linuxdebug/security/selinux/ss/sidtab.c

629 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the SID table type.
*
* Original author: Stephen Smalley, <sds@tycho.nsa.gov>
* Author: Ondrej Mosnacek, <omosnacek@gmail.com>
*
* Copyright (C) 2018 Red Hat, Inc.
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <asm/barrier.h>
#include "flask.h"
#include "security.h"
#include "sidtab.h"
struct sidtab_str_cache {
struct rcu_head rcu_member;
struct list_head lru_member;
struct sidtab_entry *parent;
u32 len;
char str[];
};
#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
int sidtab_init(struct sidtab *s)
{
u32 i;
memset(s->roots, 0, sizeof(s->roots));
for (i = 0; i < SECINITSID_NUM; i++)
s->isids[i].set = 0;
s->frozen = false;
s->count = 0;
s->convert = NULL;
hash_init(s->context_to_sid);
spin_lock_init(&s->lock);
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
INIT_LIST_HEAD(&s->cache_lru_list);
spin_lock_init(&s->cache_lock);
#endif
return 0;
}
static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
{
struct sidtab_entry *entry;
u32 sid = 0;
rcu_read_lock();
hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
if (entry->hash != hash)
continue;
if (context_cmp(&entry->context, context)) {
sid = entry->sid;
break;
}
}
rcu_read_unlock();
return sid;
}
int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
{
struct sidtab_isid_entry *isid;
u32 hash;
int rc;
if (sid == 0 || sid > SECINITSID_NUM)
return -EINVAL;
isid = &s->isids[sid - 1];
rc = context_cpy(&isid->entry.context, context);
if (rc)
return rc;
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
isid->entry.cache = NULL;
#endif
isid->set = 1;
hash = context_compute_hash(context);
/*
* Multiple initial sids may map to the same context. Check that this
* context is not already represented in the context_to_sid hashtable
* to avoid duplicate entries and long linked lists upon hash
* collision.
*/
if (!context_to_sid(s, context, hash)) {
isid->entry.sid = sid;
isid->entry.hash = hash;
hash_add(s->context_to_sid, &isid->entry.list, hash);
}
return 0;
}
int sidtab_hash_stats(struct sidtab *sidtab, char *page)
{
int i;
int chain_len = 0;
int slots_used = 0;
int entries = 0;
int max_chain_len = 0;
int cur_bucket = 0;
struct sidtab_entry *entry;
rcu_read_lock();
hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
entries++;
if (i == cur_bucket) {
chain_len++;
if (chain_len == 1)
slots_used++;
} else {
cur_bucket = i;
if (chain_len > max_chain_len)
max_chain_len = chain_len;
chain_len = 0;
}
}
rcu_read_unlock();
if (chain_len > max_chain_len)
max_chain_len = chain_len;
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
"longest chain: %d\n", entries,
slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
}
static u32 sidtab_level_from_count(u32 count)
{
u32 capacity = SIDTAB_LEAF_ENTRIES;
u32 level = 0;
while (count > capacity) {
capacity <<= SIDTAB_INNER_SHIFT;
++level;
}
return level;
}
static int sidtab_alloc_roots(struct sidtab *s, u32 level)
{
u32 l;
if (!s->roots[0].ptr_leaf) {
s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_ATOMIC);
if (!s->roots[0].ptr_leaf)
return -ENOMEM;
}
for (l = 1; l <= level; ++l)
if (!s->roots[l].ptr_inner) {
s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_ATOMIC);
if (!s->roots[l].ptr_inner)
return -ENOMEM;
s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
}
return 0;
}
static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
int alloc)
{
union sidtab_entry_inner *entry;
u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
/* find the level of the subtree we need */
level = sidtab_level_from_count(index + 1);
capacity_shift = level * SIDTAB_INNER_SHIFT;
/* allocate roots if needed */
if (alloc && sidtab_alloc_roots(s, level) != 0)
return NULL;
/* lookup inside the subtree */
entry = &s->roots[level];
while (level != 0) {
capacity_shift -= SIDTAB_INNER_SHIFT;
--level;
entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
leaf_index &= ((u32)1 << capacity_shift) - 1;
if (!entry->ptr_inner) {
if (alloc)
entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_ATOMIC);
if (!entry->ptr_inner)
return NULL;
}
}
if (!entry->ptr_leaf) {
if (alloc)
entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_ATOMIC);
if (!entry->ptr_leaf)
return NULL;
}
return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
}
static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
{
/* read entries only after reading count */
u32 count = smp_load_acquire(&s->count);
if (index >= count)
return NULL;
return sidtab_do_lookup(s, index, 0);
}
static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
{
return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
}
static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
int force)
{
if (sid != 0) {
struct sidtab_entry *entry;
if (sid > SECINITSID_NUM)
entry = sidtab_lookup(s, sid_to_index(sid));
else
entry = sidtab_lookup_initial(s, sid);
if (entry && (!entry->context.len || force))
return entry;
}
return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
}
struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
{
return sidtab_search_core(s, sid, 0);
}
struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
{
return sidtab_search_core(s, sid, 1);
}
int sidtab_context_to_sid(struct sidtab *s, struct context *context,
u32 *sid)
{
unsigned long flags;
u32 count, hash = context_compute_hash(context);
struct sidtab_convert_params *convert;
struct sidtab_entry *dst, *dst_convert;
int rc;
*sid = context_to_sid(s, context, hash);
if (*sid)
return 0;
/* lock-free search failed: lock, re-search, and insert if not found */
spin_lock_irqsave(&s->lock, flags);
rc = 0;
*sid = context_to_sid(s, context, hash);
if (*sid)
goto out_unlock;
if (unlikely(s->frozen)) {
/*
* This sidtab is now frozen - tell the caller to abort and
* get the new one.
