumOperands)
InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
NameStr, InsertAtEnd);
}
static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
int NumOperands =
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
NameStr, InsertAtEnd);
}
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
IfException, Args, None, NameStr, InsertBefore);
}
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
IfException, Args, Bundles, NameStr, InsertBefore);
}
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
IfException, Args, NameStr, InsertAtEnd);
}
static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
IfException, Args, Bundles, NameStr, InsertAtEnd);
}
/// Create a clone of \p II with a different set of operand bundles and
/// insert it before \p InsertPt.
///
/// The returned invoke instruction is identical to \p II in every way except
/// that the operand bundles for the new instruction are set to the operand
/// bundles in \p Bundles.
static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertPt = nullptr);
/// Create a clone of \p II with a different set of operand bundles and
/// insert it before \p InsertPt.
///
/// The returned invoke instruction is identical to \p II in every way except
/// that the operand bundle for the new instruction is set to the operand
/// bundle in \p Bundle.
static InvokeInst *CreateWithReplacedBundle(InvokeInst *II,
OperandBundleDef Bundles,
Instruction *InsertPt = nullptr);
// get*Dest - Return the destination basic blocks...
BasicBlock *getNormalDest() const {
return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
}
BasicBlock *getUnwindDest() const {
return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
}
void setNormalDest(BasicBlock *B) {
Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
}
void setUnwindDest(BasicBlock *B) {
Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
}
/// Get the landingpad instruction from the landing pad
/// block (the unwind destination).
LandingPadInst *getLandingPadInst() const;
BasicBlock *getSuccessor(unsigned i) const {
assert(i < 2 && "Successor # out of range for invoke!");
return i == 0 ? getNormalDest() : getUnwindDest();
}
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
assert(i < 2 && "Successor # out of range for invoke!");
if (i == 0)
setNormalDest(NewSucc);
else
setUnwindDest(NewSucc);
}
unsigned getNumSuccessors() const { return 2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Invoke);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
};
InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, Instruction *InsertBefore)
: CallBase(Ty->getReturnType(), Instruction::Invoke,
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
InsertBefore) {
init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
}
InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: CallBase(Ty->getReturnType(), Instruction::Invoke,
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
InsertAtEnd) {
init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
}
//===----------------------------------------------------------------------===//
// CallBrInst Class
//===----------------------------------------------------------------------===//
/// CallBr instruction, tracking function calls that may not return control but
/// instead transfer it to a third location. The SubclassData field is used to
/// hold the calling convention of the call.
///
class CallBrInst : public CallBase {
unsigned NumIndirectDests;
CallBrInst(const CallBrInst &BI);
/// Construct a CallBrInst given a range of arguments.
///
/// Construct a CallBrInst from a range of arguments
inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, Instruction *InsertBefore);
inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, BasicBlock *InsertAtEnd);
void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
/// Should the Indirect Destinations change, scan + update the Arg list.
void updateArgBlockAddresses(unsigned i, BasicBlock *B);
/// Compute the number of operands to allocate.
static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
int NumBundleInputs = 0) {
// We need one operand for the called function, plus our extra operands and
// the input operand counts provided.
return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
}
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
CallBrInst *cloneImpl() const;
public:
static CallBrInst *Create(FunctionType *Ty, Value *Func,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args, const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
return new (NumOperands)
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
NumOperands, NameStr, InsertBefore);
}
static CallBrInst *Create(FunctionType *Ty, Value *Func,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
CountBundleInputs(Bundles));
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
NumOperands, NameStr, InsertBefore);
}
static CallBrInst *Create(FunctionType *Ty, Value *Func,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
return new (NumOperands)
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
NumOperands, NameStr, InsertAtEnd);
}
static CallBrInst *Create(FunctionType *Ty, Value *Func,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
CountBundleInputs(Bundles));
unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
return new (NumOperands, DescriptorBytes)
CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
NumOperands, NameStr, InsertAtEnd);
}
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args, const Twine &NameStr,
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
IndirectDests, Args, NameStr, InsertBefore);
}
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
IndirectDests, Args, Bundles, NameStr, InsertBefore);
}
static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
IndirectDests, Args, NameStr, InsertAtEnd);
}
static CallBrInst *Create(FunctionCallee Func,
BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
}
/// Create a clone of \p CBI with a different set of operand bundles and
/// insert it before \p InsertPt.
///
/// The returned callbr instruction is identical to \p CBI in every way
/// except that the operand bundles for the new instruction are set to the
/// operand bundles in \p Bundles.
static CallBrInst *Create(CallBrInst *CBI,
ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertPt = nullptr);
/// Return the number of callbr indirect dest labels.
