59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
"""
|
|
=====================================
|
|
Plot the support vectors in LinearSVC
|
|
=====================================
|
|
|
|
Unlike SVC (based on LIBSVM), LinearSVC (based on LIBLINEAR) does not provide
|
|
the support vectors. This example demonstrates how to obtain the support
|
|
vectors in LinearSVC.
|
|
|
|
"""
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.inspection import DecisionBoundaryDisplay
|
|
from sklearn.svm import LinearSVC
|
|
|
|
X, y = make_blobs(n_samples=40, centers=2, random_state=0)
|
|
|
|
plt.figure(figsize=(10, 5))
|
|
for i, C in enumerate([1, 100]):
|
|
# "hinge" is the standard SVM loss
|
|
clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y)
|
|
# obtain the support vectors through the decision function
|
|
decision_function = clf.decision_function(X)
|
|
# we can also calculate the decision function manually
|
|
# decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]
|
|
# The support vectors are the samples that lie within the margin
|
|
# boundaries, whose size is conventionally constrained to 1
|
|
support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0]
|
|
support_vectors = X[support_vector_indices]
|
|
|
|
plt.subplot(1, 2, i + 1)
|
|
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
|
|
ax = plt.gca()
|
|
DecisionBoundaryDisplay.from_estimator(
|
|
clf,
|
|
X,
|
|
ax=ax,
|
|
grid_resolution=50,
|
|
plot_method="contour",
|
|
colors="k",
|
|
levels=[-1, 0, 1],
|
|
alpha=0.5,
|
|
linestyles=["--", "-", "--"],
|
|
)
|
|
plt.scatter(
|
|
support_vectors[:, 0],
|
|
support_vectors[:, 1],
|
|
s=100,
|
|
linewidth=1,
|
|
facecolors="none",
|
|
edgecolors="k",
|
|
)
|
|
plt.title("C=" + str(C))
|
|
plt.tight_layout()
|
|
plt.show()
|