""" ===================================== Plot the support vectors in LinearSVC ===================================== Unlike SVC (based on LIBSVM), LinearSVC (based on LIBLINEAR) does not provide the support vectors. This example demonstrates how to obtain the support vectors in LinearSVC. """ import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.inspection import DecisionBoundaryDisplay from sklearn.svm import LinearSVC X, y = make_blobs(n_samples=40, centers=2, random_state=0) plt.figure(figsize=(10, 5)) for i, C in enumerate([1, 100]): # "hinge" is the standard SVM loss clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y) # obtain the support vectors through the decision function decision_function = clf.decision_function(X) # we can also calculate the decision function manually # decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0] # The support vectors are the samples that lie within the margin # boundaries, whose size is conventionally constrained to 1 support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0] support_vectors = X[support_vector_indices] plt.subplot(1, 2, i + 1) plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired) ax = plt.gca() DecisionBoundaryDisplay.from_estimator( clf, X, ax=ax, grid_resolution=50, plot_method="contour", colors="k", levels=[-1, 0, 1], alpha=0.5, linestyles=["--", "-", "--"], ) plt.scatter( support_vectors[:, 0], support_vectors[:, 1], s=100, linewidth=1, facecolors="none", edgecolors="k", ) plt.title("C=" + str(C)) plt.tight_layout() plt.show()