///
unsigned getNumIndirectDests() const { return NumIndirectDests; }
/// getIndirectDestLabel - Return the i-th indirect dest label.
///
Value *getIndirectDestLabel(unsigned i) const {
assert(i < getNumIndirectDests() && "Out of bounds!");
return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
1);
}
Value *getIndirectDestLabelUse(unsigned i) const {
assert(i < getNumIndirectDests() && "Out of bounds!");
return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
1);
}
// Return the destination basic blocks...
BasicBlock *getDefaultDest() const {
return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
}
BasicBlock *getIndirectDest(unsigned i) const {
return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
}
SmallVector<BasicBlock *, 16> getIndirectDests() const {
SmallVector<BasicBlock *, 16> IndirectDests;
for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
IndirectDests.push_back(getIndirectDest(i));
return IndirectDests;
}
void setDefaultDest(BasicBlock *B) {
*(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
}
void setIndirectDest(unsigned i, BasicBlock *B) {
updateArgBlockAddresses(i, B);
*(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
}
BasicBlock *getSuccessor(unsigned i) const {
assert(i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!");
return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
}
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
assert(i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!");
return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
}
unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::CallBr);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
};
CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, Instruction *InsertBefore)
: CallBase(Ty->getReturnType(), Instruction::CallBr,
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
InsertBefore) {
init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
}
CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, int NumOperands,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: CallBase(Ty->getReturnType(), Instruction::CallBr,
OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
InsertAtEnd) {
init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
}
//===----------------------------------------------------------------------===//
// ResumeInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// Resume the propagation of an exception.
///
class ResumeInst : public Instruction {
ResumeInst(const ResumeInst &RI);
explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
ResumeInst *cloneImpl() const;
public:
static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
return new(1) ResumeInst(Exn, InsertBefore);
}
static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
return new(1) ResumeInst(Exn, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor.
Value *getValue() const { return Op<0>(); }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Resume;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessor(unsigned idx) const {
llvm_unreachable("ResumeInst has no successors!");
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("ResumeInst has no successors!");
}
};
template <>
struct OperandTraits<ResumeInst> :
public FixedNumOperandTraits<ResumeInst, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
//===----------------------------------------------------------------------===//
// CatchSwitchInst Class
//===----------------------------------------------------------------------===//
class CatchSwitchInst : public Instruction {
using UnwindDestField = BoolBitfieldElementT<0>;
/// The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
// Operand[0] = Outer scope
// Operand[1] = Unwind block destination
// Operand[n] = BasicBlock to go to on match
CatchSwitchInst(const CatchSwitchInst &CSI);
/// Create a new switch instruction, specifying a
/// default destination. The number of additional handlers can be specified
/// here to make memory allocation more efficient.
/// This constructor can also autoinsert before another instruction.
CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumHandlers, const Twine &NameStr,
Instruction *InsertBefore);
/// Create a new switch instruction, specifying a
/// default destination. The number of additional handlers can be specified
/// here to make memory allocation more efficient.
/// This constructor also autoinserts at the end of the specified BasicBlock.
CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumHandlers, const Twine &NameStr,
BasicBlock *InsertAtEnd);
// allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s); }
void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
void growOperands(unsigned Size);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
CatchSwitchInst *cloneImpl() const;
public:
static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumHandlers,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
InsertBefore);
}
static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumHandlers, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for CatchSwitch stmt
Value *getParentPad() const { return getOperand(0); }
void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
// Accessor Methods for CatchSwitch stmt
bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
bool unwindsToCaller() const { return !hasUnwindDest(); }
BasicBlock *getUnwindDest() const {
if (hasUnwindDest())
return cast<BasicBlock>(getOperand(1));
return nullptr;
}
void setUnwindDest(BasicBlock *UnwindDest) {
assert(UnwindDest);
assert(hasUnwindDest());
setOperand(1, UnwindDest);
}
/// return the number of 'handlers' in this catchswitch
/// instruction, except the default handler
unsigned getNumHandlers() const {
if (hasUnwindDest())
return getNumOperands() - 2;
return getNumOperands() - 1;
}
private:
static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
static const BasicBlock *handler_helper(const Value *V) {
return cast<BasicBlock>(V);
}
public:
using DerefFnTy = BasicBlock *(*)(Value *);
using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
using handler_range = iterator_range<handler_iterator>;
using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
using const_handler_iterator =
mapped_iterator<const_op_iterator, ConstDerefFnTy>;
using const_handler_range = iterator_range<const_handler_iterator>;
/// Returns an iterator that points to the first handler in CatchSwitchInst.
