- Now the VM can trigger a synchronous backdoor stopping the VM and returning to LibAFL.
- LibAFL will exit with a corresponding exit reason to perform actions accordingly (checkout the LibAFL patch for more details).
- The breakpoint mechanism has been merged with this system (not tested yet, may not work out of the box).
- The main difference with the backdoor is that it will always stop the VM.
Perform window restore before pc update. Required in order
to recognize any window underflow trap with the current pc.
Fixes: 86b82fe021f4 ("target/sparc: Move JMPL, RETT, RETURN to decodetree")
Reported-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Acked-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Without this, we just dirty a single byte, and so if the caller writes
more than one byte to the host memory then we won't have invalidated any
translation blocks that start after the first byte and overlap those
writes. In particular, AArch64's DC ZVA implementation uses probe_access
(via probe_write), and so we don't invalidate the entire block, only the
TB overlapping the first byte (and, in the unusual case an unaligned VA
is given to the instruction, we also probe that specific address in
order to get the right VA reported on an exception, so will invalidate a
TB overlapping that address too). Since our IC IVAU implementation is a
no-op for system emulation that relies on the softmmu already having
detected self-modifying code via this mechanism, this means we have
observably wrong behaviour when jumping to code that has been DC ZVA'ed.
In practice this is an unusual thing for software to do, as in reality
the OS will DC ZVA the page and the application will go and write actual
instructions to it that aren't UDF #0, but you can write a test that
clearly shows the faulty behaviour.
For functions other than probe_access it's not clear what size to use
when 0 is passed in. Arguably a size of 0 shouldn't dirty at all, since
if you want to actually write then you should pass in a real size, but I
have conservatively kept the implementation as dirtying the first byte
in that case so as to avoid breaking any assumptions about that
behaviour.
Signed-off-by: Jessica Clarke <jrtc27@jrtc27.com>
Message-Id: <20231104031232.3246614-1-jrtc27@jrtc27.com>
[rth: Move the dirtysize computation next to notdirty_write.]
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In cpu_exec_step_atomic, we did not set CF_LAST_IO, which lead
to a loop with cpu_io_recompile.
But since 18a536f1f8 ("Always require can_do_io") we no longer
need a flag to indicate when the last insn should have can_do_io set,
so remove the flag entirely.
Reported-by: Clément Chigot <chigot@adacore.com>
Tested-by: Clément Chigot <chigot@adacore.com>
Reviewed-by: Claudio Fontana <cfontana@suse.de>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1961
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>