linuxdebug/drivers/dma/ppc4xx/adma.c

4630 lines
124 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2006-2009 DENX Software Engineering.
*
* Author: Yuri Tikhonov <yur@emcraft.com>
*
* Further porting to arch/powerpc by
* Anatolij Gustschin <agust@denx.de>
*/
/*
* This driver supports the asynchrounous DMA copy and RAID engines available
* on the AMCC PPC440SPe Processors.
* Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
* ADMA driver written by D.Williams.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/async_tx.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <asm/dcr.h>
#include <asm/dcr-regs.h>
#include "adma.h"
#include "../dmaengine.h"
enum ppc_adma_init_code {
PPC_ADMA_INIT_OK = 0,
PPC_ADMA_INIT_MEMRES,
PPC_ADMA_INIT_MEMREG,
PPC_ADMA_INIT_ALLOC,
PPC_ADMA_INIT_COHERENT,
PPC_ADMA_INIT_CHANNEL,
PPC_ADMA_INIT_IRQ1,
PPC_ADMA_INIT_IRQ2,
PPC_ADMA_INIT_REGISTER
};
static char *ppc_adma_errors[] = {
[PPC_ADMA_INIT_OK] = "ok",
[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
"structure",
[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
"hardware descriptors",
[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
};
static enum ppc_adma_init_code
ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
struct ppc_dma_chan_ref {
struct dma_chan *chan;
struct list_head node;
};
/* The list of channels exported by ppc440spe ADMA */
static struct list_head
ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
/* This flag is set when want to refetch the xor chain in the interrupt
* handler
*/
static u32 do_xor_refetch;
/* Pointer to DMA0, DMA1 CP/CS FIFO */
static void *ppc440spe_dma_fifo_buf;
/* Pointers to last submitted to DMA0, DMA1 CDBs */
static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
/* Pointer to last linked and submitted xor CB */
static struct ppc440spe_adma_desc_slot *xor_last_linked;
static struct ppc440spe_adma_desc_slot *xor_last_submit;
/* This array is used in data-check operations for storing a pattern */
static char ppc440spe_qword[16];
static atomic_t ppc440spe_adma_err_irq_ref;
static dcr_host_t ppc440spe_mq_dcr_host;
static unsigned int ppc440spe_mq_dcr_len;
/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
* the block size in transactions, then we do not allow to activate more than
* only one RXOR transactions simultaneously. So use this var to store
* the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
* set) or not (PPC440SPE_RXOR_RUN is clear).
*/
static unsigned long ppc440spe_rxor_state;
/* These are used in enable & check routines
*/
static u32 ppc440spe_r6_enabled;
static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
static struct completion ppc440spe_r6_test_comp;
static int ppc440spe_adma_dma2rxor_prep_src(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_rxor *cursor, int index,
int src_cnt, u32 addr);
static void ppc440spe_adma_dma2rxor_set_src(
struct ppc440spe_adma_desc_slot *desc,
int index, dma_addr_t addr);
static void ppc440spe_adma_dma2rxor_set_mult(
struct ppc440spe_adma_desc_slot *desc,
int index, u8 mult);
#ifdef ADMA_LL_DEBUG
#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
#else
#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
#endif
static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
{
struct dma_cdb *cdb;
struct xor_cb *cb;
int i;
switch (chan->device->id) {
case 0:
case 1:
cdb = block;
pr_debug("CDB at %p [%d]:\n"
"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
"\t sg1u 0x%08x sg1l 0x%08x\n"
"\t sg2u 0x%08x sg2l 0x%08x\n"
"\t sg3u 0x%08x sg3l 0x%08x\n",
cdb, chan->device->id,
cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
);
break;
case 2:
cb = block;
pr_debug("CB at %p [%d]:\n"
"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
"\t cbtah 0x%08x cbtal 0x%08x\n"
"\t cblah 0x%08x cblal 0x%08x\n",
cb, chan->device->id,
cb->cbc, cb->cbbc, cb->cbs,
cb->cbtah, cb->cbtal,
cb->cblah, cb->cblal);
for (i = 0; i < 16; i++) {
if (i && !cb->ops[i].h && !cb->ops[i].l)
continue;
pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
i, cb->ops[i].h, cb->ops[i].l);
}
break;
}
}
static void print_cb_list(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *iter)
{
for (; iter; iter = iter->hw_next)
print_cb(chan, iter->hw_desc);
}
static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
unsigned int src_cnt)
{
int i;
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx ", src[i]);
pr_debug("dst:\n\t0x%016llx\n", dst);
}
static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt)
{
int i;
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx ", src[i]);
pr_debug("dst: ");
for (i = 0; i < 2; i++)
pr_debug("\t0x%016llx ", dst[i]);
}
static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
unsigned int src_cnt,
const unsigned char *scf)
{
int i;
pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
if (scf) {
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
} else {
for (i = 0; i < src_cnt; i++)
pr_debug("\t0x%016llx(no) ", src[i]);
}
pr_debug("dst: ");
for (i = 0; i < 2; i++)
pr_debug("\t0x%016llx ", src[src_cnt + i]);
}
/******************************************************************************
* Command (Descriptor) Blocks low-level routines
******************************************************************************/
/**
* ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
* pseudo operation
*/
static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
struct xor_cb *p;
switch (chan->device->id) {
case PPC440SPE_XOR_ID:
p = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
/* NOP with Command Block Complete Enable */
p->cbc = XOR_CBCR_CBCE_BIT;
break;
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
/* NOP with interrupt */
set_bit(PPC440SPE_DESC_INT, &desc->flags);
break;
default:
printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
__func__);
break;
}
}
/**
* ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
* pseudo operation
*/
static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
{
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = 0;
desc->dst_cnt = 1;
}
/**
* ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
*/
static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
int src_cnt, unsigned long flags)
{
struct xor_cb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = src_cnt;
desc->dst_cnt = 1;
hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
if (flags & DMA_PREP_INTERRUPT)
/* Enable interrupt on completion */
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
}
/**
* ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
* operation in DMA2 controller
*/
static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt, unsigned long flags)
{
struct xor_cb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
desc->hw_next = NULL;
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
desc->descs_per_op = 0;
hw_desc->cbc = XOR_CBCR_TGT_BIT;
if (flags & DMA_PREP_INTERRUPT)
/* Enable interrupt on completion */
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
}
#define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
#define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
#define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
/**
* ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
* with DMA0/1
*/
static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt, unsigned long flags,
unsigned long op)
{
struct dma_cdb *hw_desc;
struct ppc440spe_adma_desc_slot *iter;
u8 dopc;
/* Common initialization of a PQ descriptors chain */
set_bits(op, &desc->flags);
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
/* WXOR MULTICAST if both P and Q are being computed
* MV_SG1_SG2 if Q only
*/
dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
list_for_each_entry(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
if (likely(!list_is_last(&iter->chain_node,
&desc->group_list))) {
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
} else {
/* this is the last descriptor.
* this slot will be pasted from ADMA level
* each time it wants to configure parameters
* of the transaction (src, dst, ...)
*/
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
}
}
/* Set OPS depending on WXOR/RXOR type of operation */
if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
/* This is a WXOR only chain:
* - first descriptors are for zeroing destinations
* if PPC440SPE_ZERO_P/Q set;
* - descriptors remained are for GF-XOR operations.
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
}
if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
}
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
hw_desc->opc = dopc;
}
} else {
/* This is either RXOR-only or mixed RXOR/WXOR */
/* The first 1 or 2 slots in chain are always RXOR,
* if need to calculate P & Q, then there are two
* RXOR slots; if only P or only Q, then there is one
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
}
/* The remaining descs (if any) are WXORs */
if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
list_for_each_entry_from(iter, &desc->group_list,
chain_node) {
hw_desc = iter->hw_desc;
hw_desc->opc = dopc;
}
}
}
}
/**
* ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
* for PQ_ZERO_SUM operation
*/
static void ppc440spe_desc_init_dma01pqzero_sum(
struct ppc440spe_adma_desc_slot *desc,
int dst_cnt, int src_cnt)
{
struct dma_cdb *hw_desc;
struct ppc440spe_adma_desc_slot *iter;
int i = 0;
u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
DMA_CDB_OPC_MV_SG1_SG2;
/*
* Initialize starting from 2nd or 3rd descriptor dependent
* on dst_cnt. First one or two slots are for cloning P
* and/or Q to chan->pdest and/or chan->qdest as we have
* to preserve original P/Q.
*/
iter = list_first_entry(&desc->group_list,
struct ppc440spe_adma_desc_slot, chain_node);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
if (dst_cnt > 1) {
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
}
/* initialize each source descriptor in chain */
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
hw_desc = iter->hw_desc;
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->src_cnt = 0;
iter->dst_cnt = 0;
/* This is a ZERO_SUM operation:
* - <src_cnt> descriptors starting from 2nd or 3rd
* descriptor are for GF-XOR operations;
* - remaining <dst_cnt> descriptors are for checking the result
*/
if (i++ < src_cnt)
/* MV_SG1_SG2 if only Q is being verified
* MULTICAST if both P and Q are being verified
*/
hw_desc->opc = dopc;
else
/* DMA_CDB_OPC_DCHECK128 operation */
hw_desc->opc = DMA_CDB_OPC_DCHECK128;
if (likely(!list_is_last(&iter->chain_node,
&desc->group_list))) {
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
} else {
/* this is the last descriptor.
* this slot will be pasted from ADMA level
* each time it wants to configure parameters
* of the transaction (src, dst, ...)
*/
iter->hw_next = NULL;
/* always enable interrupt generation since we get
* the status of pqzero from the handler
*/
set_bit(PPC440SPE_DESC_INT, &iter->flags);
}
}
desc->src_cnt = src_cnt;
desc->dst_cnt = dst_cnt;
}
/**
* ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
*/
static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
unsigned long flags)
{
struct dma_cdb *hw_desc = desc->hw_desc;
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
desc->hw_next = NULL;
desc->src_cnt = 1;
desc->dst_cnt = 1;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &desc->flags);
else
clear_bit(PPC440SPE_DESC_INT, &desc->flags);
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
}
/**
* ppc440spe_desc_set_src_addr - set source address into the descriptor
*/
static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
int src_idx, dma_addr_t addrh,
dma_addr_t addrl)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
phys_addr_t addr64, tmplow, tmphi;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (!addrh) {
addr64 = addrl;
tmphi = (addr64 >> 32);
tmplow = (addr64 & 0xFFFFFFFF);
} else {
tmphi = addrh;
tmplow = addrl;
}
dma_hw_desc = desc->hw_desc;
dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->ops[src_idx].l = addrl;
xor_hw_desc->ops[src_idx].h |= addrh;
break;
}
}
/**
* ppc440spe_desc_set_src_mult - set source address mult into the descriptor
*/
static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan, u32 mult_index,
int sg_index, unsigned char mult_value)
{
struct dma_cdb *dma_hw_desc;
u32 *psgu;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
switch (sg_index) {
/* for RXOR operations set multiplier
* into source cued address
*/
case DMA_CDB_SG_SRC:
psgu = &dma_hw_desc->sg1u;
break;
/* for WXOR operations set multiplier
* into destination cued address(es)
*/
case DMA_CDB_SG_DST1:
psgu = &dma_hw_desc->sg2u;
break;
case DMA_CDB_SG_DST2:
psgu = &dma_hw_desc->sg3u;
break;
default:
BUG();
}
*psgu |= cpu_to_le32(mult_value << mult_index);
break;
case PPC440SPE_XOR_ID:
break;
default:
BUG();
}
}
/**
* ppc440spe_desc_set_dest_addr - set destination address into the descriptor
*/
static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
dma_addr_t addrh, dma_addr_t addrl,
u32 dst_idx)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
phys_addr_t addr64, tmphi, tmplow;
u32 *psgu, *psgl;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (!addrh) {
addr64 = addrl;
tmphi = (addr64 >> 32);
tmplow = (addr64 & 0xFFFFFFFF);
} else {
tmphi = addrh;
tmplow = addrl;
}
dma_hw_desc = desc->hw_desc;
psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
*psgl = cpu_to_le32((u32)tmplow);
*psgu |= cpu_to_le32((u32)tmphi);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->cbtal = addrl;
xor_hw_desc->cbtah |= addrh;
break;
}
}
/**
* ppc440spe_desc_set_byte_count - set number of data bytes involved
* into the operation
*/
static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
u32 byte_count)
{
struct dma_cdb *dma_hw_desc;
struct xor_cb *xor_hw_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
dma_hw_desc->cnt = cpu_to_le32(byte_count);
break;
case PPC440SPE_XOR_ID:
xor_hw_desc = desc->hw_desc;
xor_hw_desc->cbbc = byte_count;
break;
}
}
/**
* ppc440spe_desc_set_rxor_block_size - set RXOR block size
*/
static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
{
/* assume that byte_count is aligned on the 512-boundary;
* thus write it directly to the register (bits 23:31 are
* reserved there).
