Fiona Ebner 930e239d11 migration: hold the BQL during setup
This is intended to be a semantic revert of commit 9b09503752
("migration: run setup callbacks out of big lock"). There have been so
many changes since that commit (e.g. a new setup callback
dirty_bitmap_save_setup() that also needs to be adapted now), it's
easier to do the revert manually.

For snapshots, the bdrv_writev_vmstate() function is used during setup
(in QIOChannelBlock backing the QEMUFile), but not holding the BQL
while calling it could lead to an assertion failure. To understand
how, first note the following:

1. Generated coroutine wrappers for block layer functions spawn the
coroutine and use AIO_WAIT_WHILE()/aio_poll() to wait for it.
2. If the host OS switches threads at an inconvenient time, it can
happen that a bottom half scheduled for the main thread's AioContext
is executed as part of a vCPU thread's aio_poll().

An example leading to the assertion failure is as follows:

main thread:
1. A snapshot-save QMP command gets issued.
2. snapshot_save_job_bh() is scheduled.

vCPU thread:
3. aio_poll() for the main thread's AioContext is called (e.g. when
the guest writes to a pflash device, as part of blk_pwrite which is a
generated coroutine wrapper).
4. snapshot_save_job_bh() is executed as part of aio_poll().
3. qemu_savevm_state() is called.
4. qemu_mutex_unlock_iothread() is called. Now
qemu_get_current_aio_context() returns 0x0.
5. bdrv_writev_vmstate() is executed during the usual savevm setup
via qemu_fflush(). But this function is a generated coroutine wrapper,
so it uses AIO_WAIT_WHILE. There, the assertion
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
will fail.

To fix it, ensure that the BQL is held during setup. While it would
only be needed for snapshots, adapting migration too avoids additional
logic for conditional locking/unlocking in the setup callbacks.
Writing the header could (in theory) also trigger qemu_fflush() and
thus bdrv_writev_vmstate(), so the locked section also covers the
qemu_savevm_state_header() call, even for migration for consistency.

The section around multifd_send_sync_main() needs to be unlocked to
avoid a deadlock. In particular, the multifd_save_setup() function calls
socket_send_channel_create() using multifd_new_send_channel_async() as a
callback and then waits for the callback to signal via the
channels_ready semaphore. The connection happens via
qio_task_run_in_thread(), but the callback is only executed via
qio_task_thread_result() which is scheduled for the main event loop.
Without unlocking the section, the main thread would never get to
process the task result and the callback meaning there would be no
signal via the channels_ready semaphore.

The comment in ram_init_bitmaps() was introduced by 4987783400
("migration: fix incorrect memory_global_dirty_log_start outside BQL")
and is removed, because it referred to the qemu_mutex_lock_iothread()
call.

Signed-off-by: Fiona Ebner <f.ebner@proxmox.com>
Reviewed-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Juan Quintela <quintela@redhat.com>
Message-ID: <20231013105839.415989-1-f.ebner@proxmox.com>
2023-10-17 09:25:13 +02:00
2023-09-21 09:05:10 -04:00
2023-10-03 07:43:44 -04:00
2023-10-16 12:37:48 -04:00
2023-09-20 07:54:34 +03:00
2023-10-16 12:37:35 -04:00
2022-07-05 10:15:49 +02:00
2023-10-12 00:37:39 +03:00
Hi,
2023-10-16 12:34:17 -04:00
2023-10-16 12:37:35 -04:00
2012-09-07 09:02:44 +03:00
2023-10-11 16:02:34 -04:00
2008-10-12 17:54:42 +00:00
2022-06-15 16:42:33 +01:00
2023-10-16 12:37:35 -04:00
2023-10-04 11:03:54 -07:00
2016-02-04 17:41:30 +00:00
2022-08-04 13:44:21 +02:00
2023-08-22 07:14:07 -07:00

===========
QEMU README
===========

QEMU is a generic and open source machine & userspace emulator and
virtualizer.

QEMU is capable of emulating a complete machine in software without any
need for hardware virtualization support. By using dynamic translation,
it achieves very good performance. QEMU can also integrate with the Xen
and KVM hypervisors to provide emulated hardware while allowing the
hypervisor to manage the CPU. With hypervisor support, QEMU can achieve
near native performance for CPUs. When QEMU emulates CPUs directly it is
capable of running operating systems made for one machine (e.g. an ARMv7
board) on a different machine (e.g. an x86_64 PC board).