handler_iterator handler_begin() {
op_iterator It = op_begin() + 1;
if (hasUnwindDest())
++It;
return handler_iterator(It, DerefFnTy(handler_helper));
}
/// Returns an iterator that points to the first handler in the
/// CatchSwitchInst.
const_handler_iterator handler_begin() const {
const_op_iterator It = op_begin() + 1;
if (hasUnwindDest())
++It;
return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
}
/// Returns a read-only iterator that points one past the last
/// handler in the CatchSwitchInst.
handler_iterator handler_end() {
return handler_iterator(op_end(), DerefFnTy(handler_helper));
}
/// Returns an iterator that points one past the last handler in the
/// CatchSwitchInst.
const_handler_iterator handler_end() const {
return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
}
/// iteration adapter for range-for loops.
handler_range handlers() {
return make_range(handler_begin(), handler_end());
}
/// iteration adapter for range-for loops.
const_handler_range handlers() const {
return make_range(handler_begin(), handler_end());
}
/// Add an entry to the switch instruction...
/// Note:
/// This action invalidates handler_end(). Old handler_end() iterator will
/// point to the added handler.
void addHandler(BasicBlock *Dest);
void removeHandler(handler_iterator HI);
unsigned getNumSuccessors() const { return getNumOperands() - 1; }
BasicBlock *getSuccessor(unsigned Idx) const {
assert(Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!");
return cast<BasicBlock>(getOperand(Idx + 1));
}
void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
assert(Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!");
setOperand(Idx + 1, NewSucc);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::CatchSwitch;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
//===----------------------------------------------------------------------===//
// CleanupPadInst Class
//===----------------------------------------------------------------------===//
class CleanupPadInst : public FuncletPadInst {
private:
explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
unsigned Values, const Twine &NameStr,
Instruction *InsertBefore)
: FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
NameStr, InsertBefore) {}
explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
unsigned Values, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
NameStr, InsertAtEnd) {}
public:
static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
unsigned Values = 1 + Args.size();
return new (Values)
CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
}
static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
unsigned Values = 1 + Args.size();
return new (Values)
CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::CleanupPad;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CatchPadInst Class
//===----------------------------------------------------------------------===//
class CatchPadInst : public FuncletPadInst {
private:
explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
unsigned Values, const Twine &NameStr,
Instruction *InsertBefore)
: FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
NameStr, InsertBefore) {}
explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
unsigned Values, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
NameStr, InsertAtEnd) {}
public:
static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr) {
unsigned Values = 1 + Args.size();
return new (Values)
CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
}
static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
unsigned Values = 1 + Args.size();
return new (Values)
CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
}
/// Convenience accessors
CatchSwitchInst *getCatchSwitch() const {
return cast<CatchSwitchInst>(Op<-1>());
}
void setCatchSwitch(Value *CatchSwitch) {
assert(CatchSwitch);
Op<-1>() = CatchSwitch;
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::CatchPad;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CatchReturnInst Class
//===----------------------------------------------------------------------===//
class CatchReturnInst : public Instruction {
CatchReturnInst(const CatchReturnInst &RI);
CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
void init(Value *CatchPad, BasicBlock *BB);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
CatchReturnInst *cloneImpl() const;
public:
static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
Instruction *InsertBefore = nullptr) {
assert(CatchPad);
assert(BB);
return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
}
static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
BasicBlock *InsertAtEnd) {
assert(CatchPad);
assert(BB);
return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessors.
CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
void setCatchPad(CatchPadInst *CatchPad) {
assert(CatchPad);
Op<0>() = CatchPad;
}
BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
void setSuccessor(BasicBlock *NewSucc) {
assert(NewSucc);
Op<1>() = NewSucc;
}
unsigned getNumSuccessors() const { return 1; }
/// Get the parentPad of this catchret's catchpad's catchswitch.
/// The successor block is implicitly a member of this funclet.
Value *getCatchSwitchParentPad() const {
return getCatchPad()->getCatchSwitch()->getParentPad();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::CatchRet);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessor(unsigned Idx) const {
assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
return getSuccessor();
}
void setSuccessor(unsigned Idx, BasicBlock *B) {
assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
setSuccessor(B);
}
};
template <>
struct OperandTraits<CatchReturnInst>
: public FixedNumOperandTraits<CatchReturnInst, 2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
//===----------------------------------------------------------------------===//
// CleanupReturnInst Class
//===----------------------------------------------------------------------===//
class CleanupReturnInst : public Instruction {
using UnwindDestField = BoolBitfieldElementT<0>;
private:
CleanupReturnInst(const CleanupReturnInst &RI);
CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
Instruction *InsertBefore = nullptr);
CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
BasicBlock *InsertAtEnd);
void init(Value *CleanupPad, BasicBlock *UnwindBB);
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
CleanupReturnInst *cloneImpl() const;
public:
static CleanupReturnInst *Create(Value *CleanupPad,
BasicBlock *UnwindBB = nullptr,
Instruction *InsertBefore = nullptr) {
assert(CleanupPad);
unsigned Values = 1;
if (UnwindBB)
++Values;
return new (Values)
CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
}
static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
BasicBlock *InsertAtEnd) {
assert(CleanupPad);
unsigned Values = 1;
if (UnwindBB)
++Values;
return new (Values)
CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
bool unwindsToCaller() const { return !hasUnwindDest(); }
/// Convenience accessor.
