""" ================================ Digits Classification Exercise ================================ A tutorial exercise regarding the use of classification techniques on the Digits dataset. This exercise is used in the :ref:`clf_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ from sklearn import datasets, linear_model, neighbors X_digits, y_digits = datasets.load_digits(return_X_y=True) X_digits = X_digits / X_digits.max() n_samples = len(X_digits) X_train = X_digits[: int(0.9 * n_samples)] y_train = y_digits[: int(0.9 * n_samples)] X_test = X_digits[int(0.9 * n_samples) :] y_test = y_digits[int(0.9 * n_samples) :] knn = neighbors.KNeighborsClassifier() logistic = linear_model.LogisticRegression(max_iter=1000) print("KNN score: %f" % knn.fit(X_train, y_train).score(X_test, y_test)) print( "LogisticRegression score: %f" % logistic.fit(X_train, y_train).score(X_test, y_test) )