successully implemented TDA

This commit is contained in:
Mukendi Mputu 2022-06-30 15:39:13 +02:00
parent 317b8a1a9c
commit 71de5bf9b5
No known key found for this signature in database
GPG Key ID: 492A6E5AC70F6B0B
1 changed files with 19 additions and 31 deletions

View File

@ -21,43 +21,31 @@ def test(tasks):
# This makes implementing TDA a lot easier
shape = tasks.shape
sortedtasks = tasks[tasks[:, 0].argsort()]
isSchedulable = True
global set_num
set_num += 1
print(f"\n======= TASK SET #{set_num} =======\n")
# For each tasks in the ordered set
for i in range(len(sortedtasks)):
print(f'Task #{i} {tasks[i]}:')
# calculate the time points for the demand function
t_old = 10**-3
i = 0
# calculate the time points for the demand function
# t = j * P_k for k = 1, 2,...i and j = 1, 2,...,math.ceil(P_i / P_k)
# list_of_t = [
# j * TH.P_i(sortedtasks, k)
# for k in range(i-1)
# for j in range(1, int(math.ceil(TH.D_i(sortedtasks, i) / TH.P_i(sortedtasks, k))))
# ]
# list_of_t = [TH.P_i(sortedtasks, k-1) for k in range(i+1)]
list_of_t = []
for k in range(i):
list_of_t.append(TH.P_i(sortedtasks, k-1))
while True:
t_new = workload_func(sortedtasks, i, t_old)
# if the workload of task i exceeds the deadline
if t_new > TH.D_i(sortedtasks, i):
return False # task not schedulable
print(f'\t list of t: {list_of_t}')
# at any time t between 0 and and TH.P_i
for j in range(len(list_of_t)):
# for t in range(int(TH.C_i(sortedtasks, i)), int(TH.P_i(sortedtasks, i)+1), int(step)):
# if the demand for CPU time of task i exceeds the available time t
if time_demand_func(sortedtasks, i, list_of_t[j]) > list_of_t[j]:
isSchedulable = False # then the task i will not meet its deadline, hence taskset not schedulable
print(f'\t time-demand for t := {list_of_t[j]} ---> {time_demand_func(sortedtasks, i, list_of_t[j])} is schedulable: {isSchedulable}')
return isSchedulable
if t_new == t_old:
i += 1
t_old = 10**-3
# chech array out of bounds
if i == len(sortedtasks):
return True
t_old = t_new
def time_demand_func(tasks, i, t):
def workload_func(tasks, i, t):
sum = 0
for k in range(i-1):
for k in range(i):
sum += math.ceil(t / TH.P_i(tasks, k)) * TH.C_i(tasks, k)
return TH.C_i(tasks, i) + sum