35 lines
954 B
Python
35 lines
954 B
Python
|
"""
|
||
|
================================
|
||
|
Digits Classification Exercise
|
||
|
================================
|
||
|
|
||
|
A tutorial exercise regarding the use of classification techniques on
|
||
|
the Digits dataset.
|
||
|
|
||
|
This exercise is used in the :ref:`clf_tut` part of the
|
||
|
:ref:`supervised_learning_tut` section of the
|
||
|
:ref:`stat_learn_tut_index`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from sklearn import datasets, linear_model, neighbors
|
||
|
|
||
|
X_digits, y_digits = datasets.load_digits(return_X_y=True)
|
||
|
X_digits = X_digits / X_digits.max()
|
||
|
|
||
|
n_samples = len(X_digits)
|
||
|
|
||
|
X_train = X_digits[: int(0.9 * n_samples)]
|
||
|
y_train = y_digits[: int(0.9 * n_samples)]
|
||
|
X_test = X_digits[int(0.9 * n_samples) :]
|
||
|
y_test = y_digits[int(0.9 * n_samples) :]
|
||
|
|
||
|
knn = neighbors.KNeighborsClassifier()
|
||
|
logistic = linear_model.LogisticRegression(max_iter=1000)
|
||
|
|
||
|
print("KNN score: %f" % knn.fit(X_train, y_train).score(X_test, y_test))
|
||
|
print(
|
||
|
"LogisticRegression score: %f"
|
||
|
% logistic.fit(X_train, y_train).score(X_test, y_test)
|
||
|
)
|