RTSA-lab02-SchedTest/schedTests/TimeDemandAnalysis.py

52 lines
1.3 KiB
Python
Raw Normal View History

2022-06-01 16:11:48 +02:00
import numpy as np
import math
import include.TasksHelper as TH
# The tasks is an Array with three columns and n Rows
# Each Row represents one Task
# The columns hold the Tasks parameters
# column 0 is period P,
# column 1 is deadline D
# column 2 is WCET C
# P_i is accessed as: tasks[i][0]
# D_i is accessed as: tasks[i][1]
# C_i is accessed as: tasks[i][2]
# The number of tasks can be accessed as: tasks.shape[0]
2022-06-27 00:22:45 +02:00
# The Time Demand Analysis Test
2022-06-30 14:06:36 +02:00
set_num = 0
2022-06-27 00:22:45 +02:00
2022-06-01 16:11:48 +02:00
def test(tasks):
2022-06-27 00:22:45 +02:00
# Sorting Taskset by Period/Deadline
# This makes implementing TDA a lot easier
2022-06-01 16:11:48 +02:00
shape = tasks.shape
sortedtasks = tasks[tasks[:, 0].argsort()]
2022-06-30 15:39:13 +02:00
2022-06-27 00:22:45 +02:00
# For each tasks in the ordered set
2022-06-30 14:06:36 +02:00
2022-06-30 15:39:13 +02:00
# calculate the time points for the demand function
t_old = 10**-3
i = 0
2022-06-27 00:22:45 +02:00
2022-06-30 15:39:13 +02:00
while True:
t_new = workload_func(sortedtasks, i, t_old)
# if the workload of task i exceeds the deadline
if t_new > TH.D_i(sortedtasks, i):
return False # task not schedulable
2022-06-27 00:22:45 +02:00
2022-06-30 15:39:13 +02:00
if t_new == t_old:
i += 1
t_old = 10**-3
# chech array out of bounds
if i == len(sortedtasks):
return True
t_old = t_new
2022-06-27 00:22:45 +02:00
2022-06-01 16:11:48 +02:00
2022-06-30 15:39:13 +02:00
def workload_func(tasks, i, t):
2022-06-27 00:22:45 +02:00
sum = 0
2022-06-30 15:39:13 +02:00
for k in range(i):
2022-06-30 14:06:36 +02:00
sum += math.ceil(t / TH.P_i(tasks, k)) * TH.C_i(tasks, k)
2022-06-27 00:22:45 +02:00
return TH.C_i(tasks, i) + sum