CleanupPadInst *getCleanupPad() const {
return cast<CleanupPadInst>(Op<0>());
}
void setCleanupPad(CleanupPadInst *CleanupPad) {
assert(CleanupPad);
Op<0>() = CleanupPad;
}
unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
BasicBlock *getUnwindDest() const {
return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
}
void setUnwindDest(BasicBlock *NewDest) {
assert(NewDest);
assert(hasUnwindDest());
Op<1>() = NewDest;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::CleanupRet);
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessor(unsigned Idx) const {
assert(Idx == 0);
return getUnwindDest();
}
void setSuccessor(unsigned Idx, BasicBlock *B) {
assert(Idx == 0);
setUnwindDest(B);
}
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
template <typename Bitfield>
void setSubclassData(typename Bitfield::Type Value) {
Instruction::setSubclassData<Bitfield>(Value);
}
};
template <>
struct OperandTraits<CleanupReturnInst>
: public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
//===----------------------------------------------------------------------===//
// UnreachableInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// This function has undefined behavior. In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public Instruction {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
UnreachableInst *cloneImpl() const;
public:
explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unreachable;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
BasicBlock *getSuccessor(unsigned idx) const {
llvm_unreachable("UnreachableInst has no successors!");
}
void setSuccessor(unsigned idx, BasicBlock *B) {
llvm_unreachable("UnreachableInst has no successors!");
}
};
//===----------------------------------------------------------------------===//
// TruncInst Class
//===----------------------------------------------------------------------===//
/// This class represents a truncation of integer types.
class TruncInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical TruncInst
TruncInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
TruncInst(
Value *S, ///< The value to be truncated
Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
TruncInst(
Value *S, ///< The value to be truncated
Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == Trunc;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ZExtInst Class
//===----------------------------------------------------------------------===//
/// This class represents zero extension of integer types.
class ZExtInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical ZExtInst
ZExtInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
ZExtInst(
Value *S, ///< The value to be zero extended
Type *Ty, ///< The type to zero extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end semantics.
ZExtInst(
Value *S, ///< The value to be zero extended
Type *Ty, ///< The type to zero extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == ZExt;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SExtInst Class
//===----------------------------------------------------------------------===//
/// This class represents a sign extension of integer types.
class SExtInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical SExtInst
SExtInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
SExtInst(
Value *S, ///< The value to be sign extended
Type *Ty, ///< The type to sign extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
SExtInst(
Value *S, ///< The value to be sign extended
Type *Ty, ///< The type to sign extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == SExt;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPTruncInst Class
//===----------------------------------------------------------------------===//
/// This class represents a truncation of floating point types.
class FPTruncInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FPTruncInst
FPTruncInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
FPTruncInst(
Value *S, ///< The value to be truncated
Type *Ty, ///< The type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-before-instruction semantics
FPTruncInst(
Value *S, ///< The value to be truncated
Type *Ty, ///< The type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == FPTrunc;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPExtInst Class
//===----------------------------------------------------------------------===//
/// This class represents an extension of floating point types.
class FPExtInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FPExtInst
FPExtInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
FPExtInst(
Value *S, ///< The value to be extended
Type *Ty, ///< The type to extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
FPExtInst(
Value *S, ///< The value to be extended
Type *Ty, ///< The type to extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == FPExt;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UIToFPInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast unsigned integer to floating point.
class UIToFPInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical UIToFPInst
UIToFPInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
UIToFPInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
UIToFPInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == UIToFP;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SIToFPInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast from signed integer to floating point.
class SIToFPInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical SIToFPInst
SIToFPInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
SIToFPInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
SIToFPInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == SIToFP;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPToUIInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast from floating point to unsigned integer
class FPToUIInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FPToUIInst
FPToUIInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
FPToUIInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
FPToUIInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< Where to insert the new instruction
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == FPToUI;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPToSIInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast from floating point to signed integer.
class FPToSIInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FPToSIInst
FPToSIInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
FPToSIInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
FPToSIInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == FPToSI;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// IntToPtrInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast from an integer to a pointer.
class IntToPtrInst : public CastInst {
public:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Constructor with insert-before-instruction semantics
IntToPtrInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
IntToPtrInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Clone an identical IntToPtrInst.