QEMU is also capable of providing userspace API virtualization for Linux
and BSD kernel interfaces. This allows binaries compiled against one
architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a
different architecture ABI (e.g. the Linux x86_64 ABI). This does not
involve any hardware emulation, simply CPU and syscall emulation.

QEMU aims to fit into a variety of use cases. It can be invoked directly
by users wishing to have full control over its behaviour and settings.
It also aims to facilitate integration into higher level management
layers, by providing a stable command line interface and monitor API.
It is commonly invoked indirectly via the libvirt library when using
open source applications such as oVirt, OpenStack and virt-manager.

QEMU as a whole is released under the GNU General Public License,
version 2. For full licensing details, consult the LICENSE file.


Documentation
=============

Documentation can be found hosted online at
`<https://www.qemu.org/documentation/>`_. The documentation for the
current development version that is available at
`<https://www.qemu.org/docs/master/>`_ is generated from the ``docs/``
folder in the source tree, and is built by `Sphinx
<https://www.sphinx-doc.org/en/master/>`_.


Building
========

QEMU is multi-platform software intended to be buildable on all modern
Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety
of other UNIX targets. The simple steps to build QEMU are:


.. code-block:: shell

  mkdir build
  cd build
  ../configure
  make

Additional information can also be found online via the QEMU website:

* `<https://wiki.qemu.org/Hosts/Linux>`_
* `<https://wiki.qemu.org/Hosts/Mac>`_
* `<https://wiki.qemu.org/Hosts/W32>`_


Submitting patches
==================

The QEMU source code is maintained under the GIT version control system.

.. code-block:: shell

   git clone https://gitlab.com/qemu-project/qemu.git

When submitting patches, one common approach is to use 'git
format-patch' and/or 'git send-email' to format & send the mail to the
qemu-devel@nongnu.org mailing list. All patches submitted must contain
a 'Signed-off-by' line from the author. Patches should follow the
guidelines set out in the `style section
<https://www.qemu.org/docs/master/devel/style.html>`_ of
the Developers Guide.

Additional information on submitting patches can be found online via
the QEMU website

* `<https://wiki.qemu.org/Contribute/SubmitAPatch>`_
* `<https://wiki.qemu.org/Contribute/TrivialPatches>`_

The QEMU website is also maintained under source control.

.. code-block:: shell

  git clone https://gitlab.com/qemu-project/qemu-web.git

* `<https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/>`_

A 'git-publish' utility was created to make above process less
cumbersome, and is highly recommended for making regular contributions,
or even just for sending consecutive patch series revisions. It also
requires a working 'git send-email' setup, and by default doesn't
automate everything, so you may want to go through the above steps
manually for once.

For installation instructions, please go to

*  `<https://github.com/stefanha/git-publish>`_

The workflow with 'git-publish' is:

.. code-block:: shell

  $ git checkout master -b my-feature
  $ # work on new commits, add your 'Signed-off-by' lines to each
  $ git publish

Your patch series will be sent and tagged as my-feature-v1 if you need to refer
back to it in the future.

Sending v2:

.. code-block:: shell

  $ git checkout my-feature # same topic branch
  $ # making changes to the commits (using 'git rebase', for example)
  $ git publish

Your patch series will be sent with 'v2' tag in the subject and the git tip
will be tagged as my-feature-v2.

Bug reporting
=============

The QEMU project uses GitLab issues to track bugs. Bugs
found when running code built from QEMU git or upstream released sources
should be reported via:

* `<https://gitlab.com/qemu-project/qemu/-/issues>`_

If using QEMU via an operating system vendor pre-built binary package, it
is preferable to report bugs to the vendor's own bug tracker first. If
the bug is also known to affect latest upstream code, it can also be
reported via GitLab.

For additional information on bug reporting consult:

* `<https://wiki.qemu.org/Contribute/ReportABug>`_


ChangeLog
=========

For version history and release notes, please visit
`<https://wiki.qemu.org/ChangeLog/>`_ or look at the git history for
more detailed information.


Contact
=======

The QEMU community can be contacted in a number of ways, with the two
main methods being email and IRC

* `<mailto:qemu-devel@nongnu.org>`_
* `<https://lists.nongnu.org/mailman/listinfo/qemu-devel>`_
* #qemu on irc.oftc.net

Information on additional methods of contacting the community can be
found online via the QEMU website:

* `<https://wiki.qemu.org/Contribute/StartHere>`_
Description
No description provided
Readme 431 MiB
Languages
C 82.9%
C++ 6.4%
Python 3.2%
Dylan 2.9%
Shell 1.6%
Other 2.8%