*/
rc = -ESTALE;
goto out_unlock;
}
count = s->count;
convert = s->convert;
/* bail out if we already reached max entries */
rc = -EOVERFLOW;
if (count >= SIDTAB_MAX)
goto out_unlock;
/* insert context into new entry */
rc = -ENOMEM;
dst = sidtab_do_lookup(s, count, 1);
if (!dst)
goto out_unlock;
dst->sid = index_to_sid(count);
dst->hash = hash;
rc = context_cpy(&dst->context, context);
if (rc)
goto out_unlock;
/*
* if we are building a new sidtab, we need to convert the context
* and insert it there as well
*/
if (convert) {
rc = -ENOMEM;
dst_convert = sidtab_do_lookup(convert->target, count, 1);
if (!dst_convert) {
context_destroy(&dst->context);
goto out_unlock;
}
rc = convert->func(context, &dst_convert->context,
convert->args, GFP_ATOMIC);
if (rc) {
context_destroy(&dst->context);
goto out_unlock;
}
dst_convert->sid = index_to_sid(count);
dst_convert->hash = context_compute_hash(&dst_convert->context);
convert->target->count = count + 1;
hash_add_rcu(convert->target->context_to_sid,
&dst_convert->list, dst_convert->hash);
}
if (context->len)
pr_info("SELinux: Context %s is not valid (left unmapped).\n",
context->str);
*sid = index_to_sid(count);
/* write entries before updating count */
smp_store_release(&s->count, count + 1);
hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
rc = 0;
out_unlock:
spin_unlock_irqrestore(&s->lock, flags);
return rc;
}
static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
{
struct sidtab_entry *entry;
u32 i;
for (i = 0; i < count; i++) {
entry = sidtab_do_lookup(s, i, 0);
entry->sid = index_to_sid(i);
entry->hash = context_compute_hash(&entry->context);
hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
}
}
static int sidtab_convert_tree(union sidtab_entry_inner *edst,
union sidtab_entry_inner *esrc,
u32 *pos, u32 count, u32 level,
struct sidtab_convert_params *convert)
{
int rc;
u32 i;
if (level != 0) {
if (!edst->ptr_inner) {
edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_KERNEL);
if (!edst->ptr_inner)
return -ENOMEM;
}
i = 0;
while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
&esrc->ptr_inner->entries[i],
pos, count, level - 1,
convert);
if (rc)
return rc;
i++;
}
} else {
if (!edst->ptr_leaf) {
edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
GFP_KERNEL);
if (!edst->ptr_leaf)
return -ENOMEM;
}
i = 0;
while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
rc = convert->func(&esrc->ptr_leaf->entries[i].context,
&edst->ptr_leaf->entries[i].context,
convert->args, GFP_KERNEL);
if (rc)
return rc;
(*pos)++;
i++;
}
cond_resched();
}
return 0;
}
int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
{
unsigned long flags;
u32 count, level, pos;
int rc;
spin_lock_irqsave(&s->lock, flags);
/* concurrent policy loads are not allowed */
if (s->convert) {
spin_unlock_irqrestore(&s->lock, flags);
return -EBUSY;
}
count = s->count;
level = sidtab_level_from_count(count);
/* allocate last leaf in the new sidtab (to avoid race with
* live convert)
*/
rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
if (rc) {
spin_unlock_irqrestore(&s->lock, flags);
return rc;
}
/* set count in case no new entries are added during conversion */
params->target->count = count;
/* enable live convert of new entries */
s->convert = params;
/* we can safely convert the tree outside the lock */
spin_unlock_irqrestore(&s->lock, flags);
pr_info("SELinux: Converting %u SID table entries...\n", count);
/* convert all entries not covered by live convert */
pos = 0;
rc = sidtab_convert_tree(&params->target->roots[level],
&s->roots[level], &pos, count, level, params);
if (rc) {
/* we need to keep the old table - disable live convert */
spin_lock_irqsave(&s->lock, flags);
s->convert = NULL;
spin_unlock_irqrestore(&s->lock, flags);
return rc;
}
/*
* The hashtable can also be modified in sidtab_context_to_sid()
* so we must re-acquire the lock here.
