372 lines
11 KiB
C
372 lines
11 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
|
|
#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
|
|
|
|
#include <asm-generic/pgtable-nopmd.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <linux/sched.h>
|
|
#include <linux/threads.h>
|
|
#include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
|
|
|
|
#ifdef CONFIG_44x
|
|
extern int icache_44x_need_flush;
|
|
#endif
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#define PTE_INDEX_SIZE PTE_SHIFT
|
|
#define PMD_INDEX_SIZE 0
|
|
#define PUD_INDEX_SIZE 0
|
|
#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
|
|
|
|
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
|
|
#define PUD_CACHE_INDEX PUD_INDEX_SIZE
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
|
|
#define PMD_TABLE_SIZE 0
|
|
#define PUD_TABLE_SIZE 0
|
|
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
|
|
|
|
#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
|
|
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
|
|
|
|
/*
|
|
* The normal case is that PTEs are 32-bits and we have a 1-page
|
|
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
|
|
*
|
|
* For any >32-bit physical address platform, we can use the following
|
|
* two level page table layout where the pgdir is 8KB and the MS 13 bits
|
|
* are an index to the second level table. The combined pgdir/pmd first
|
|
* level has 2048 entries and the second level has 512 64-bit PTE entries.
|
|
* -Matt
|
|
*/
|
|
/* PGDIR_SHIFT determines what a top-level page table entry can map */
|
|
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
/* Bits to mask out from a PGD to get to the PUD page */
|
|
#define PGD_MASKED_BITS 0
|
|
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
|
|
(unsigned long long)pte_val(e))
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
|
|
void unmap_kernel_page(unsigned long va);
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
|
|
/*
|
|
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
|
|
* value (for now) on others, from where we can start layout kernel
|
|
* virtual space that goes below PKMAP and FIXMAP
|
|
*/
|
|
#include <asm/fixmap.h>
|
|
|
|
/*
|
|
* ioremap_bot starts at that address. Early ioremaps move down from there,
|
|
* until mem_init() at which point this becomes the top of the vmalloc
|
|
* and ioremap space
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define IOREMAP_TOP PKMAP_BASE
|
|
#else
|
|
#define IOREMAP_TOP FIXADDR_START
|
|
#endif
|
|
|
|
/* PPC32 shares vmalloc area with ioremap */
|
|
#define IOREMAP_START VMALLOC_START
|
|
#define IOREMAP_END VMALLOC_END
|
|
|
|
/*
|
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
|
* current 16MB value just means that there will be a 64MB "hole" after the
|
|
* physical memory until the kernel virtual memory starts. That means that
|
|
* any out-of-bounds memory accesses will hopefully be caught.
|
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
|
* area for the same reason. ;)
|
|
*
|
|
* We no longer map larger than phys RAM with the BATs so we don't have
|
|
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
|
|
* about clashes between our early calls to ioremap() that start growing down
|
|
* from IOREMAP_TOP being run into the VM area allocations (growing upwards
|
|
* from VMALLOC_START). For this reason we have ioremap_bot to check when
|
|
* we actually run into our mappings setup in the early boot with the VM
|
|
* system. This really does become a problem for machines with good amounts
|
|
* of RAM. -- Cort
|
|
*/
|
|
#define VMALLOC_OFFSET (0x1000000) /* 16M */
|
|
#ifdef PPC_PIN_SIZE
|
|
#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#else
|
|
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN_VMALLOC
|
|
#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
|
|
#else
|
|
#define VMALLOC_END ioremap_bot
|
|
#endif
|
|
|
|
/*
|
|
* Bits in a linux-style PTE. These match the bits in the
|
|
* (hardware-defined) PowerPC PTE as closely as possible.
|
|
*/
|
|
|
|
#if defined(CONFIG_40x)
|
|
#include <asm/nohash/32/pte-40x.h>
|
|
#elif defined(CONFIG_44x)
|
|
#include <asm/nohash/32/pte-44x.h>
|
|
#elif defined(CONFIG_PPC_85xx) && defined(CONFIG_PTE_64BIT)
|
|
#include <asm/nohash/pte-e500.h>
|
|
#elif defined(CONFIG_PPC_85xx)
|
|
#include <asm/nohash/32/pte-85xx.h>
|
|
#elif defined(CONFIG_PPC_8xx)
|
|
#include <asm/nohash/32/pte-8xx.h>
|
|
#endif
|
|
|
|
/*
|
|
* Location of the PFN in the PTE. Most 32-bit platforms use the same
|
|
* as _PAGE_SHIFT here (ie, naturally aligned).
|
|
* Platform who don't just pre-define the value so we don't override it here.
|
|
*/
|
|
#ifndef PTE_RPN_SHIFT
|
|
#define PTE_RPN_SHIFT (PAGE_SHIFT)
|
|
#endif
|
|
|
|
/*
|
|
* The mask covered by the RPN must be a ULL on 32-bit platforms with
|
|
* 64-bit PTEs.
|
|
*/
|
|
#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
|
|
#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
|
|
#define MAX_POSSIBLE_PHYSMEM_BITS 36
|
|
#else
|
|
#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
|
|
#define MAX_POSSIBLE_PHYSMEM_BITS 32
|
|
#endif
|
|
|
|
/*
|
|
* _PAGE_CHG_MASK masks of bits that are to be preserved across
|
|
* pgprot changes.