*/
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
}
/**
* ppc440spe_desc_set_dcheck - set CHECK pattern
*/
static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan, u8 *qword)
{
struct dma_cdb *dma_hw_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_hw_desc = desc->hw_desc;
iowrite32(qword[0], &dma_hw_desc->sg3l);
iowrite32(qword[4], &dma_hw_desc->sg3u);
iowrite32(qword[8], &dma_hw_desc->sg2l);
iowrite32(qword[12], &dma_hw_desc->sg2u);
break;
default:
BUG();
}
}
/**
* ppc440spe_xor_set_link - set link address in xor CB
*/
static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
struct ppc440spe_adma_desc_slot *next_desc)
{
struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
if (unlikely(!next_desc || !(next_desc->phys))) {
printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
__func__, next_desc,
next_desc ? next_desc->phys : 0);
BUG();
}
xor_hw_desc->cbs = 0;
xor_hw_desc->cblal = next_desc->phys;
xor_hw_desc->cblah = 0;
xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
}
/**
* ppc440spe_desc_set_link - set the address of descriptor following this
* descriptor in chain
*/
static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *prev_desc,
struct ppc440spe_adma_desc_slot *next_desc)
{
unsigned long flags;
struct ppc440spe_adma_desc_slot *tail = next_desc;
if (unlikely(!prev_desc || !next_desc ||
(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
/* If previous next is overwritten something is wrong.
* though we may refetch from append to initiate list
* processing; in this case - it's ok.
*/
printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
"prev->hw_next=0x%p\n", __func__, prev_desc,
next_desc, prev_desc ? prev_desc->hw_next : 0);
BUG();
}
local_irq_save(flags);
/* do s/w chaining both for DMA and XOR descriptors */
prev_desc->hw_next = next_desc;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
break;
case PPC440SPE_XOR_ID:
/* bind descriptor to the chain */
while (tail->hw_next)
tail = tail->hw_next;
xor_last_linked = tail;
if (prev_desc == xor_last_submit)
/* do not link to the last submitted CB */
break;
ppc440spe_xor_set_link(prev_desc, next_desc);
break;
}
local_irq_restore(flags);
}
/**
* ppc440spe_desc_get_link - get the address of the descriptor that
* follows this one
*/
static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
if (!desc->hw_next)
return 0;
return desc->hw_next->phys;
}
/**
* ppc440spe_desc_is_aligned - check alignment
*/
static inline int ppc440spe_desc_is_aligned(
struct ppc440spe_adma_desc_slot *desc, int num_slots)
{
return (desc->idx & (num_slots - 1)) ? 0 : 1;
}
/**
* ppc440spe_chan_xor_slot_count - get the number of slots necessary for
* XOR operation
*/
static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt;
/* each XOR descriptor provides up to 16 source operands */
slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
return slot_cnt;
printk(KERN_ERR "%s: len %d > max %d !!\n",
__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
BUG();
return slot_cnt;
}
/**
* ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
* DMA2 PQ operation
*/
static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
int src_cnt, size_t len)
{
signed long long order = 0;
int state = 0;
int addr_count = 0;
int i;
for (i = 1; i < src_cnt; i++) {
dma_addr_t cur_addr = srcs[i];
dma_addr_t old_addr = srcs[i-1];
switch (state) {
case 0:
if (cur_addr == old_addr + len) {
/* direct RXOR */
order = 1;
state = 1;
if (i == src_cnt-1)
addr_count++;
} else if (old_addr == cur_addr + len) {
/* reverse RXOR */
order = -1;
state = 1;
if (i == src_cnt-1)
addr_count++;
} else {
state = 3;
}
break;
case 1:
if (i == src_cnt-2 || (order == -1
&& cur_addr != old_addr - len)) {
order = 0;
state = 0;
addr_count++;
} else if (cur_addr == old_addr + len*order) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else if (cur_addr == old_addr + 2*len) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else if (cur_addr == old_addr + 3*len) {
state = 2;
if (i == src_cnt-1)
addr_count++;
} else {
order = 0;
state = 0;
addr_count++;
}
break;
case 2:
order = 0;
state = 0;
addr_count++;
break;
}
if (state == 3)
break;
}
if (src_cnt <= 1 || (state != 1 && state != 2)) {
pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
__func__, src_cnt, state, addr_count, order);
for (i = 0; i < src_cnt; i++)
pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
BUG();
}
return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
}
/******************************************************************************
* ADMA channel low-level routines
******************************************************************************/
static u32
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
/**
* ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
*/
static void ppc440spe_adma_device_clear_eot_status(
struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
u8 *p = chan->device->dma_desc_pool_virt;
struct dma_cdb *cdb;
u32 rv, i;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* read FIFO to ack */
dma_reg = chan->device->dma_reg;
while ((rv = ioread32(&dma_reg->csfpl))) {
i = rv & DMA_CDB_ADDR_MSK;
cdb = (struct dma_cdb *)&p[i -
(u32)chan->device->dma_desc_pool];
/* Clear opcode to ack. This is necessary for
* ZeroSum operations only
*/
cdb->opc = 0;
if (test_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state)) {
/* probably this is a completed RXOR op,
* get pointer to CDB using the fact that
* physical and virtual addresses of CDB
* in pools have the same offsets
*/
if (le32_to_cpu(cdb->sg1u) &
DMA_CUED_XOR_BASE) {
/* this is a RXOR */
clear_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state);
}
}
if (rv & DMA_CDB_STATUS_MSK) {
/* ZeroSum check failed
*/
struct ppc440spe_adma_desc_slot *iter;
dma_addr_t phys = rv & ~DMA_CDB_MSK;
/*
* Update the status of corresponding
* descriptor.
*/
list_for_each_entry(iter, &chan->chain,
chain_node) {
if (iter->phys == phys)
break;
}
/*
* if cannot find the corresponding
* slot it's a bug
*/
BUG_ON(&iter->chain_node == &chan->chain);
if (iter->xor_check_result) {
if (test_bit(PPC440SPE_DESC_PCHECK,
&iter->flags)) {
*iter->xor_check_result |=
SUM_CHECK_P_RESULT;
} else
if (test_bit(PPC440SPE_DESC_QCHECK,
&iter->flags)) {
*iter->xor_check_result |=
SUM_CHECK_Q_RESULT;
} else
BUG();
}
}
}
rv = ioread32(&dma_reg->dsts);
if (rv) {
pr_err("DMA%d err status: 0x%x\n",
chan->device->id, rv);
/* write back to clear */
iowrite32(rv, &dma_reg->dsts);
}
break;
case PPC440SPE_XOR_ID:
/* reset status bits to ack */
xor_reg = chan->device->xor_reg;
rv = ioread32be(&xor_reg->sr);
iowrite32be(rv, &xor_reg->sr);
if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
if (rv & XOR_IE_RPTIE_BIT) {
/* Read PLB Timeout Error.
* Try to resubmit the CB
*/
u32 val = ioread32be(&xor_reg->ccbalr);
iowrite32be(val, &xor_reg->cblalr);
val = ioread32be(&xor_reg->crsr);
iowrite32be(val | XOR_CRSR_XAE_BIT,
&xor_reg->crsr);
} else
pr_err("XOR ERR 0x%x status\n", rv);
break;
}
/* if the XORcore is idle, but there are unprocessed CBs
* then refetch the s/w chain here
*/
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
do_xor_refetch)
ppc440spe_chan_append(chan);
break;
}
}
/**
* ppc440spe_chan_is_busy - get the channel status
*/
static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
int busy = 0;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_reg = chan->device->dma_reg;
/* if command FIFO's head and tail pointers are equal and
* status tail is the same as command, then channel is free
*/
if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
busy = 1;
break;
case PPC440SPE_XOR_ID:
/* use the special status bit for the XORcore
*/
xor_reg = chan->device->xor_reg;
busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
break;
}
return busy;
}
/**
* ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
*/
static void ppc440spe_chan_set_first_xor_descriptor(
struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *next_desc)
{
struct xor_regs *xor_reg = chan->device->xor_reg;
if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
printk(KERN_INFO "%s: Warn: XORcore is running "
"when try to set the first CDB!\n",
__func__);
xor_last_submit = xor_last_linked = next_desc;
iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
iowrite32be(next_desc->phys, &xor_reg->cblalr);
iowrite32be(0, &xor_reg->cblahr);
iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
&xor_reg->cbcr);
chan->hw_chain_inited = 1;
}
/**
* ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
* called with irqs disabled
*/
static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
struct ppc440spe_adma_desc_slot *desc)
{
u32 pcdb;
struct dma_regs *dma_reg = chan->device->dma_reg;
pcdb = desc->phys;
if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
pcdb |= DMA_CDB_NO_INT;
chan_last_sub[chan->device->id] = desc;
ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
iowrite32(pcdb, &dma_reg->cpfpl);
}
/**
* ppc440spe_chan_append - update the h/w chain in the channel
*/
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
{
struct xor_regs *xor_reg;
struct ppc440spe_adma_desc_slot *iter;
struct xor_cb *xcb;
u32 cur_desc;
unsigned long flags;
local_irq_save(flags);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
cur_desc = ppc440spe_chan_get_current_descriptor(chan);
if (likely(cur_desc)) {
iter = chan_last_sub[chan->device->id];
BUG_ON(!iter);
} else {
/* first peer */
iter = chan_first_cdb[chan->device->id];
BUG_ON(!iter);
ppc440spe_dma_put_desc(chan, iter);
chan->hw_chain_inited = 1;
}
/* is there something new to append */
if (!iter->hw_next)
break;
/* flush descriptors from the s/w queue to fifo */
list_for_each_entry_continue(iter, &chan->chain, chain_node) {
ppc440spe_dma_put_desc(chan, iter);
if (!iter->hw_next)
break;
}
break;
case PPC440SPE_XOR_ID:
/* update h/w links and refetch */
if (!xor_last_submit->hw_next)
break;
xor_reg = chan->device->xor_reg;
/* the last linked CDB has to generate an interrupt
* that we'd be able to append the next lists to h/w
* regardless of the XOR engine state at the moment of
* appending of these next lists
*/
xcb = xor_last_linked->hw_desc;
xcb->cbc |= XOR_CBCR_CBCE_BIT;
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
/* XORcore is idle. Refetch now */
do_xor_refetch = 0;
ppc440spe_xor_set_link(xor_last_submit,
xor_last_submit->hw_next);
ADMA_LL_DBG(print_cb_list(chan,
xor_last_submit->hw_next));
xor_last_submit = xor_last_linked;
iowrite32be(ioread32be(&xor_reg->crsr) |
XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
&xor_reg->crsr);
} else {
/* XORcore is running. Refetch later in the handler */
do_xor_refetch = 1;
}
break;
}
local_irq_restore(flags);
}
/**
* ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
*/
static u32
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
{
struct dma_regs *dma_reg;
struct xor_regs *xor_reg;
if (unlikely(!chan->hw_chain_inited))
/* h/w descriptor chain is not initialized yet */
return 0;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_reg = chan->device->dma_reg;
return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
case PPC440SPE_XOR_ID:
xor_reg = chan->device->xor_reg;
return ioread32be(&xor_reg->ccbalr);
}
return 0;
}
/**
* ppc440spe_chan_run - enable the channel
*/
static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
{
struct xor_regs *xor_reg;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* DMAs are always enabled, do nothing */
break;
case PPC440SPE_XOR_ID:
/* drain write buffer */
xor_reg = chan->device->xor_reg;
/* fetch descriptor pointed to in <link> */
iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
&xor_reg->crsr);
break;
}
}
/******************************************************************************
* ADMA device level
******************************************************************************/
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t *paddr, unsigned long flags);
static void
ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t addr, int index);
static void
ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
unsigned char mult, int index, int dst_pos);
static void
ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
dma_addr_t paddr, dma_addr_t qaddr);
static struct page *ppc440spe_rxor_srcs[32];
/**
* ppc440spe_can_rxor - check if the operands may be processed with RXOR
*/
static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
{
int i, order = 0, state = 0;
int idx = 0;
if (unlikely(!(src_cnt > 1)))
return 0;
BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
/* Skip holes in the source list before checking */
for (i = 0; i < src_cnt; i++) {
if (!srcs[i])
continue;
ppc440spe_rxor_srcs[idx++] = srcs[i];
}
src_cnt = idx;
for (i = 1; i < src_cnt; i++) {
char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
switch (state) {
case 0:
if (cur_addr == old_addr + len) {
/* direct RXOR */
order = 1;
state = 1;
} else if (old_addr == cur_addr + len) {
/* reverse RXOR */
order = -1;
state = 1;
} else
goto out;
break;
case 1:
if ((i == src_cnt - 2) ||
(order == -1 && cur_addr != old_addr - len)) {
order = 0;
state = 0;
} else if ((cur_addr == old_addr + len * order) ||
(cur_addr == old_addr + 2 * len) ||
(cur_addr == old_addr + 3 * len)) {
state = 2;
} else {
order = 0;
state = 0;
}
break;
case 2:
order = 0;
state = 0;
break;
}
}
out:
if (state == 1 || state == 2)
return 1;
return 0;
}
/**
* ppc440spe_adma_device_estimate - estimate the efficiency of processing
* the operation given on this channel. It's assumed that 'chan' is
* capable to process 'cap' type of operation.
* @chan: channel to use
* @cap: type of transaction
* @dst_lst: array of destination pointers
* @dst_cnt: number of destination operands
* @src_lst: array of source pointers
* @src_cnt: number of source operands
* @src_sz: size of each source operand
*/
static int ppc440spe_adma_estimate(struct dma_chan *chan,
enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
struct page **src_lst, int src_cnt, size_t src_sz)
{
int ef = 1;
if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
/* If RAID-6 capabilities were not activated don't try
* to use them
*/
if (unlikely(!ppc440spe_r6_enabled))
return -1;
}
/* In the current implementation of ppc440spe ADMA driver it
* makes sense to pick out only pq case, because it may be
* processed:
* (1) either using Biskup method on DMA2;
* (2) or on DMA0/1.
* Thus we give a favour to (1) if the sources are suitable;
* else let it be processed on one of the DMA0/1 engines.
* In the sum_product case where destination is also the
* source process it on DMA0/1 only.
*/
if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
ef = 0; /* sum_product case, process on DMA0/1 */
else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
ef = 3; /* override (DMA0/1 + idle) */
else
ef = 0; /* can't process on DMA2 if !rxor */
}
/* channel idleness increases the priority */
if (likely(ef) &&
!ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
ef++;
return ef;
}
struct dma_chan *
ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
struct page **dst_lst, int dst_cnt, struct page **src_lst,
int src_cnt, size_t src_sz)
{
struct dma_chan *best_chan = NULL;
struct ppc_dma_chan_ref *ref;
int best_rank = -1;
if (unlikely(!src_sz))
return NULL;
if (src_sz > PAGE_SIZE) {
/*
* should a user of the api ever pass > PAGE_SIZE requests
* we sort out cases where temporary page-sized buffers
* are used.
*/
switch (cap) {
case DMA_PQ:
if (src_cnt == 1 && dst_lst[1] == src_lst[0])
return NULL;
if (src_cnt == 2 && dst_lst[1] == src_lst[1])
return NULL;
break;
case DMA_PQ_VAL:
case DMA_XOR_VAL:
return NULL;
default:
break;
}
}
list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
int rank;
rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
dst_cnt, src_lst, src_cnt, src_sz);
if (rank > best_rank) {
best_rank = rank;
best_chan = ref->chan;
}
}
}
return best_chan;
}
EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
/**
* ppc440spe_get_group_entry - get group entry with index idx
* @tdesc: is the last allocated slot in the group.
*/
static struct ppc440spe_adma_desc_slot *
ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
{
struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
int i = 0;
if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
BUG();
}
list_for_each_entry(iter, &tdesc->group_list, chain_node) {
if (i++ == entry_idx)
break;
}
return iter;
}
/**
* ppc440spe_adma_free_slots - flags descriptor slots for reuse
* @slot: Slot to free
* Caller must hold &ppc440spe_chan->lock while calling this function
*/
static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
struct ppc440spe_adma_chan *chan)
{
int stride = slot->slots_per_op;
while (stride--) {
slot->slots_per_op = 0;
slot = list_entry(slot->slot_node.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
}
/**
* ppc440spe_adma_run_tx_complete_actions - call functions to be called
* upon completion
*/
static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan,
dma_cookie_t cookie)
{
BUG_ON(desc->async_tx.cookie < 0);
if (desc->async_tx.cookie > 0) {
cookie = desc->async_tx.cookie;
desc->async_tx.cookie = 0;
dma_descriptor_unmap(&desc->async_tx);
/* call the callback (must not sleep or submit new
* operations to this channel)
*/
dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
}
/* run dependent operations */
dma_run_dependencies(&desc->async_tx);
return cookie;
}
/**
* ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
*/
static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_adma_chan *chan)
{
/* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->async_tx))
return 0;
/* leave the last descriptor in the chain
* so we can append to it
*/
if (list_is_last(&desc->chain_node, &chan->chain) ||
desc->phys == ppc440spe_chan_get_current_descriptor(chan))
return 1;
if (chan->device->id != PPC440SPE_XOR_ID) {
/* our DMA interrupt handler clears opc field of
* each processed descriptor. For all types of
* operations except for ZeroSum we do not actually
* need ack from the interrupt handler. ZeroSum is a
* special case since the result of this operation
* is available from the handler only, so if we see
* such type of descriptor (which is unprocessed yet)
* then leave it in chain.
*/
struct dma_cdb *cdb = desc->hw_desc;
if (cdb->opc == DMA_CDB_OPC_DCHECK128)
return 1;
}
dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
desc->phys, desc->idx, desc->slots_per_op);
list_del(&desc->chain_node);
ppc440spe_adma_free_slots(desc, chan);
return 0;
}
/**
* __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
* which runs through the channel CDBs list until reach the descriptor
* currently processed. When routine determines that all CDBs of group
* are completed then corresponding callbacks (if any) are called and slots
* are freed.
*/
static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
dma_cookie_t cookie = 0;
u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
int busy = ppc440spe_chan_is_busy(chan);
int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
chan->device->id, __func__);
if (!current_desc) {
/* There were no transactions yet, so
* nothing to clean
*/
return;
}
/* free completed slots from the chain starting with
* the oldest descriptor
*/
list_for_each_entry_safe(iter, _iter, &chan->chain,
chain_node) {
dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
"busy: %d this_desc: %#llx next_desc: %#x "
"cur: %#x ack: %d\n",
iter->async_tx.cookie, iter->idx, busy, iter->phys,
ppc440spe_desc_get_link(iter, chan), current_desc,
async_tx_test_ack(&iter->async_tx));
prefetch(_iter);
prefetch(&_iter->async_tx);
/* do not advance past the current descriptor loaded into the
* hardware channel,subsequent descriptors are either in process
* or have not been submitted
*/
if (seen_current)
break;
/* stop the search if we reach the current descriptor and the
* channel is busy, or if it appears that the current descriptor
* needs to be re-read (i.e. has been appended to)
*/
if (iter->phys == current_desc) {
BUG_ON(seen_current++);
if (busy || ppc440spe_desc_get_link(iter, chan)) {
/* not all descriptors of the group have
* been completed; exit.
*/
break;
}
}
/* detect the start of a group transaction */
if (!slot_cnt && !slots_per_op) {
slot_cnt = iter->slot_cnt;
slots_per_op = iter->slots_per_op;
if (slot_cnt <= slots_per_op) {
slot_cnt = 0;
slots_per_op = 0;
}
}
if (slot_cnt) {
if (!group_start)
group_start = iter;
slot_cnt -= slots_per_op;
}
/* all the members of a group are complete */
if (slots_per_op != 0 && slot_cnt == 0) {
struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
int end_of_chain = 0;
/* clean up the group */
slot_cnt = group_start->slot_cnt;
grp_iter = group_start;
list_for_each_entry_safe_from(grp_iter, _grp_iter,
&chan->chain, chain_node) {
cookie = ppc440spe_adma_run_tx_complete_actions(
grp_iter, chan, cookie);
slot_cnt -= slots_per_op;
end_of_chain = ppc440spe_adma_clean_slot(
grp_iter, chan);
if (end_of_chain && slot_cnt) {
/* Should wait for ZeroSum completion */
if (cookie > 0)
chan->common.completed_cookie = cookie;
return;
}
if (slot_cnt == 0 || end_of_chain)
break;
}
/* the group should be complete at this point */
BUG_ON(slot_cnt);
slots_per_op = 0;
group_start = NULL;
if (end_of_chain)
break;
else
continue;
} else if (slots_per_op) /* wait for group completion */
continue;
cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
cookie);
if (ppc440spe_adma_clean_slot(iter, chan))
break;
}
BUG_ON(!seen_current);
if (cookie > 0) {
chan->common.completed_cookie = cookie;
pr_debug("\tcompleted cookie %d\n", cookie);
}
}
/**
* ppc440spe_adma_tasklet - clean up watch-dog initiator
*/
static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
{
struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
__ppc440spe_adma_slot_cleanup(chan);
spin_unlock(&chan->lock);
}
/**
* ppc440spe_adma_slot_cleanup - clean up scheduled initiator
*/
static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
{
spin_lock_bh(&chan->lock);
__ppc440spe_adma_slot_cleanup(chan);
spin_unlock_bh(&chan->lock);
}
/**
* ppc440spe_adma_alloc_slots - allocate free slots (if any)
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
struct ppc440spe_adma_chan *chan, int num_slots,
int slots_per_op)
{
struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
struct ppc440spe_adma_desc_slot *alloc_start = NULL;
int slots_found, retry = 0;
LIST_HEAD(chain);
BUG_ON(!num_slots || !slots_per_op);
/* start search from the last allocated descrtiptor
* if a contiguous allocation can not be found start searching
* from the beginning of the list
*/
retry:
slots_found = 0;
if (retry == 0)
iter = chan->last_used;
else
iter = list_entry(&chan->all_slots,
struct ppc440spe_adma_desc_slot,
slot_node);
list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
slot_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
if (iter->slots_per_op) {
slots_found = 0;
continue;
}
/* start the allocation if the slot is correctly aligned */
if (!slots_found++)
alloc_start = iter;
if (slots_found == num_slots) {
struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
struct ppc440spe_adma_desc_slot *last_used = NULL;
iter = alloc_start;
while (num_slots) {
int i;
/* pre-ack all but the last descriptor */
if (num_slots != slots_per_op)
async_tx_ack(&iter->async_tx);
list_add_tail(&iter->chain_node, &chain);
alloc_tail = iter;
iter->async_tx.cookie = 0;
iter->hw_next = NULL;
iter->flags = 0;
iter->slot_cnt = num_slots;
iter->xor_check_result = NULL;
for (i = 0; i < slots_per_op; i++) {
iter->slots_per_op = slots_per_op - i;
last_used = iter;
iter = list_entry(iter->slot_node.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
num_slots -= slots_per_op;
}
alloc_tail->group_head = alloc_start;
alloc_tail->async_tx.cookie = -EBUSY;
list_splice(&chain, &alloc_tail->group_list);
chan->last_used = last_used;
return alloc_tail;
}
}
if (!retry++)
goto retry;
/* try to free some slots if the allocation fails */
tasklet_schedule(&chan->irq_tasklet);
return NULL;
}
/**
* ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
*/
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *slot = NULL;
char *hw_desc;
int i, db_sz;
int init;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
init = ppc440spe_chan->slots_allocated ? 0 : 1;
chan->chan_id = ppc440spe_chan->device->id;
/* Allocate descriptor slots */
i = ppc440spe_chan->slots_allocated;
if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
db_sz = sizeof(struct dma_cdb);
else
db_sz = sizeof(struct xor_cb);
for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
GFP_KERNEL);
if (!slot) {
printk(KERN_INFO "SPE ADMA Channel only initialized"
" %d descriptor slots", i--);
break;
}
hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
slot->hw_desc = (void *) &hw_desc[i * db_sz];
dma_async_tx_descriptor_init(&slot->async_tx, chan);
slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->group_list);
slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
slot->idx = i;
spin_lock_bh(&ppc440spe_chan->lock);
ppc440spe_chan->slots_allocated++;
list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
spin_unlock_bh(&ppc440spe_chan->lock);
}
if (i && !ppc440spe_chan->last_used) {
ppc440spe_chan->last_used =
list_entry(ppc440spe_chan->all_slots.next,
struct ppc440spe_adma_desc_slot,
slot_node);
}
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: allocated %d descriptor slots\n",
ppc440spe_chan->device->id, i);
/* initialize the channel and the chain with a null operation */
if (init) {
switch (ppc440spe_chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
ppc440spe_chan->hw_chain_inited = 0;
/* Use WXOR for self-testing */
if (!ppc440spe_r6_tchan)
ppc440spe_r6_tchan = ppc440spe_chan;
break;
case PPC440SPE_XOR_ID:
ppc440spe_chan_start_null_xor(ppc440spe_chan);
break;
default:
BUG();
}
ppc440spe_chan->needs_unmap = 1;
}
return (i > 0) ? i : -ENOMEM;
}
/**
* ppc440spe_rxor_set_region_data -
*/
static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, u32 mask)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= mask;
}
/**
* ppc440spe_rxor_set_src -
*/
static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, dma_addr_t addr)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
xcb->ops[xor_arg_no].l = addr;
}
/**
* ppc440spe_rxor_set_mult -
*/
static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
u8 xor_arg_no, u8 idx, u8 mult)
{
struct xor_cb *xcb = desc->hw_desc;
xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
}
/**
* ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
* has been achieved
*/
static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
{
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
chan->device->id, chan->pending);
if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
chan->pending = 0;
ppc440spe_chan_append(chan);
}
}
/**
* ppc440spe_adma_tx_submit - submit new descriptor group to the channel
* (it's not necessary that descriptors will be submitted to the h/w
* chains too right now)
*/
static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ppc440spe_adma_desc_slot *sw_desc;
struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
int slot_cnt;
int slots_per_op;
dma_cookie_t cookie;
sw_desc = tx_to_ppc440spe_adma_slot(tx);
group_start = sw_desc->group_head;
slot_cnt = group_start->slot_cnt;
slots_per_op = group_start->slots_per_op;
spin_lock_bh(&chan->lock);
cookie = dma_cookie_assign(tx);
if (unlikely(list_empty(&chan->chain))) {
/* first peer */
list_splice_init(&sw_desc->group_list, &chan->chain);
chan_first_cdb[chan->device->id] = group_start;
} else {
/* isn't first peer, bind CDBs to chain */
old_chain_tail = list_entry(chan->chain.prev,
struct ppc440spe_adma_desc_slot,
chain_node);
list_splice_init(&sw_desc->group_list,
&old_chain_tail->chain_node);
/* fix up the hardware chain */
ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
}
/* increment the pending count by the number of operations */
chan->pending += slot_cnt / slots_per_op;
ppc440spe_adma_check_threshold(chan);
spin_unlock_bh(&chan->lock);
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
chan->device->id, __func__,
sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
return cookie;
}
/**
* ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
struct dma_chan *chan, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
__func__);
spin_lock_bh(&ppc440spe_chan->lock);
slot_cnt = slots_per_op = 1;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
group_start->unmap_len = 0;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
if (unlikely(!len))
return NULL;
BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
spin_lock_bh(&ppc440spe_chan->lock);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s len: %u int_en %d\n",
ppc440spe_chan->device->id, __func__, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
slot_cnt = slots_per_op = 1;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_memcpy(group_start, flags);
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t *dma_src, u32 src_cnt, size_t len,
unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
int slot_cnt, slots_per_op;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
dma_dest, dma_src, src_cnt));
if (unlikely(!len))
return NULL;
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
ppc440spe_chan->device->id, __func__, src_cnt, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
spin_lock_bh(&ppc440spe_chan->lock);
slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
ppc440spe_desc_init_xor(group_start, src_cnt, flags);
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
while (src_cnt--)
ppc440spe_adma_memcpy_xor_set_src(group_start,
dma_src[src_cnt], src_cnt);
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static inline void
ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
int src_cnt);
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
/**
* ppc440spe_adma_init_dma2rxor_slot -
*/
static void ppc440spe_adma_init_dma2rxor_slot(
struct ppc440spe_adma_desc_slot *desc,
dma_addr_t *src, int src_cnt)
{
int i;
/* initialize CDB */
for (i = 0; i < src_cnt; i++) {
ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
desc->src_cnt, (u32)src[i]);
}
}
/**
* ppc440spe_dma01_prep_mult -
* for Q operation where destination is also the source
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
unsigned long op = 0;
int slot_cnt;
set_bit(PPC440SPE_DESC_WXOR, &op);
slot_cnt = 2;
spin_lock_bh(&ppc440spe_chan->lock);
/* use WXOR, each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
struct ppc440spe_adma_chan *chan;
struct ppc440spe_adma_desc_slot *iter;
struct dma_cdb *hw_desc;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
set_bits(op, &sw_desc->flags);
sw_desc->src_cnt = src_cnt;
sw_desc->dst_cnt = dst_cnt;
/* First descriptor, zero data in the destination and copy it
* to q page using MULTICAST transfer.
*/
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, dst[0], 0);
ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/*
* Second descriptor, multiply data from the q page
* and store the result in real destination.
*/
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0,
DMA_CUED_XOR_HB, dst[1]);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, dst[0], 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
/**
* ppc440spe_dma01_prep_sum_product -
* Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
* the source.
*/
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
unsigned long op = 0;
int slot_cnt;
set_bit(PPC440SPE_DESC_WXOR, &op);
slot_cnt = 3;
spin_lock_bh(&ppc440spe_chan->lock);
/* WXOR, each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
struct ppc440spe_adma_chan *chan;
struct ppc440spe_adma_desc_slot *iter;
struct dma_cdb *hw_desc;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
set_bits(op, &sw_desc->flags);
sw_desc->src_cnt = src_cnt;
sw_desc->dst_cnt = 1;
/* 1st descriptor, src[1] data to q page and zero destination */
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->qdest, 1);
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[1]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/* 2nd descriptor, multiply src[1] data and store the
* result in destination */
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
/* set 'next' pointer */
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
ppc440spe_chan->qdest);
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[1]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
/*
* 3rd descriptor, multiply src[0] data and xor it
* with destination
*/
iter = list_first_entry(&iter->chain_node,
struct ppc440spe_adma_desc_slot,
chain_node);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = NULL;
if (flags & DMA_PREP_INTERRUPT)
set_bit(PPC440SPE_DESC_INT, &iter->flags);
else
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
src[0]);
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
*dst, 0);
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, scf[0]);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
iter->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
int slot_cnt;
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
unsigned long op = 0;
unsigned char mult = 1;
pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
__func__, dst_cnt, src_cnt, len);
/* select operations WXOR/RXOR depending on the
* source addresses of operators and the number
* of destinations (RXOR support only Q-parity calculations)
*/
set_bit(PPC440SPE_DESC_WXOR, &op);
if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
/* no active RXOR;
* do RXOR if:
* - there are more than 1 source,
* - len is aligned on 512-byte boundary,
* - source addresses fit to one of 4 possible regions.
*/
if (src_cnt > 1 &&
!(len & MQ0_CF2H_RXOR_BS_MASK) &&
(src[0] + len) == src[1]) {
/* may do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR, &op);
if (src_cnt != 2) {
/* may try to enhance region of RXOR */
if ((src[1] + len) == src[2]) {
/* do RXOR R1 R2 R3 */
set_bit(PPC440SPE_DESC_RXOR123,
&op);
} else if ((src[1] + len * 2) == src[2]) {
/* do RXOR R1 R2 R4 */
set_bit(PPC440SPE_DESC_RXOR124, &op);
} else if ((src[1] + len * 3) == src[2]) {
/* do RXOR R1 R2 R5 */
set_bit(PPC440SPE_DESC_RXOR125,
&op);
} else {
/* do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR12,
&op);
}
} else {
/* do RXOR R1 R2 */
set_bit(PPC440SPE_DESC_RXOR12, &op);
}
}
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
/* can not do this operation with RXOR */
clear_bit(PPC440SPE_RXOR_RUN,
&ppc440spe_rxor_state);
} else {
/* can do; set block size right now */
ppc440spe_desc_set_rxor_block_size(len);
}
}
/* Number of necessary slots depends on operation type selected */
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
/* This is a WXOR only chain. Need descriptors for each
* source to GF-XOR them with WXOR, and need descriptors
* for each destination to zero them with WXOR
*/
slot_cnt = src_cnt;
if (flags & DMA_PREP_ZERO_P) {
slot_cnt++;
set_bit(PPC440SPE_ZERO_P, &op);
}
if (flags & DMA_PREP_ZERO_Q) {
slot_cnt++;
set_bit(PPC440SPE_ZERO_Q, &op);
}
} else {
/* Need 1/2 descriptor for RXOR operation, and
* need (src_cnt - (2 or 3)) for WXOR of sources
* remained (if any)
*/
slot_cnt = dst_cnt;
if (flags & DMA_PREP_ZERO_P)
set_bit(PPC440SPE_ZERO_P, &op);
if (flags & DMA_PREP_ZERO_Q)
set_bit(PPC440SPE_ZERO_Q, &op);
if (test_bit(PPC440SPE_DESC_RXOR12, &op))
slot_cnt += src_cnt - 2;
else
slot_cnt += src_cnt - 3;
/* Thus we have either RXOR only chain or
* mixed RXOR/WXOR
*/
if (slot_cnt == dst_cnt)
/* RXOR only chain */
clear_bit(PPC440SPE_DESC_WXOR, &op);
}
spin_lock_bh(&ppc440spe_chan->lock);
/* for both RXOR/WXOR each descriptor occupies one slot */
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
flags, op);
/* setup dst/src/mult */
pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
__func__, dst[0], dst[1]);
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
while (src_cnt--) {
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
src_cnt);
/* NOTE: "Multi = 0 is equivalent to = 1" as it
* stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
* doesn't work for RXOR with DMA0/1! Instead, multi=0
* leads to zeroing source data after RXOR.
* So, for P case set-up mult=1 explicitly.
*/
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
mult = scf[src_cnt];
ppc440spe_adma_pq_set_src_mult(sw_desc,
mult, src_cnt, dst_cnt - 1);
}
/* Setup byte count foreach slot just allocated */
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list,
chain_node) {
ppc440spe_desc_set_byte_count(iter,
ppc440spe_chan, len);
iter->unmap_len = len;
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc;
}
static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
struct ppc440spe_adma_chan *ppc440spe_chan,
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
const unsigned char *scf, size_t len, unsigned long flags)
{
int slot_cnt, descs_per_op;
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
unsigned long op = 0;
unsigned char mult = 1;
BUG_ON(!dst_cnt);
/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
__func__, dst_cnt, src_cnt, len);*/
spin_lock_bh(&ppc440spe_chan->lock);
descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
if (descs_per_op < 0) {
spin_unlock_bh(&ppc440spe_chan->lock);
return NULL;
}
/* depending on number of sources we have 1 or 2 RXOR chains */
slot_cnt = descs_per_op * dst_cnt;
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
if (sw_desc) {
op = slot_cnt;
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
--op ? 0 : flags);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = len;
ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
iter->rxor_cursor.len = len;
iter->descs_per_op = descs_per_op;
}
op = 0;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
op++;
if (op % descs_per_op == 0)
ppc440spe_adma_init_dma2rxor_slot(iter, src,
src_cnt);
if (likely(!list_is_last(&iter->chain_node,
&sw_desc->group_list))) {
/* set 'next' pointer */
iter->hw_next =
list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
ppc440spe_xor_set_link(iter, iter->hw_next);
} else {
/* this is the last descriptor. */
iter->hw_next = NULL;
}
}
/* fixup head descriptor */
sw_desc->dst_cnt = dst_cnt;
if (flags & DMA_PREP_ZERO_P)
set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
if (flags & DMA_PREP_ZERO_Q)
set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
/* setup dst/src/mult */
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
while (src_cnt--) {
/* handle descriptors (if dst_cnt == 2) inside
* the ppc440spe_adma_pq_set_srcxxx() functions
*/
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
src_cnt);
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
mult = scf[src_cnt];
ppc440spe_adma_pq_set_src_mult(sw_desc,
mult, src_cnt, dst_cnt - 1);
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
ppc440spe_desc_set_rxor_block_size(len);
return sw_desc;
}
/**
* ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
int dst_cnt = 0;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
dst, src, src_cnt));
BUG_ON(!len);
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
BUG_ON(!src_cnt);
if (src_cnt == 1 && dst[1] == src[0]) {
dma_addr_t dest[2];
/* dst[1] is real destination (Q) */
dest[0] = dst[1];
/* this is the page to multicast source data to */
dest[1] = ppc440spe_chan->qdest;
sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
dest, 2, src, src_cnt, scf, len, flags);
return sw_desc ? &sw_desc->async_tx : NULL;
}
if (src_cnt == 2 && dst[1] == src[1]) {
sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
&dst[1], src, 2, scf, len, flags);
return sw_desc ? &sw_desc->async_tx : NULL;
}
if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
BUG_ON(!dst[0]);
dst_cnt++;
flags |= DMA_PREP_ZERO_P;
}
if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
BUG_ON(!dst[1]);
dst_cnt++;
flags |= DMA_PREP_ZERO_Q;
}
BUG_ON(!dst_cnt);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
ppc440spe_chan->device->id, __func__, src_cnt, len,
flags & DMA_PREP_INTERRUPT ? 1 : 0);
switch (ppc440spe_chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
dst, dst_cnt, src, src_cnt, scf,
len, flags);
break;
case PPC440SPE_XOR_ID:
sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
dst, dst_cnt, src, src_cnt, scf,
len, flags);
break;
}
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
* a PQ_ZERO_SUM operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
dma_addr_t pdest, qdest;
int slot_cnt, slots_per_op, idst, dst_cnt;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
if (flags & DMA_PREP_PQ_DISABLE_P)
pdest = 0;
else
pdest = pq[0];
if (flags & DMA_PREP_PQ_DISABLE_Q)
qdest = 0;
else
qdest = pq[1];
ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
src, src_cnt, scf));
/* Always use WXOR for P/Q calculations (two destinations).
* Need 1 or 2 extra slots to verify results are zero.
*/
idst = dst_cnt = (pdest && qdest) ? 2 : 1;
/* One additional slot per destination to clone P/Q
* before calculation (we have to preserve destinations).
*/
slot_cnt = src_cnt + dst_cnt * 2;
slots_per_op = 1;
spin_lock_bh(&ppc440spe_chan->lock);
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
slots_per_op);
if (sw_desc) {
ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
/* Setup byte count for each slot just allocated */
sw_desc->async_tx.flags = flags;
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = len;
}
if (pdest) {
struct dma_cdb *hw_desc;
struct ppc440spe_adma_chan *chan;
iter = sw_desc->group_head;
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter->src_cnt = 0;
iter->dst_cnt = 0;
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->pdest, 0);
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = 0;
/* override pdest to preserve original P */
pdest = ppc440spe_chan->pdest;
}
if (qdest) {
struct dma_cdb *hw_desc;
struct ppc440spe_adma_chan *chan;
iter = list_first_entry(&sw_desc->group_list,
struct ppc440spe_adma_desc_slot,
chain_node);
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
if (pdest) {
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
iter->hw_next = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
hw_desc = iter->hw_desc;
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
iter->src_cnt = 0;
iter->dst_cnt = 0;
ppc440spe_desc_set_dest_addr(iter, chan, 0,
ppc440spe_chan->qdest, 0);
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
len);
iter->unmap_len = 0;
/* override qdest to preserve original Q */
qdest = ppc440spe_chan->qdest;
}
/* Setup destinations for P/Q ops */
ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
/* Setup zero QWORDs into DCHECK CDBs */
idst = dst_cnt;
list_for_each_entry_reverse(iter, &sw_desc->group_list,
chain_node) {
/*
* The last CDB corresponds to Q-parity check,
* the one before last CDB corresponds
* P-parity check
*/
if (idst == DMA_DEST_MAX_NUM) {
if (idst == dst_cnt) {
set_bit(PPC440SPE_DESC_QCHECK,
&iter->flags);
} else {
set_bit(PPC440SPE_DESC_PCHECK,
&iter->flags);
}
} else {
if (qdest) {
set_bit(PPC440SPE_DESC_QCHECK,
&iter->flags);
} else {
set_bit(PPC440SPE_DESC_PCHECK,
&iter->flags);
}
}
iter->xor_check_result = pqres;
/*
* set it to zero, if check fail then result will
* be updated
*/
*iter->xor_check_result = 0;
ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
ppc440spe_qword);
if (!(--dst_cnt))
break;
}
/* Setup sources and mults for P/Q ops */
list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
chain_node) {
struct ppc440spe_adma_chan *chan;
u32 mult_dst;
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
ppc440spe_desc_set_src_addr(iter, chan, 0,
DMA_CUED_XOR_HB,
src[src_cnt - 1]);
if (qdest) {
mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
DMA_CDB_SG_DST1;
ppc440spe_desc_set_src_mult(iter, chan,
DMA_CUED_MULT1_OFF,
mult_dst,
scf[src_cnt - 1]);
}
if (!(--src_cnt))
break;
}
}
spin_unlock_bh(&ppc440spe_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
/**
* ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
* XOR ZERO_SUM operation
*/
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
size_t len, enum sum_check_flags *result, unsigned long flags)
{
struct dma_async_tx_descriptor *tx;
dma_addr_t pq[2];
/* validate P, disable Q */
pq[0] = src[0];
pq[1] = 0;
flags |= DMA_PREP_PQ_DISABLE_Q;
tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
src_cnt - 1, 0, len,
result, flags);
return tx;
}
/**
* ppc440spe_adma_set_dest - set destination address into descriptor
*/
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
BUG_ON(index >= sw_desc->dst_cnt);
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* to do: support transfers lengths >
* PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
*/
ppc440spe_desc_set_dest_addr(sw_desc->group_head,
chan, 0, addr, index);
break;
case PPC440SPE_XOR_ID:
sw_desc = ppc440spe_get_group_entry(sw_desc, index);
ppc440spe_desc_set_dest_addr(sw_desc,
chan, 0, addr, index);
break;
}
}
static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
struct ppc440spe_adma_chan *chan, dma_addr_t addr)
{
/* To clear destinations update the descriptor
* (P or Q depending on index) as follows:
* addr is destination (0 corresponds to SG2):
*/
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
/* ... and the addr is source: */
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
/* addr is always SG2 then the mult is always DST1 */
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
DMA_CDB_SG_DST1, 1);
}
/**
* ppc440spe_adma_pq_set_dest - set destination address into descriptor
* for the PQXOR operation
*/
static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t *addrs, unsigned long flags)
{
struct ppc440spe_adma_desc_slot *iter;
struct ppc440spe_adma_chan *chan;
dma_addr_t paddr, qaddr;
dma_addr_t addr = 0, ppath, qpath;
int index = 0, i;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
if (flags & DMA_PREP_PQ_DISABLE_P)
paddr = 0;
else
paddr = addrs[0];
if (flags & DMA_PREP_PQ_DISABLE_Q)
qaddr = 0;
else
qaddr = addrs[1];
if (!paddr || !qaddr)
addr = paddr ? paddr : qaddr;
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* walk through the WXOR source list and set P/Q-destinations
* for each slot:
*/
if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
/* This is WXOR-only chain; may have 1/2 zero descs */
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
index++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
index++;
iter = ppc440spe_get_group_entry(sw_desc, index);
if (addr) {
/* one destination */
list_for_each_entry_from(iter,
&sw_desc->group_list, chain_node)
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, addr, 0);
} else {
/* two destinations */
list_for_each_entry_from(iter,
&sw_desc->group_list, chain_node) {
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, paddr, 0);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, qaddr, 1);
}
}
if (index) {
/* To clear destinations update the descriptor
* (1st,2nd, or both depending on flags)
*/
index = 0;
if (test_bit(PPC440SPE_ZERO_P,
&sw_desc->flags)) {
iter = ppc440spe_get_group_entry(
sw_desc, index++);
ppc440spe_adma_pq_zero_op(iter, chan,
paddr);
}
if (test_bit(PPC440SPE_ZERO_Q,
&sw_desc->flags)) {
iter = ppc440spe_get_group_entry(
sw_desc, index++);
ppc440spe_adma_pq_zero_op(iter, chan,
qaddr);
}
return;
}
} else {
/* This is RXOR-only or RXOR/WXOR mixed chain */
/* If we want to include destination into calculations,
* then make dest addresses cued with mult=1 (XOR).
*/
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
/* Setup destination(s) in RXOR slot(s) */
iter = ppc440spe_get_group_entry(sw_desc, index++);
ppc440spe_desc_set_dest_addr(iter, chan,
paddr ? ppath : qpath,
paddr ? paddr : qaddr, 0);
if (!addr) {
/* two destinations */
iter = ppc440spe_get_group_entry(sw_desc,
index++);
ppc440spe_desc_set_dest_addr(iter, chan,
qpath, qaddr, 0);
}
if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
/* Setup destination(s) in remaining WXOR
* slots
*/
iter = ppc440spe_get_group_entry(sw_desc,
index);
if (addr) {
/* one destination */
list_for_each_entry_from(iter,
&sw_desc->group_list,
chain_node)
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
addr, 0);
} else {
/* two destinations */
list_for_each_entry_from(iter,
&sw_desc->group_list,
chain_node) {
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
paddr, 0);
ppc440spe_desc_set_dest_addr(
iter, chan,
DMA_CUED_XOR_BASE,
qaddr, 1);
}
}
}
}
break;
case PPC440SPE_XOR_ID:
/* DMA2 descriptors have only 1 destination, so there are
* two chains - one for each dest.
* If we want to include destination into calculations,
* then make dest addresses cued with mult=1 (XOR).
*/
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
DMA_CUED_XOR_HB :
DMA_CUED_XOR_BASE |
(1 << DMA_CUED_MULT1_OFF);
iter = ppc440spe_get_group_entry(sw_desc, 0);
for (i = 0; i < sw_desc->descs_per_op; i++) {
ppc440spe_desc_set_dest_addr(iter, chan,
paddr ? ppath : qpath,
paddr ? paddr : qaddr, 0);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
if (!addr) {
/* Two destinations; setup Q here */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
for (i = 0; i < sw_desc->descs_per_op; i++) {
ppc440spe_desc_set_dest_addr(iter,
chan, qpath, qaddr, 0);
iter = list_entry(iter->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
}
break;
}
}
/**
* ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
* for the PQ_ZERO_SUM operation
*/
static void ppc440spe_adma_pqzero_sum_set_dest(
struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t paddr, dma_addr_t qaddr)
{
struct ppc440spe_adma_desc_slot *iter, *end;
struct ppc440spe_adma_chan *chan;
dma_addr_t addr = 0;
int idx;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
/* walk through the WXOR source list and set P/Q-destinations
* for each slot
*/
idx = (paddr && qaddr) ? 2 : 1;
/* set end */
list_for_each_entry_reverse(end, &sw_desc->group_list,
chain_node) {
if (!(--idx))
break;
}
/* set start */
idx = (paddr && qaddr) ? 2 : 1;
iter = ppc440spe_get_group_entry(sw_desc, idx);
if (paddr && qaddr) {
/* two destinations */
list_for_each_entry_from(iter, &sw_desc->group_list,
chain_node) {
if (unlikely(iter == end))
break;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, paddr, 0);
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, qaddr, 1);
}
} else {
/* one destination */
addr = paddr ? paddr : qaddr;
list_for_each_entry_from(iter, &sw_desc->group_list,
chain_node) {
if (unlikely(iter == end))
break;
ppc440spe_desc_set_dest_addr(iter, chan,
DMA_CUED_XOR_BASE, addr, 0);
}
}
/* The remaining descriptors are DATACHECK. These have no need in
* destination. Actually, these destinations are used there
* as sources for check operation. So, set addr as source.
*/
ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
if (!addr) {
end = list_entry(end->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
}
}
/**
* ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
*/
static inline void ppc440spe_desc_set_xor_src_cnt(
struct ppc440spe_adma_desc_slot *desc,
int src_cnt)
{
struct xor_cb *hw_desc = desc->hw_desc;
hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
hw_desc->cbc |= src_cnt;
}
/**
* ppc440spe_adma_pq_set_src - set source address into descriptor
*/
static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
dma_addr_t haddr = 0;
struct ppc440spe_adma_desc_slot *iter = NULL;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
*/
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
/* RXOR-only or RXOR/WXOR operation */
int iskip = test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags) ? 2 : 3;
if (index == 0) {
/* 1st slot (RXOR) */
/* setup sources region (R1-2-3, R1-2-4,
* or R1-2-5)
*/
if (test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags))
haddr = DMA_RXOR12 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR123,
&sw_desc->flags))
haddr = DMA_RXOR123 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR124,
&sw_desc->flags))
haddr = DMA_RXOR124 <<
DMA_CUED_REGION_OFF;
else if (test_bit(PPC440SPE_DESC_RXOR125,
&sw_desc->flags))
haddr = DMA_RXOR125 <<
DMA_CUED_REGION_OFF;
else
BUG();
haddr |= DMA_CUED_XOR_BASE;
iter = ppc440spe_get_group_entry(sw_desc, 0);
} else if (index < iskip) {
/* 1st slot (RXOR)
* shall actually set source address only once
* instead of first <iskip>
*/
iter = NULL;
} else {
/* 2nd/3d and next slots (WXOR);
* skip first slot with RXOR
*/
haddr = DMA_CUED_XOR_HB;
iter = ppc440spe_get_group_entry(sw_desc,
index - iskip + sw_desc->dst_cnt);
}
} else {
int znum = 0;
/* WXOR-only operation; skip first slots with
* zeroing destinations
*/
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
znum++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
znum++;
haddr = DMA_CUED_XOR_HB;
iter = ppc440spe_get_group_entry(sw_desc,
index + znum);
}
if (likely(iter)) {
ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
if (!index &&
test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
sw_desc->dst_cnt == 2) {
/* if we have two destinations for RXOR, then
* setup source in the second descr too
*/
iter = ppc440spe_get_group_entry(sw_desc, 1);
ppc440spe_desc_set_src_addr(iter, chan, 0,
haddr, addr);
}
}
break;
case PPC440SPE_XOR_ID:
/* DMA2 may do Biskup */
iter = sw_desc->group_head;
if (iter->dst_cnt == 2) {
/* both P & Q calculations required; set P src here */
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
/* this is for Q */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
}
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
break;
}
}
/**
* ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
*/
static void ppc440spe_adma_memcpy_xor_set_src(
struct ppc440spe_adma_desc_slot *sw_desc,
dma_addr_t addr, int index)
{
struct ppc440spe_adma_chan *chan;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
sw_desc = sw_desc->group_head;
if (likely(sw_desc))
ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
}
/**
* ppc440spe_adma_dma2rxor_inc_addr -
*/
static void ppc440spe_adma_dma2rxor_inc_addr(
struct ppc440spe_adma_desc_slot *desc,
struct ppc440spe_rxor *cursor, int index, int src_cnt)
{
cursor->addr_count++;
if (index == src_cnt - 1) {
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
} else if (cursor->addr_count == XOR_MAX_OPS) {
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
cursor->addr_count = 0;
cursor->desc_count++;
}
}
/**
* ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
*/
static int ppc440spe_adma_dma2rxor_prep_src(
struct ppc440spe_adma_desc_slot *hdesc,
struct ppc440spe_rxor *cursor, int index,
int src_cnt, u32 addr)
{
u32 sign;
struct ppc440spe_adma_desc_slot *desc = hdesc;
int i;
for (i = 0; i < cursor->desc_count; i++) {
desc = list_entry(hdesc->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
}
switch (cursor->state) {
case 0:
if (addr == cursor->addrl + cursor->len) {
/* direct RXOR */
cursor->state = 1;
cursor->xor_count++;
if (index == src_cnt-1) {
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (cursor->addrl == addr + cursor->len) {
/* reverse RXOR */
cursor->state = 1;
cursor->xor_count++;
set_bit(cursor->addr_count, &desc->reverse_flags[0]);
if (index == src_cnt-1) {
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else {
printk(KERN_ERR "Cannot build "
"DMA2 RXOR command block.\n");
BUG();
}
break;
case 1:
sign = test_bit(cursor->addr_count,
desc->reverse_flags)
? -1 : 1;
if (index == src_cnt-2 || (sign == -1
&& addr != cursor->addrl - 2*cursor->len)) {
cursor->state = 0;
cursor->xor_count = 1;
cursor->addrl = addr;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
} else if (addr == cursor->addrl + 2*sign*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR123 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (addr == cursor->addrl + 3*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR124 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else if (addr == cursor->addrl + 4*cursor->len) {
cursor->state = 2;
cursor->xor_count = 0;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR125 << DMA_CUED_REGION_OFF);
if (index == src_cnt-1) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
} else {
cursor->state = 0;
cursor->xor_count = 1;
cursor->addrl = addr;
ppc440spe_rxor_set_region(desc,
cursor->addr_count,
DMA_RXOR12 << DMA_CUED_REGION_OFF);
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
break;
case 2:
cursor->state = 0;
cursor->addrl = addr;
cursor->xor_count++;
if (index) {
ppc440spe_adma_dma2rxor_inc_addr(
desc, cursor, index, src_cnt);
}
break;
}
return 0;
}
/**
* ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
*/
static void ppc440spe_adma_dma2rxor_set_src(
struct ppc440spe_adma_desc_slot *desc,
int index, dma_addr_t addr)
{
struct xor_cb *xcb = desc->hw_desc;
int k = 0, op = 0, lop = 0;
/* get the RXOR operand which corresponds to index addr */
while (op <= index) {
lop = op;
if (k == XOR_MAX_OPS) {
k = 0;
desc = list_entry(desc->chain_node.next,
struct ppc440spe_adma_desc_slot, chain_node);
xcb = desc->hw_desc;
}
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
op += 2;
else
op += 3;
}
BUG_ON(k < 1);
if (test_bit(k-1, desc->reverse_flags)) {
/* reverse operand order; put last op in RXOR group */
if (index == op - 1)
ppc440spe_rxor_set_src(desc, k - 1, addr);
} else {
/* direct operand order; put first op in RXOR group */
if (index == lop)
ppc440spe_rxor_set_src(desc, k - 1, addr);
}
}
/**
* ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
*/
static void ppc440spe_adma_dma2rxor_set_mult(
struct ppc440spe_adma_desc_slot *desc,
int index, u8 mult)
{
struct xor_cb *xcb = desc->hw_desc;
int k = 0, op = 0, lop = 0;
/* get the RXOR operand which corresponds to index mult */
while (op <= index) {
lop = op;
if (k == XOR_MAX_OPS) {
k = 0;
desc = list_entry(desc->chain_node.next,
struct ppc440spe_adma_desc_slot,
chain_node);
xcb = desc->hw_desc;
}
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
op += 2;
else
op += 3;
}
BUG_ON(k < 1);
if (test_bit(k-1, desc->reverse_flags)) {
/* reverse order */
ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
} else {
/* direct order */
ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
}
}
/**
* ppc440spe_init_rxor_cursor -
*/
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
{
memset(cursor, 0, sizeof(struct ppc440spe_rxor));
cursor->state = 2;
}
/**
* ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
* descriptor for the PQXOR operation
*/
static void ppc440spe_adma_pq_set_src_mult(
struct ppc440spe_adma_desc_slot *sw_desc,
unsigned char mult, int index, int dst_pos)
{
struct ppc440spe_adma_chan *chan;
u32 mult_idx, mult_dst;
struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
switch (chan->device->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
int region = test_bit(PPC440SPE_DESC_RXOR12,
&sw_desc->flags) ? 2 : 3;
if (index < region) {
/* RXOR multipliers */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->dst_cnt - 1);
if (sw_desc->dst_cnt == 2)
iter1 = ppc440spe_get_group_entry(
sw_desc, 0);
mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
mult_dst = DMA_CDB_SG_SRC;
} else {
/* WXOR multiplier */
iter = ppc440spe_get_group_entry(sw_desc,
index - region +
sw_desc->dst_cnt);
mult_idx = DMA_CUED_MULT1_OFF;
mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
DMA_CDB_SG_DST1;
}
} else {
int znum = 0;
/* WXOR-only;
* skip first slots with destinations (if ZERO_DST has
* place)
*/
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
znum++;
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
znum++;
iter = ppc440spe_get_group_entry(sw_desc, index + znum);
mult_idx = DMA_CUED_MULT1_OFF;
mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
}
if (likely(iter)) {
ppc440spe_desc_set_src_mult(iter, chan,
mult_idx, mult_dst, mult);
if (unlikely(iter1)) {
/* if we have two destinations for RXOR, then
* we've just set Q mult. Set-up P now.
*/
ppc440spe_desc_set_src_mult(iter1, chan,
mult_idx, mult_dst, 1);
}
}
break;
case PPC440SPE_XOR_ID:
iter = sw_desc->group_head;
if (sw_desc->dst_cnt == 2) {
/* both P & Q calculations required; set P mult here */
ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
/* and then set Q mult */
iter = ppc440spe_get_group_entry(sw_desc,
sw_desc->descs_per_op);
}
ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
break;
}
}
/**
* ppc440spe_adma_free_chan_resources - free the resources allocated
*/
static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
struct ppc440spe_adma_desc_slot *iter, *_iter;
int in_use_descs = 0;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
spin_lock_bh(&ppc440spe_chan->lock);
list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
chain_node) {
in_use_descs++;
list_del(&iter->chain_node);
}
list_for_each_entry_safe_reverse(iter, _iter,
&ppc440spe_chan->all_slots, slot_node) {
list_del(&iter->slot_node);
kfree(iter);
ppc440spe_chan->slots_allocated--;
}
ppc440spe_chan->last_used = NULL;
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d %s slots_allocated %d\n",
ppc440spe_chan->device->id,
__func__, ppc440spe_chan->slots_allocated);
spin_unlock_bh(&ppc440spe_chan->lock);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
in_use_descs - 1);
}
/**
* ppc440spe_adma_tx_status - poll the status of an ADMA transaction
* @chan: ADMA channel handle
* @cookie: ADMA transaction identifier
* @txstate: a holder for the current state of the channel
*/
static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
enum dma_status ret;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
return dma_cookie_status(chan, cookie, txstate);
}
/**
* ppc440spe_adma_eot_handler - end of transfer interrupt handler
*/
static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
{
struct ppc440spe_adma_chan *chan = data;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
tasklet_schedule(&chan->irq_tasklet);
ppc440spe_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
/**
* ppc440spe_adma_err_handler - DMA error interrupt handler;
* do the same things as a eot handler
*/
static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
{
struct ppc440spe_adma_chan *chan = data;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
tasklet_schedule(&chan->irq_tasklet);
ppc440spe_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
/**
* ppc440spe_test_callback - called when test operation has been done
*/
static void ppc440spe_test_callback(void *unused)
{
complete(&ppc440spe_r6_test_comp);
}
/**
* ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
*/
static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
{
struct ppc440spe_adma_chan *ppc440spe_chan;
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
dev_dbg(ppc440spe_chan->device->common.dev,
"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
__func__, ppc440spe_chan->pending);
if (ppc440spe_chan->pending) {
ppc440spe_chan->pending = 0;
ppc440spe_chan_append(ppc440spe_chan);
}
}
/**
* ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
* use FIFOs (as opposite to chains used in XOR) so this is a XOR
* specific operation)
*/
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(chan->device->common.dev,
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
spin_lock_bh(&chan->lock);
slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
if (sw_desc) {
group_start = sw_desc->group_head;
list_splice_init(&sw_desc->group_list, &chan->chain);
async_tx_ack(&sw_desc->async_tx);
ppc440spe_desc_init_null_xor(group_start);
cookie = dma_cookie_assign(&sw_desc->async_tx);
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
chan->common.completed_cookie = cookie - 1;
/* channel should not be busy */
BUG_ON(ppc440spe_chan_is_busy(chan));
/* set the descriptor address */
ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
/* run the descriptor */
ppc440spe_chan_run(chan);
} else
printk(KERN_ERR "ppc440spe adma%d"
" failed to allocate null descriptor\n",
chan->device->id);
spin_unlock_bh(&chan->lock);
}
/**
* ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
* For this we just perform one WXOR operation with the same source
* and destination addresses, the GF-multiplier is 1; so if RAID-6
* capabilities are enabled then we'll get src/dst filled with zero.
*/
static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
{
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
struct page *pg;
char *a;
dma_addr_t dma_addr, addrs[2];
unsigned long op = 0;
int rval = 0;
set_bit(PPC440SPE_DESC_WXOR, &op);
pg = alloc_page(GFP_KERNEL);
if (!pg)
return -ENOMEM;
spin_lock_bh(&chan->lock);
sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
if (sw_desc) {
/* 1 src, 1 dsr, int_ena, WXOR */
ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
iter->unmap_len = PAGE_SIZE;
}
} else {
rval = -EFAULT;
spin_unlock_bh(&chan->lock);
goto exit;
}
spin_unlock_bh(&chan->lock);
/* Fill the test page with ones */
memset(page_address(pg), 0xFF, PAGE_SIZE);
dma_addr = dma_map_page(chan->device->dev, pg, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
/* Setup addresses */
ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
addrs[0] = dma_addr;
addrs[1] = 0;
ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
async_tx_ack(&sw_desc->async_tx);
sw_desc->async_tx.callback = ppc440spe_test_callback;
sw_desc->async_tx.callback_param = NULL;
init_completion(&ppc440spe_r6_test_comp);
ppc440spe_adma_tx_submit(&sw_desc->async_tx);
ppc440spe_adma_issue_pending(&chan->common);
wait_for_completion(&ppc440spe_r6_test_comp);
/* Now check if the test page is zeroed */
a = page_address(pg);
if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
/* page is zero - RAID-6 enabled */
rval = 0;
} else {
/* RAID-6 was not enabled */
rval = -EINVAL;
}
exit:
__free_page(pg);
return rval;
}
static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
{
switch (adev->id) {
case PPC440SPE_DMA0_ID:
case PPC440SPE_DMA1_ID:
dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
dma_cap_set(DMA_PQ, adev->common.cap_mask);
dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
break;
case PPC440SPE_XOR_ID:
dma_cap_set(DMA_XOR, adev->common.cap_mask);
dma_cap_set(DMA_PQ, adev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
adev->common.cap_mask = adev->common.cap_mask;
break;
}
/* Set base routines */
adev->common.device_alloc_chan_resources =
ppc440spe_adma_alloc_chan_resources;
adev->common.device_free_chan_resources =
ppc440spe_adma_free_chan_resources;
adev->common.device_tx_status = ppc440spe_adma_tx_status;
adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
/* Set prep routines based on capability */
if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
adev->common.device_prep_dma_memcpy =
ppc440spe_adma_prep_dma_memcpy;
}
if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
adev->common.max_xor = XOR_MAX_OPS;
adev->common.device_prep_dma_xor =
ppc440spe_adma_prep_dma_xor;
}
if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
dma_set_maxpq(&adev->common,
DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
break;
case PPC440SPE_DMA1_ID:
dma_set_maxpq(&adev->common,
DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
break;
case PPC440SPE_XOR_ID:
adev->common.max_pq = XOR_MAX_OPS * 3;
break;
}
adev->common.device_prep_dma_pq =
ppc440spe_adma_prep_dma_pq;
}
if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
adev->common.max_pq = DMA0_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
case PPC440SPE_DMA1_ID:
adev->common.max_pq = DMA1_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
}
adev->common.device_prep_dma_pq_val =
ppc440spe_adma_prep_dma_pqzero_sum;
}
if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
switch (adev->id) {
case PPC440SPE_DMA0_ID:
adev->common.max_xor = DMA0_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
case PPC440SPE_DMA1_ID:
adev->common.max_xor = DMA1_FIFO_SIZE /
sizeof(struct dma_cdb);
break;
}
adev->common.device_prep_dma_xor_val =
ppc440spe_adma_prep_dma_xor_zero_sum;
}
if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
adev->common.device_prep_dma_interrupt =
ppc440spe_adma_prep_dma_interrupt;
}
pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
"( %s%s%s%s%s%s)\n",
dev_name(adev->dev),
dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
}
static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
struct ppc440spe_adma_chan *chan,
int *initcode)
{
struct platform_device *ofdev;
struct device_node *np;
int ret;
ofdev = container_of(adev->dev, struct platform_device, dev);
np = ofdev->dev.of_node;
if (adev->id != PPC440SPE_XOR_ID) {
adev->err_irq = irq_of_parse_and_map(np, 1);
if (!adev->err_irq) {
dev_warn(adev->dev, "no err irq resource?\n");
*initcode = PPC_ADMA_INIT_IRQ2;
adev->err_irq = -ENXIO;
} else
atomic_inc(&ppc440spe_adma_err_irq_ref);
} else {
adev->err_irq = -ENXIO;
}
adev->irq = irq_of_parse_and_map(np, 0);
if (!adev->irq) {
dev_err(adev->dev, "no irq resource\n");
*initcode = PPC_ADMA_INIT_IRQ1;
ret = -ENXIO;
goto err_irq_map;
}
dev_dbg(adev->dev, "irq %d, err irq %d\n",
adev->irq, adev->err_irq);
ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
0, dev_driver_string(adev->dev), chan);
if (ret) {
dev_err(adev->dev, "can't request irq %d\n",
adev->irq);
*initcode = PPC_ADMA_INIT_IRQ1;
ret = -EIO;
goto err_req1;
}
/* only DMA engines have a separate error IRQ
* so it's Ok if err_irq < 0 in XOR engine case.
*/
if (adev->err_irq > 0) {
/* both DMA engines share common error IRQ */
ret = request_irq(adev->err_irq,
ppc440spe_adma_err_handler,
IRQF_SHARED,
dev_driver_string(adev->dev),
chan);
if (ret) {
dev_err(adev->dev, "can't request irq %d\n",
adev->err_irq);
*initcode = PPC_ADMA_INIT_IRQ2;
ret = -EIO;
goto err_req2;
}
}
if (adev->id == PPC440SPE_XOR_ID) {
/* enable XOR engine interrupts */
iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
&adev->xor_reg->ier);
} else {
u32 mask, enable;
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
if (!np) {
pr_err("%s: can't find I2O device tree node\n",
__func__);
ret = -ENODEV;
goto err_req2;
}
adev->i2o_reg = of_iomap(np, 0);
if (!adev->i2o_reg) {
pr_err("%s: failed to map I2O registers\n", __func__);
of_node_put(np);
ret = -EINVAL;
goto err_req2;
}
of_node_put(np);
/* Unmask 'CS FIFO Attention' interrupts and
* enable generating interrupts on errors
*/
enable = (adev->id == PPC440SPE_DMA0_ID) ?
~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
mask = ioread32(&adev->i2o_reg->iopim) & enable;
iowrite32(mask, &adev->i2o_reg->iopim);
}
return 0;
err_req2:
free_irq(adev->irq, chan);
err_req1:
irq_dispose_mapping(adev->irq);
err_irq_map:
if (adev->err_irq > 0) {
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
irq_dispose_mapping(adev->err_irq);
}
return ret;
}
static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
struct ppc440spe_adma_chan *chan)
{
u32 mask, disable;
if (adev->id == PPC440SPE_XOR_ID) {
/* disable XOR engine interrupts */
mask = ioread32be(&adev->xor_reg->ier);
mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
iowrite32be(mask, &adev->xor_reg->ier);
} else {
/* disable DMAx engine interrupts */
disable = (adev->id == PPC440SPE_DMA0_ID) ?
(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
mask = ioread32(&adev->i2o_reg->iopim) | disable;
iowrite32(mask, &adev->i2o_reg->iopim);
}
free_irq(adev->irq, chan);
irq_dispose_mapping(adev->irq);
if (adev->err_irq > 0) {
free_irq(adev->err_irq, chan);
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
irq_dispose_mapping(adev->err_irq);
iounmap(adev->i2o_reg);
}
}
}
/**
* ppc440spe_adma_probe - probe the asynch device
*/
static int ppc440spe_adma_probe(struct platform_device *ofdev)
{
struct device_node *np = ofdev->dev.of_node;
struct resource res;
struct ppc440spe_adma_device *adev;
struct ppc440spe_adma_chan *chan;
struct ppc_dma_chan_ref *ref, *_ref;
int ret = 0, initcode = PPC_ADMA_INIT_OK;
const u32 *idx;
int len;
void *regs;
u32 id, pool_size;
if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
id = PPC440SPE_XOR_ID;
/* As far as the XOR engine is concerned, it does not
* use FIFOs but uses linked list. So there is no dependency
* between pool size to allocate and the engine configuration.
*/
pool_size = PAGE_SIZE << 1;
} else {
/* it is DMA0 or DMA1 */
idx = of_get_property(np, "cell-index", &len);
if (!idx || (len != sizeof(u32))) {
dev_err(&ofdev->dev, "Device node %pOF has missing "
"or invalid cell-index property\n",
np);
return -EINVAL;
}
id = *idx;
/* DMA0,1 engines use FIFO to maintain CDBs, so we
* should allocate the pool accordingly to size of this
* FIFO. Thus, the pool size depends on the FIFO depth:
* how much CDBs pointers the FIFO may contain then so
* much CDBs we should provide in the pool.
* That is
* CDB size = 32B;
* CDBs number = (DMA0_FIFO_SIZE >> 3);
* Pool size = CDBs number * CDB size =
* = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
*/
pool_size = (id == PPC440SPE_DMA0_ID) ?
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
pool_size <<= 2;
}
if (of_address_to_resource(np, 0, &res)) {
dev_err(&ofdev->dev, "failed to get memory resource\n");
initcode = PPC_ADMA_INIT_MEMRES;
ret = -ENODEV;
goto out;
}
if (!request_mem_region(res.start, resource_size(&res),
dev_driver_string(&ofdev->dev))) {
dev_err(&ofdev->dev, "failed to request memory region %pR\n",
&res);
initcode = PPC_ADMA_INIT_MEMREG;
ret = -EBUSY;
goto out;
}
/* create a device */
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
if (!adev) {
initcode = PPC_ADMA_INIT_ALLOC;
ret = -ENOMEM;
goto err_adev_alloc;
}
adev->id = id;
adev->pool_size = pool_size;
/* allocate coherent memory for hardware descriptors */
adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
adev->pool_size, &adev->dma_desc_pool,
GFP_KERNEL);
if (adev->dma_desc_pool_virt == NULL) {
dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
"memory for hardware descriptors\n",
adev->pool_size);
initcode = PPC_ADMA_INIT_COHERENT;
ret = -ENOMEM;
goto err_dma_alloc;
}
dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
regs = ioremap(res.start, resource_size(&res));
if (!regs) {
dev_err(&ofdev->dev, "failed to ioremap regs!\n");
ret = -ENOMEM;
goto err_regs_alloc;
}
if (adev->id == PPC440SPE_XOR_ID) {
adev->xor_reg = regs;
/* Reset XOR */
iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
} else {
size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
adev->dma_reg = regs;
/* DMAx_FIFO_SIZE is defined in bytes,
* <fsiz> - is defined in number of CDB pointers (8byte).
* DMA FIFO Length = CSlength + CPlength, where
* CSlength = CPlength = (fsiz + 1) * 8.
*/
iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
&adev->dma_reg->fsiz);
/* Configure DMA engine */
iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
&adev->dma_reg->cfg);
/* Clear Status */
iowrite32(~0, &adev->dma_reg->dsts);
}
adev->dev = &ofdev->dev;
adev->common.dev = &ofdev->dev;
INIT_LIST_HEAD(&adev->common.channels);
platform_set_drvdata(ofdev, adev);
/* create a channel */
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan) {
initcode = PPC_ADMA_INIT_CHANNEL;
ret = -ENOMEM;
goto err_chan_alloc;
}
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->chain);
INIT_LIST_HEAD(&chan->all_slots);
chan->device = adev;
chan->common.device = &adev->common;
dma_cookie_init(&chan->common);
list_add_tail(&chan->common.device_node, &adev->common.channels);
tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
/* allocate and map helper pages for async validation or
* async_mult/async_sum_product operations on DMA0/1.
*/
if (adev->id != PPC440SPE_XOR_ID) {
chan->pdest_page = alloc_page(GFP_KERNEL);
chan->qdest_page = alloc_page(GFP_KERNEL);
if (!chan->pdest_page ||
!chan->qdest_page) {
if (chan->pdest_page)
__free_page(chan->pdest_page);
if (chan->qdest_page)
__free_page(chan->qdest_page);
ret = -ENOMEM;
goto err_page_alloc;
}
chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
PAGE_SIZE, DMA_BIDIRECTIONAL);
}
ref = kmalloc(sizeof(*ref), GFP_KERNEL);
if (ref) {
ref->chan = &chan->common;
INIT_LIST_HEAD(&ref->node);
list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
} else {
dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
ret = -ENOMEM;
goto err_ref_alloc;
}
ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
if (ret)
goto err_irq;
ppc440spe_adma_init_capabilities(adev);
ret = dma_async_device_register(&adev->common);
if (ret) {
initcode = PPC_ADMA_INIT_REGISTER;
dev_err(&ofdev->dev, "failed to register dma device\n");
goto err_dev_reg;
}
goto out;
err_dev_reg:
ppc440spe_adma_release_irqs(adev, chan);
err_irq:
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
if (chan == to_ppc440spe_adma_chan(ref->chan)) {
list_del(&ref->node);
kfree(ref);
}
}
err_ref_alloc:
if (adev->id != PPC440SPE_XOR_ID) {
dma_unmap_page(&ofdev->dev, chan->pdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
dma_unmap_page(&ofdev->dev, chan->qdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(chan->pdest_page);
__free_page(chan->qdest_page);
}
err_page_alloc:
kfree(chan);
err_chan_alloc:
if (adev->id == PPC440SPE_XOR_ID)
iounmap(adev->xor_reg);
else
iounmap(adev->dma_reg);
err_regs_alloc:
dma_free_coherent(adev->dev, adev->pool_size,
adev->dma_desc_pool_virt,
adev->dma_desc_pool);
err_dma_alloc:
kfree(adev);
err_adev_alloc:
release_mem_region(res.start, resource_size(&res));
out:
if (id < PPC440SPE_ADMA_ENGINES_NUM)
ppc440spe_adma_devices[id] = initcode;
return ret;
}
/**
* ppc440spe_adma_remove - remove the asynch device
*/
static int ppc440spe_adma_remove(struct platform_device *ofdev)
{
struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
struct device_node *np = ofdev->dev.of_node;
struct resource res;
struct dma_chan *chan, *_chan;
struct ppc_dma_chan_ref *ref, *_ref;
struct ppc440spe_adma_chan *ppc440spe_chan;
if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
ppc440spe_adma_devices[adev->id] = -1;
dma_async_device_unregister(&adev->common);
list_for_each_entry_safe(chan, _chan, &adev->common.channels,
device_node) {
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
tasklet_kill(&ppc440spe_chan->irq_tasklet);
if (adev->id != PPC440SPE_XOR_ID) {
dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
PAGE_SIZE, DMA_BIDIRECTIONAL);
__free_page(ppc440spe_chan->pdest_page);
__free_page(ppc440spe_chan->qdest_page);
}
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
node) {
if (ppc440spe_chan ==
to_ppc440spe_adma_chan(ref->chan)) {
list_del(&ref->node);
kfree(ref);
}
}
list_del(&chan->device_node);
kfree(ppc440spe_chan);
}
dma_free_coherent(adev->dev, adev->pool_size,
adev->dma_desc_pool_virt, adev->dma_desc_pool);
if (adev->id == PPC440SPE_XOR_ID)
iounmap(adev->xor_reg);
else
iounmap(adev->dma_reg);
of_address_to_resource(np, 0, &res);
release_mem_region(res.start, resource_size(&res));
kfree(adev);
return 0;
}
/*
* /sys driver interface to enable h/w RAID-6 capabilities
* Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
* directory are "devices", "enable" and "poly".
* "devices" shows available engines.
* "enable" is used to enable RAID-6 capabilities or to check
* whether these has been activated.
* "poly" allows setting/checking used polynomial (for PPC440SPe only).
*/
static ssize_t devices_show(struct device_driver *dev, char *buf)
{
ssize_t size = 0;
int i;
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
if (ppc440spe_adma_devices[i] == -1)
continue;
size += scnprintf(buf + size, PAGE_SIZE - size,
"PPC440SP(E)-ADMA.%d: %s\n", i,
ppc_adma_errors[ppc440spe_adma_devices[i]]);
}
return size;
}
static DRIVER_ATTR_RO(devices);
static ssize_t enable_show(struct device_driver *dev, char *buf)
{
return snprintf(buf, PAGE_SIZE,
"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
ppc440spe_r6_enabled ? "EN" : "DIS");
}
static ssize_t enable_store(struct device_driver *dev, const char *buf,
size_t count)
{
unsigned long val;
int err;
if (!count || count > 11)
return -EINVAL;
if (!ppc440spe_r6_tchan)
return -EFAULT;
/* Write a key */
err = kstrtoul(buf, 16, &val);
if (err)
return err;
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
isync();
/* Verify whether it really works now */
if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
pr_info("PPC440SP(e) RAID-6 has been activated "
"successfully\n");
ppc440spe_r6_enabled = 1;
} else {
pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
" Error key ?\n");
ppc440spe_r6_enabled = 0;
}
return count;
}
static DRIVER_ATTR_RW(enable);
static ssize_t poly_show(struct device_driver *dev, char *buf)
{
ssize_t size = 0;
u32 reg;
#ifdef CONFIG_440SP
/* 440SP has fixed polynomial */
reg = 0x4d;
#else
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
reg >>= MQ0_CFBHL_POLY;
reg &= 0xFF;
#endif
size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
"uses 0x1%02x polynomial.\n", reg);
return size;
}
static ssize_t poly_store(struct device_driver *dev, const char *buf,
size_t count)
{
unsigned long reg, val;
int err;
#ifdef CONFIG_440SP
/* 440SP uses default 0x14D polynomial only */
return -EINVAL;
#endif
if (!count || count > 6)
return -EINVAL;
/* e.g., 0x14D or 0x11D */
err = kstrtoul(buf, 16, &val);
if (err)
return err;
if (val & ~0x1FF)
return -EINVAL;
val &= 0xFF;
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
reg &= ~(0xFF << MQ0_CFBHL_POLY);
reg |= val << MQ0_CFBHL_POLY;
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
return count;
}
static DRIVER_ATTR_RW(poly);
/*
* Common initialisation for RAID engines; allocate memory for
* DMAx FIFOs, perform configuration common for all DMA engines.
* Further DMA engine specific configuration is done at probe time.
*/
static int ppc440spe_configure_raid_devices(void)
{
struct device_node *np;
struct resource i2o_res;
struct i2o_regs __iomem *i2o_reg;
dcr_host_t i2o_dcr_host;
unsigned int dcr_base, dcr_len;
int i, ret;
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
if (!np) {
pr_err("%s: can't find I2O device tree node\n",
__func__);
return -ENODEV;
}
if (of_address_to_resource(np, 0, &i2o_res)) {
of_node_put(np);
return -EINVAL;
}
i2o_reg = of_iomap(np, 0);
if (!i2o_reg) {
pr_err("%s: failed to map I2O registers\n", __func__);
of_node_put(np);
return -EINVAL;
}
/* Get I2O DCRs base */
dcr_base = dcr_resource_start(np, 0);
dcr_len = dcr_resource_len(np, 0);
if (!dcr_base && !dcr_len) {
pr_err("%pOF: can't get DCR registers base/len!\n", np);
of_node_put(np);
iounmap(i2o_reg);
return -ENODEV;
}
i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
if (!DCR_MAP_OK(i2o_dcr_host)) {
pr_err("%pOF: failed to map DCRs!\n", np);
of_node_put(np);
iounmap(i2o_reg);
return -ENODEV;
}
of_node_put(np);
/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
* the base address of FIFO memory space.
* Actually we need twice more physical memory than programmed in the
* <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
*/
ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
GFP_KERNEL);
if (!ppc440spe_dma_fifo_buf) {
pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
iounmap(i2o_reg);
dcr_unmap(i2o_dcr_host, dcr_len);
return -ENOMEM;
}
/*
* Configure h/w
*/
/* Reset I2O/DMA */
mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
mtdcri(SDR0, DCRN_SDR0_SRST, 0);
/* Setup the base address of mmaped registers */
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
I2O_REG_ENABLE);
dcr_unmap(i2o_dcr_host, dcr_len);
/* Setup FIFO memory space base address */
iowrite32(0, &i2o_reg->ifbah);
iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
/* set zero FIFO size for I2O, so the whole
* ppc440spe_dma_fifo_buf is used by DMAs.
* DMAx_FIFOs will be configured while probe.
*/
iowrite32(0, &i2o_reg->ifsiz);
iounmap(i2o_reg);
/* To prepare WXOR/RXOR functionality we need access to
* Memory Queue Module DCRs (finally it will be enabled
* via /sys interface of the ppc440spe ADMA driver).
*/
np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
if (!np) {
pr_err("%s: can't find MQ device tree node\n",
__func__);
ret = -ENODEV;
goto out_free;
}
/* Get MQ DCRs base */
dcr_base = dcr_resource_start(np, 0);
dcr_len = dcr_resource_len(np, 0);
if (!dcr_base && !dcr_len) {
pr_err("%pOF: can't get DCR registers base/len!\n", np);
ret = -ENODEV;
goto out_mq;
}
ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
pr_err("%pOF: failed to map DCRs!\n", np);
ret = -ENODEV;
goto out_mq;
}
of_node_put(np);
ppc440spe_mq_dcr_len = dcr_len;
/* Set HB alias */
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
/* Set:
* - LL transaction passing limit to 1;
* - Memory controller cycle limit to 1;
* - Galois Polynomial to 0x14d (default)
*/
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
(1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
(PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
atomic_set(&ppc440spe_adma_err_irq_ref, 0);
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
ppc440spe_adma_devices[i] = -1;
return 0;
out_mq:
of_node_put(np);
out_free:
kfree(ppc440spe_dma_fifo_buf);
return ret;
}
static const struct of_device_id ppc440spe_adma_of_match[] = {
{ .compatible = "ibm,dma-440spe", },
{ .compatible = "amcc,xor-accelerator", },
{},
};
MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
static struct platform_driver ppc440spe_adma_driver = {
.probe = ppc440spe_adma_probe,
.remove = ppc440spe_adma_remove,
.driver = {
.name = "PPC440SP(E)-ADMA",
.of_match_table = ppc440spe_adma_of_match,
},
};
static __init int ppc440spe_adma_init(void)
{
int ret;
ret = ppc440spe_configure_raid_devices();
if (ret)
return ret;
ret = platform_driver_register(&ppc440spe_adma_driver);
if (ret) {
pr_err("%s: failed to register platform driver\n",
__func__);
goto out_reg;
}
/* Initialization status */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
if (ret)
goto out_dev;
/* RAID-6 h/w enable entry */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
if (ret)
goto out_en;
/* GF polynomial to use */
ret = driver_create_file(&ppc440spe_adma_driver.driver,
&driver_attr_poly);
if (!ret)
return ret;
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
out_en:
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
out_dev:
/* User will not be able to enable h/w RAID-6 */
pr_err("%s: failed to create RAID-6 driver interface\n",
__func__);
platform_driver_unregister(&ppc440spe_adma_driver);
out_reg:
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
kfree(ppc440spe_dma_fifo_buf);
return ret;
}
static void __exit ppc440spe_adma_exit(void)
{
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_poly);
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_enable);
driver_remove_file(&ppc440spe_adma_driver.driver,
&driver_attr_devices);
platform_driver_unregister(&ppc440spe_adma_driver);
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
kfree(ppc440spe_dma_fifo_buf);
}
arch_initcall(ppc440spe_adma_init);
module_exit(ppc440spe_adma_exit);
MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
MODULE_LICENSE("GPL");