IntToPtrInst *cloneImpl() const;
/// Returns the address space of this instruction's pointer type.
unsigned getAddressSpace() const {
return getType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == IntToPtr;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// PtrToIntInst Class
//===----------------------------------------------------------------------===//
/// This class represents a cast from a pointer to an integer.
class PtrToIntInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical PtrToIntInst.
PtrToIntInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
PtrToIntInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
PtrToIntInst(
Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// Gets the pointer operand.
Value *getPointerOperand() { return getOperand(0); }
/// Gets the pointer operand.
const Value *getPointerOperand() const { return getOperand(0); }
/// Gets the operand index of the pointer operand.
static unsigned getPointerOperandIndex() { return 0U; }
/// Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == PtrToInt;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// BitCastInst Class
//===----------------------------------------------------------------------===//
/// This class represents a no-op cast from one type to another.
class BitCastInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical BitCastInst.
BitCastInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
BitCastInst(
Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
BitCastInst(
Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == BitCast;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// AddrSpaceCastInst Class
//===----------------------------------------------------------------------===//
/// This class represents a conversion between pointers from one address space
/// to another.
class AddrSpaceCastInst : public CastInst {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical AddrSpaceCastInst.
AddrSpaceCastInst *cloneImpl() const;
public:
/// Constructor with insert-before-instruction semantics
AddrSpaceCastInst(
Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
);
/// Constructor with insert-at-end-of-block semantics
AddrSpaceCastInst(
Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Instruction *I) {
return I->getOpcode() == AddrSpaceCast;
}
static bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
/// Gets the pointer operand.
Value *getPointerOperand() {
return getOperand(0);
}
/// Gets the pointer operand.
const Value *getPointerOperand() const {
return getOperand(0);
}
/// Gets the operand index of the pointer operand.
static unsigned getPointerOperandIndex() {
return 0U;
}
/// Returns the address space of the pointer operand.
unsigned getSrcAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}
/// Returns the address space of the result.
unsigned getDestAddressSpace() const {
return getType()->getPointerAddressSpace();
}
};
/// A helper function that returns the pointer operand of a load or store
/// instruction. Returns nullptr if not load or store.
inline const Value *getLoadStorePointerOperand(const Value *V) {
if (auto *Load = dyn_cast<LoadInst>(V))
return Load->getPointerOperand();
if (auto *Store = dyn_cast<StoreInst>(V))
return Store->getPointerOperand();
return nullptr;
}
inline Value *getLoadStorePointerOperand(Value *V) {
return const_cast<Value *>(
getLoadStorePointerOperand(static_cast<const Value *>(V)));
}
/// A helper function that returns the pointer operand of a load, store
/// or GEP instruction. Returns nullptr if not load, store, or GEP.
inline const Value *getPointerOperand(const Value *V) {
if (auto *Ptr = getLoadStorePointerOperand(V))
return Ptr;
if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
return Gep->getPointerOperand();
return nullptr;
}
inline Value *getPointerOperand(Value *V) {
return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
}
/// A helper function that returns the alignment of load or store instruction.
inline Align getLoadStoreAlignment(Value *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction");
if (auto *LI = dyn_cast<LoadInst>(I))
return LI->getAlign();
return cast<StoreInst>(I)->getAlign();
}
/// A helper function that returns the address space of the pointer operand of
/// load or store instruction.
inline unsigned getLoadStoreAddressSpace(Value *I) {
assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction");
if (auto *LI = dyn_cast<LoadInst>(I))
return LI->getPointerAddressSpace();
return cast<StoreInst>(I)->getPointerAddressSpace();
}
//===----------------------------------------------------------------------===//
// FreezeInst Class
//===----------------------------------------------------------------------===//
/// This class represents a freeze function that returns random concrete
/// value if an operand is either a poison value or an undef value
class FreezeInst : public UnaryInstruction {
protected:
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
/// Clone an identical FreezeInst
FreezeInst *cloneImpl() const;
public:
explicit FreezeInst(Value *S,
const Twine &NameStr = "",
Instruction *InsertBefore = nullptr);
FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Freeze;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // end namespace llvm
#endif // LLVM_IR_INSTRUCTIONS_H