|
|
*/
|
|
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#define pte_clear(mm, addr, ptep) \
|
|
do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
|
|
|
|
#ifndef pte_mkwrite
|
|
static inline pte_t pte_mkwrite(pte_t pte)
|
|
{
|
|
return __pte(pte_val(pte) | _PAGE_RW);
|
|
}
|
|
#endif
|
|
|
|
static inline pte_t pte_mkdirty(pte_t pte)
|
|
{
|
|
return __pte(pte_val(pte) | _PAGE_DIRTY);
|
|
}
|
|
|
|
static inline pte_t pte_mkyoung(pte_t pte)
|
|
{
|
|
return __pte(pte_val(pte) | _PAGE_ACCESSED);
|
|
}
|
|
|
|
#ifndef pte_wrprotect
|
|
static inline pte_t pte_wrprotect(pte_t pte)
|
|
{
|
|
return __pte(pte_val(pte) & ~_PAGE_RW);
|
|
}
|
|
#endif
|
|
|
|
#ifndef pte_mkexec
|
|
static inline pte_t pte_mkexec(pte_t pte)
|
|
{
|
|
return __pte(pte_val(pte) | _PAGE_EXEC);
|
|
}
|
|
#endif
|
|
|
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
|
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
|
|
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
*pmdp = __pmd(0);
|
|
}
|
|
|
|
/*
|
|
* PTE updates. This function is called whenever an existing
|
|
* valid PTE is updated. This does -not- include set_pte_at()
|
|
* which nowadays only sets a new PTE.
|
|
*
|
|
* Depending on the type of MMU, we may need to use atomic updates
|
|
* and the PTE may be either 32 or 64 bit wide. In the later case,
|
|
* when using atomic updates, only the low part of the PTE is
|
|
* accessed atomically.
|
|
*
|
|
* In addition, on 44x, we also maintain a global flag indicating
|
|
* that an executable user mapping was modified, which is needed
|
|
* to properly flush the virtually tagged instruction cache of
|
|
* those implementations.
|
|
*
|
|
* On the 8xx, the page tables are a bit special. For 16k pages, we have
|
|
* 4 identical entries. For 512k pages, we have 128 entries as if it was
|
|
* 4k pages, but they are flagged as 512k pages for the hardware.
|
|
* For other page sizes, we have a single entry in the table.
|
|
*/
|
|
#ifdef CONFIG_PPC_8xx
|
|
static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
|
|
static int hugepd_ok(hugepd_t hpd);
|
|
|
|
static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
|
|
{
|
|
if (!huge)
|
|
return PAGE_SIZE / SZ_4K;
|
|
else if (hugepd_ok(*((hugepd_t *)pmd)))
|
|
return 1;
|
|
else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
|
|
return SZ_16K / SZ_4K;
|
|
else
|
|
return SZ_512K / SZ_4K;
|
|
}
|
|
|
|
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
|
|
unsigned long clr, unsigned long set, int huge)
|
|
{
|
|
pte_basic_t *entry = (pte_basic_t *)p;
|
|
pte_basic_t old = pte_val(*p);
|
|
pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
|
|
int num, i;
|
|
pmd_t *pmd = pmd_off(mm, addr);
|
|
|
|
num = number_of_cells_per_pte(pmd, new, huge);
|
|
|
|
for (i = 0; i < num; i++, entry++, new += SZ_4K)
|
|
*entry = new;
|
|
|
|
return old;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_16K_PAGES
|
|
#define __HAVE_ARCH_PTEP_GET
|
|
static inline pte_t ptep_get(pte_t *ptep)
|
|
{
|
|
pte_basic_t val = READ_ONCE(ptep->pte);
|
|
pte_t pte = {val, val, val, val};
|
|
|
|
return pte;
|
|
}
|
|
#endif /* CONFIG_PPC_16K_PAGES */
|
|
|
|
#else
|
|
static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
|
|
unsigned long clr, unsigned long set, int huge)
|
|
{
|
|
pte_basic_t old = pte_val(*p);
|
|
pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
|
|
|
|
*p = __pte(new);
|
|
|
|
#ifdef CONFIG_44x
|
|
if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
|
|
icache_44x_need_flush = 1;
|
|
#endif
|
|
return old;
|
|
}
|
|
#endif
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
unsigned long old;
|
|
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
|
|
return (old & _PAGE_ACCESSED) != 0;
|
|
}
|
|
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
|
|
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
#ifndef ptep_set_wrprotect
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
#ifndef __ptep_set_access_flags
|
|
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
|
|
pte_t *ptep, pte_t entry,
|
|
unsigned long address,
|
|
int psize)
|
|
{
|
|
unsigned long set = pte_val(entry) &
|
|
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
|
|
int huge = psize > mmu_virtual_psize ? 1 : 0;
|
|
|
|
pte_update(vma->vm_mm, address, ptep, 0, set, huge);
|
|
|
|
flush_tlb_page(vma, address);
|
|
}
|
|
#endif
|
|
|
|
static inline int pte_young(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_ACCESSED;
|
|
}
|
|
|
|
/*
|
|
* Note that on Book E processors, the pmd contains the kernel virtual
|
|
* (lowmem) address of the pte page. The physical address is less useful
|
|
* because everything runs with translation enabled (even the TLB miss
|
|
* handler). On everything else the pmd contains the physical address
|
|
* of the pte page. -- paulus
|
|
*/
|
|
#ifndef CONFIG_BOOKE
|
|
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
|
|
#else
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
|
|
#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
|
|
#endif
|
|
|
|
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
|
|
/*
|
|
* Encode and decode a swap entry.
|
|
* Note that the bits we use in a PTE for representing a swap entry
|
|
* must not include the _PAGE_PRESENT bit.
|
|
* -- paulus
|
|
*/
|
|
#define __swp_type(entry) ((entry).val & 0x1f)
|
|
#define __swp_offset(entry) ((entry).val >> 5)
|
|
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
|