*/
spin_lock_irqsave(&s->lock, flags);
sidtab_convert_hashtable(params->target, count);
spin_unlock_irqrestore(&s->lock, flags);
return 0;
}
void sidtab_cancel_convert(struct sidtab *s)
{
unsigned long flags;
/* cancelling policy load - disable live convert of sidtab */
spin_lock_irqsave(&s->lock, flags);
s->convert = NULL;
spin_unlock_irqrestore(&s->lock, flags);
}
void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
{
spin_lock_irqsave(&s->lock, *flags);
s->frozen = true;
s->convert = NULL;
}
void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
{
spin_unlock_irqrestore(&s->lock, *flags);
}
static void sidtab_destroy_entry(struct sidtab_entry *entry)
{
context_destroy(&entry->context);
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
kfree(rcu_dereference_raw(entry->cache));
#endif
}
static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
{
u32 i;
if (level != 0) {
struct sidtab_node_inner *node = entry.ptr_inner;
if (!node)
return;
for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
sidtab_destroy_tree(node->entries[i], level - 1);
kfree(node);
} else {
struct sidtab_node_leaf *node = entry.ptr_leaf;
if (!node)
return;
for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
sidtab_destroy_entry(&node->entries[i]);
kfree(node);
}
}
void sidtab_destroy(struct sidtab *s)
{
u32 i, level;
for (i = 0; i < SECINITSID_NUM; i++)
if (s->isids[i].set)
sidtab_destroy_entry(&s->isids[i].entry);
level = SIDTAB_MAX_LEVEL;
while (level && !s->roots[level].ptr_inner)
--level;
sidtab_destroy_tree(s->roots[level], level);
/*
* The context_to_sid hashtable's objects are all shared
* with the isids array and context tree, and so don't need
* to be cleaned up here.
*/
}
#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
const char *str, u32 str_len)
{
struct sidtab_str_cache *cache, *victim = NULL;
unsigned long flags;
/* do not cache invalid contexts */
if (entry->context.len)
return;
spin_lock_irqsave(&s->cache_lock, flags);
cache = rcu_dereference_protected(entry->cache,
lockdep_is_held(&s->cache_lock));
if (cache) {
/* entry in cache - just bump to the head of LRU list */
list_move(&cache->lru_member, &s->cache_lru_list);
goto out_unlock;
}
cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
if (!cache)
goto out_unlock;
if (s->cache_free_slots == 0) {
/* pop a cache entry from the tail and free it */
victim = container_of(s->cache_lru_list.prev,
struct sidtab_str_cache, lru_member);
list_del(&victim->lru_member);
rcu_assign_pointer(victim->parent->cache, NULL);
} else {
s->cache_free_slots--;
}
cache->parent = entry;
cache->len = str_len;
memcpy(cache->str, str, str_len);
list_add(&cache->lru_member, &s->cache_lru_list);
rcu_assign_pointer(entry->cache, cache);
out_unlock:
spin_unlock_irqrestore(&s->cache_lock, flags);
kfree_rcu(victim, rcu_member);
}
int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
char **out, u32 *out_len)
{
struct sidtab_str_cache *cache;
int rc = 0;
if (entry->context.len)
return -ENOENT; /* do not cache invalid contexts */
rcu_read_lock();
cache = rcu_dereference(entry->cache);
if (!cache) {
rc = -ENOENT;
} else {
*out_len = cache->len;
if (out) {
*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
if (!*out)
rc = -ENOMEM;
}
}
rcu_read_unlock();
if (!rc && out)
sidtab_sid2str_put(s, entry, *out, *out_len);
return rc;
}
#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */