linuxdebug/drivers/net/wireless/broadcom/b43/dma.c

1772 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
Broadcom B43 wireless driver
DMA ringbuffer and descriptor allocation/management
Copyright (c) 2005, 2006 Michael Buesch <m@bues.ch>
Some code in this file is derived from the b44.c driver
Copyright (C) 2002 David S. Miller
Copyright (C) Pekka Pietikainen
*/
#include "b43.h"
#include "dma.h"
#include "main.h"
#include "debugfs.h"
#include "xmit.h"
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <asm/div64.h>
/* Required number of TX DMA slots per TX frame.
* This currently is 2, because we put the header and the ieee80211 frame
* into separate slots. */
#define TX_SLOTS_PER_FRAME 2
static u32 b43_dma_address(struct b43_dma *dma, dma_addr_t dmaaddr,
enum b43_addrtype addrtype)
{
u32 addr;
switch (addrtype) {
case B43_DMA_ADDR_LOW:
addr = lower_32_bits(dmaaddr);
if (dma->translation_in_low) {
addr &= ~SSB_DMA_TRANSLATION_MASK;
addr |= dma->translation;
}
break;
case B43_DMA_ADDR_HIGH:
addr = upper_32_bits(dmaaddr);
if (!dma->translation_in_low) {
addr &= ~SSB_DMA_TRANSLATION_MASK;
addr |= dma->translation;
}
break;
case B43_DMA_ADDR_EXT:
if (dma->translation_in_low)
addr = lower_32_bits(dmaaddr);
else
addr = upper_32_bits(dmaaddr);
addr &= SSB_DMA_TRANSLATION_MASK;
addr >>= SSB_DMA_TRANSLATION_SHIFT;
break;
}
return addr;
}
/* 32bit DMA ops. */
static
struct b43_dmadesc_generic *op32_idx2desc(struct b43_dmaring *ring,
int slot,
struct b43_dmadesc_meta **meta)
{
struct b43_dmadesc32 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43_dmadesc_generic *)desc;
}
static void op32_fill_descriptor(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43_dmadesc32 *descbase = ring->descbase;
int slot;
u32 ctl;
u32 addr;
u32 addrext;
slot = (int)(&(desc->dma32) - descbase);
B43_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addr = b43_dma_address(&ring->dev->dma, dmaaddr, B43_DMA_ADDR_LOW);
addrext = b43_dma_address(&ring->dev->dma, dmaaddr, B43_DMA_ADDR_EXT);
ctl = bufsize & B43_DMA32_DCTL_BYTECNT;
if (slot == ring->nr_slots - 1)
ctl |= B43_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= B43_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= B43_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= B43_DMA32_DCTL_IRQ;
ctl |= (addrext << B43_DMA32_DCTL_ADDREXT_SHIFT)
& B43_DMA32_DCTL_ADDREXT_MASK;
desc->dma32.control = cpu_to_le32(ctl);
desc->dma32.address = cpu_to_le32(addr);
}
static void op32_poke_tx(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA32_TXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc32)));
}
static void op32_tx_suspend(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA32_TXCTL, b43_dma_read(ring, B43_DMA32_TXCTL)
| B43_DMA32_TXSUSPEND);
}
static void op32_tx_resume(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA32_TXCTL, b43_dma_read(ring, B43_DMA32_TXCTL)
& ~B43_DMA32_TXSUSPEND);
}
static int op32_get_current_rxslot(struct b43_dmaring *ring)
{
u32 val;
val = b43_dma_read(ring, B43_DMA32_RXSTATUS);
val &= B43_DMA32_RXDPTR;
return (val / sizeof(struct b43_dmadesc32));
}
static void op32_set_current_rxslot(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA32_RXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc32)));
}
static const struct b43_dma_ops dma32_ops = {
.idx2desc = op32_idx2desc,
.fill_descriptor = op32_fill_descriptor,
.poke_tx = op32_poke_tx,
.tx_suspend = op32_tx_suspend,
.tx_resume = op32_tx_resume,
.get_current_rxslot = op32_get_current_rxslot,
.set_current_rxslot = op32_set_current_rxslot,
};
/* 64bit DMA ops. */
static
struct b43_dmadesc_generic *op64_idx2desc(struct b43_dmaring *ring,
int slot,
struct b43_dmadesc_meta **meta)
{
struct b43_dmadesc64 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43_dmadesc_generic *)desc;
}
static void op64_fill_descriptor(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43_dmadesc64 *descbase = ring->descbase;
int slot;
u32 ctl0 = 0, ctl1 = 0;
u32 addrlo, addrhi;
u32 addrext;
slot = (int)(&(desc->dma64) - descbase);
B43_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addrlo = b43_dma_address(&ring->dev->dma, dmaaddr, B43_DMA_ADDR_LOW);
addrhi = b43_dma_address(&ring->dev->dma, dmaaddr, B43_DMA_ADDR_HIGH);
addrext = b43_dma_address(&ring->dev->dma, dmaaddr, B43_DMA_ADDR_EXT);
if (slot == ring->nr_slots - 1)
ctl0 |= B43_DMA64_DCTL0_DTABLEEND;
if (start)
ctl0 |= B43_DMA64_DCTL0_FRAMESTART;
if (end)
ctl0 |= B43_DMA64_DCTL0_FRAMEEND;
if (irq)
ctl0 |= B43_DMA64_DCTL0_IRQ;
ctl1 |= bufsize & B43_DMA64_DCTL1_BYTECNT;
ctl1 |= (addrext << B43_DMA64_DCTL1_ADDREXT_SHIFT)
& B43_DMA64_DCTL1_ADDREXT_MASK;
desc->dma64.control0 = cpu_to_le32(ctl0);
desc->dma64.control1 = cpu_to_le32(ctl1);
desc->dma64.address_low = cpu_to_le32(addrlo);
desc->dma64.address_high = cpu_to_le32(addrhi);
}
static void op64_poke_tx(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA64_TXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc64)));
}
static void op64_tx_suspend(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA64_TXCTL, b43_dma_read(ring, B43_DMA64_TXCTL)
| B43_DMA64_TXSUSPEND);
}
static void op64_tx_resume(struct b43_dmaring *ring)
{
b43_dma_write(ring, B43_DMA64_TXCTL, b43_dma_read(ring, B43_DMA64_TXCTL)
& ~B43_DMA64_TXSUSPEND);
}
static int op64_get_current_rxslot(struct b43_dmaring *ring)
{
u32 val;
val = b43_dma_read(ring, B43_DMA64_RXSTATUS);
val &= B43_DMA64_RXSTATDPTR;
return (val / sizeof(struct b43_dmadesc64));
}
static void op64_set_current_rxslot(struct b43_dmaring *ring, int slot)
{
b43_dma_write(ring, B43_DMA64_RXINDEX,
(u32) (slot * sizeof(struct b43_dmadesc64)));
}
static const struct b43_dma_ops dma64_ops = {
.idx2desc = op64_idx2desc,
.fill_descriptor = op64_fill_descriptor,
.poke_tx = op64_poke_tx,
.tx_suspend = op64_tx_suspend,
.tx_resume = op64_tx_resume,
.get_current_rxslot = op64_get_current_rxslot,
.set_current_rxslot = op64_set_current_rxslot,
};
static inline int free_slots(struct b43_dmaring *ring)
{
return (ring->nr_slots - ring->used_slots);
}
static inline int next_slot(struct b43_dmaring *ring, int slot)
{
B43_WARN_ON(!(slot >= -1 && slot <= ring->nr_slots - 1));
if (slot == ring->nr_slots - 1)
return 0;
return slot + 1;
}
static inline int prev_slot(struct b43_dmaring *ring, int slot)
{
B43_WARN_ON(!(slot >= 0 && slot <= ring->nr_slots - 1));
if (slot == 0)
return ring->nr_slots - 1;
return slot - 1;
}
#ifdef CONFIG_B43_DEBUG
static void update_max_used_slots(struct b43_dmaring *ring,
int current_used_slots)
{
if (current_used_slots <= ring->max_used_slots)
return;
ring->max_used_slots = current_used_slots;
if (b43_debug(ring->dev, B43_DBG_DMAVERBOSE)) {
b43dbg(ring->dev->wl,
"max_used_slots increased to %d on %s ring %d\n",
ring->max_used_slots,
ring->tx ? "TX" : "RX", ring->index);
}
}
#else
static inline
void update_max_used_slots(struct b43_dmaring *ring, int current_used_slots)
{
}
#endif /* DEBUG */
/* Request a slot for usage. */
static inline int request_slot(struct b43_dmaring *ring)
{
int slot;
B43_WARN_ON(!ring->tx);
B43_WARN_ON(ring->stopped);
B43_WARN_ON(free_slots(ring) == 0);
slot = next_slot(ring, ring->current_slot);
ring->current_slot = slot;
ring->used_slots++;
update_max_used_slots(ring, ring->used_slots);
return slot;
}
static u16 b43_dmacontroller_base(enum b43_dmatype type, int controller_idx)
{
static const u16 map64[] = {
B43_MMIO_DMA64_BASE0,
B43_MMIO_DMA64_BASE1,
B43_MMIO_DMA64_BASE2,
B43_MMIO_DMA64_BASE3,
B43_MMIO_DMA64_BASE4,
B43_MMIO_DMA64_BASE5,
};
static const u16 map32[] = {
B43_MMIO_DMA32_BASE0,
B43_MMIO_DMA32_BASE1,
B43_MMIO_DMA32_BASE2,
B43_MMIO_DMA32_BASE3,
B43_MMIO_DMA32_BASE4,
B43_MMIO_DMA32_BASE5,
};
if (type == B43_DMA_64BIT) {
B43_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map64)));
return map64[controller_idx];
}
B43_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map32)));
return map32[controller_idx];
}
static inline
dma_addr_t map_descbuffer(struct b43_dmaring *ring,
unsigned char *buf, size_t len, int tx)
{
dma_addr_t dmaaddr;
if (tx) {
dmaaddr = dma_map_single(ring->dev->dev->dma_dev,
buf, len, DMA_TO_DEVICE);
} else {
dmaaddr = dma_map_single(ring->dev->dev->dma_dev,
buf, len, DMA_FROM_DEVICE);
}
return dmaaddr;
}
static inline
void unmap_descbuffer(struct b43_dmaring *ring,
dma_addr_t addr, size_t len, int tx)
{
if (tx) {
dma_unmap_single(ring->dev->dev->dma_dev,
addr, len, DMA_TO_DEVICE);
} else {
dma_unmap_single(ring->dev->dev->dma_dev,
addr, len, DMA_FROM_DEVICE);
}
}
static inline
void sync_descbuffer_for_cpu(struct b43_dmaring *ring,
dma_addr_t addr, size_t len)
{
B43_WARN_ON(ring->tx);
dma_sync_single_for_cpu(ring->dev->dev->dma_dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_device(struct b43_dmaring *ring,
dma_addr_t addr, size_t len)
{
B43_WARN_ON(ring->tx);
dma_sync_single_for_device(ring->dev->dev->dma_dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void free_descriptor_buffer(struct b43_dmaring *ring,
struct b43_dmadesc_meta *meta)
{
if (meta->skb) {
if (ring->tx)
ieee80211_free_txskb(ring->dev->wl->hw, meta->skb);
else
dev_kfree_skb_any(meta->skb);
meta->skb = NULL;
}
}
static int alloc_ringmemory(struct b43_dmaring *ring)
{
/* The specs call for 4K buffers for 30- and 32-bit DMA with 4K
* alignment and 8K buffers for 64-bit DMA with 8K alignment.
* In practice we could use smaller buffers for the latter, but the
* alignment is really important because of the hardware bug. If bit
* 0x00001000 is used in DMA address, some hardware (like BCM4331)
* copies that bit into B43_DMA64_RXSTATUS and we get false values from
* B43_DMA64_RXSTATDPTR. Let's just use 8K buffers even if we don't use
* more than 256 slots for ring.
*/
u16 ring_mem_size = (ring->type == B43_DMA_64BIT) ?
B43_DMA64_RINGMEMSIZE : B43_DMA32_RINGMEMSIZE;
ring->descbase = dma_alloc_coherent(ring->dev->dev->dma_dev,
ring_mem_size, &(ring->dmabase),
GFP_KERNEL);
if (!ring->descbase)
return -ENOMEM;
return 0;
}
static void free_ringmemory(struct b43_dmaring *ring)
{
u16 ring_mem_size = (ring->type == B43_DMA_64BIT) ?
B43_DMA64_RINGMEMSIZE : B43_DMA32_RINGMEMSIZE;
dma_free_coherent(ring->dev->dev->dma_dev, ring_mem_size,
ring->descbase, ring->dmabase);
}
/* Reset the RX DMA channel */
static int b43_dmacontroller_rx_reset(struct b43_wldev *dev, u16 mmio_base,
enum b43_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
offset = (type == B43_DMA_64BIT) ? B43_DMA64_RXCTL : B43_DMA32_RXCTL;
b43_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == B43_DMA_64BIT) ? B43_DMA64_RXSTATUS :
B43_DMA32_RXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (type == B43_DMA_64BIT) {
value &= B43_DMA64_RXSTAT;
if (value == B43_DMA64_RXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43_DMA32_RXSTATE;
if (value == B43_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43err(dev->wl, "DMA RX reset timed out\n");
return -ENODEV;
}
return 0;
}
/* Reset the TX DMA channel */
static int b43_dmacontroller_tx_reset(struct b43_wldev *dev, u16 mmio_base,
enum b43_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
for (i = 0; i < 10; i++) {
offset = (type == B43_DMA_64BIT) ? B43_DMA64_TXSTATUS :
B43_DMA32_TXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (type == B43_DMA_64BIT) {
value &= B43_DMA64_TXSTAT;
if (value == B43_DMA64_TXSTAT_DISABLED ||
value == B43_DMA64_TXSTAT_IDLEWAIT ||
value == B43_DMA64_TXSTAT_STOPPED)
break;
} else {
value &= B43_DMA32_TXSTATE;
if (value == B43_DMA32_TXSTAT_DISABLED ||
value == B43_DMA32_TXSTAT_IDLEWAIT ||
value == B43_DMA32_TXSTAT_STOPPED)
break;
}
msleep(1);
}
offset = (type == B43_DMA_64BIT) ? B43_DMA64_TXCTL : B43_DMA32_TXCTL;
b43_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == B43_DMA_64BIT) ? B43_DMA64_TXSTATUS :
B43_DMA32_TXSTATUS;
value = b43_read32(dev, mmio_base + offset);
if (type == B43_DMA_64BIT) {
value &= B43_DMA64_TXSTAT;
if (value == B43_DMA64_TXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43_DMA32_TXSTATE;
if (value == B43_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43err(dev->wl, "DMA TX reset timed out\n");
return -ENODEV;
}
/* ensure the reset is completed. */
msleep(1);
return 0;
}
/* Check if a DMA mapping address is invalid. */
static bool b43_dma_mapping_error(struct b43_dmaring *ring,
dma_addr_t addr,
size_t buffersize, bool dma_to_device)
{
if (unlikely(dma_mapping_error(ring->dev->dev->dma_dev, addr)))
return true;
switch (ring->type) {
case B43_DMA_30BIT:
if ((u64)addr + buffersize > (1ULL << 30))
goto address_error;
break;
case B43_DMA_32BIT:
if ((u64)addr + buffersize > (1ULL << 32))
goto address_error;
break;
case B43_DMA_64BIT:
/* Currently we can't have addresses beyond
* 64bit in the kernel. */
break;
}
/* The address is OK. */
return false;
address_error:
/* We can't support this address. Unmap it again. */
unmap_descbuffer(ring, addr, buffersize, dma_to_device);
return true;
}
static bool b43_rx_buffer_is_poisoned(struct b43_dmaring *ring, struct sk_buff *skb)
{
unsigned char *f = skb->data + ring->frameoffset;
return ((f[0] & f[1] & f[2] & f[3] & f[4] & f[5] & f[6] & f[7]) == 0xFF);
}
static void b43_poison_rx_buffer(struct b43_dmaring *ring, struct sk_buff *skb)
{
struct b43_rxhdr_fw4 *rxhdr;
unsigned char *frame;
/* This poisons the RX buffer to detect DMA failures. */
rxhdr = (struct b43_rxhdr_fw4 *)(skb->data);
rxhdr->frame_len = 0;
B43_WARN_ON(ring->rx_buffersize < ring->frameoffset + sizeof(struct b43_plcp_hdr6) + 2);
frame = skb->data + ring->frameoffset;
memset(frame, 0xFF, sizeof(struct b43_plcp_hdr6) + 2 /* padding */);
}
static int setup_rx_descbuffer(struct b43_dmaring *ring,
struct b43_dmadesc_generic *desc,
struct b43_dmadesc_meta *meta, gfp_t gfp_flags)
{
dma_addr_t dmaaddr;
struct sk_buff *skb;
B43_WARN_ON(ring->tx);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
b43_poison_rx_buffer(ring, skb);
dmaaddr = map_descbuffer(ring, skb->data, ring->rx_buffersize, 0);
if (b43_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
/* ugh. try to realloc in zone_dma */
gfp_flags |= GFP_DMA;
dev_kfree_skb_any(skb);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
b43_poison_rx_buffer(ring, skb);
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
if (b43_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
b43err(ring->dev->wl, "RX DMA buffer allocation failed\n");
dev_kfree_skb_any(skb);
return -EIO;
}
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
ring->ops->fill_descriptor(ring, desc, dmaaddr,
ring->rx_buffersize, 0, 0, 0);
return 0;
}
/* Allocate the initial descbuffers.
* This is used for an RX ring only.
*/
static int alloc_initial_descbuffers(struct b43_dmaring *ring)
{
int i, err = -ENOMEM;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
for (i = 0; i < ring->nr_slots; i++) {
desc = ring->ops->idx2desc(ring, i, &meta);
err = setup_rx_descbuffer(ring, desc, meta, GFP_KERNEL);
if (err) {
b43err(ring->dev->wl,
"Failed to allocate initial descbuffers\n");
goto err_unwind;
}
}
mb();
ring->used_slots = ring->nr_slots;
err = 0;
out:
return err;
err_unwind:
for (i--; i >= 0; i--) {
desc = ring->ops->idx2desc(ring, i, &meta);
unmap_descbuffer(ring, meta->dmaaddr, ring->rx_buffersize, 0);
dev_kfree_skb(meta->skb);
}
goto out;
}
/* Do initial setup of the DMA controller.
* Reset the controller, write the ring busaddress
* and switch the "enable" bit on.
*/
static int dmacontroller_setup(struct b43_dmaring *ring)
{
int err = 0;
u32 value;
u32 addrext;
bool parity = ring->dev->dma.parity;
u32 addrlo;
u32 addrhi;
if (ring->tx) {
if (ring->type == B43_DMA_64BIT) {
u64 ringbase = (u64) (ring->dmabase);
addrext = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_EXT);
addrlo = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_LOW);
addrhi = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_HIGH);
value = B43_DMA64_TXENABLE;
value |= (addrext << B43_DMA64_TXADDREXT_SHIFT)
& B43_DMA64_TXADDREXT_MASK;
if (!parity)
value |= B43_DMA64_TXPARITYDISABLE;
b43_dma_write(ring, B43_DMA64_TXCTL, value);
b43_dma_write(ring, B43_DMA64_TXRINGLO, addrlo);
b43_dma_write(ring, B43_DMA64_TXRINGHI, addrhi);
} else {
u32 ringbase = (u32) (ring->dmabase);
addrext = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_EXT);
addrlo = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_LOW);
value = B43_DMA32_TXENABLE;
value |= (addrext << B43_DMA32_TXADDREXT_SHIFT)
& B43_DMA32_TXADDREXT_MASK;
if (!parity)
value |= B43_DMA32_TXPARITYDISABLE;
b43_dma_write(ring, B43_DMA32_TXCTL, value);
b43_dma_write(ring, B43_DMA32_TXRING, addrlo);
}
} else {
err = alloc_initial_descbuffers(ring);
if (err)
goto out;
if (ring->type == B43_DMA_64BIT) {
u64 ringbase = (u64) (ring->dmabase);
addrext = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_EXT);
addrlo = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_LOW);
addrhi = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_HIGH);
value = (ring->frameoffset << B43_DMA64_RXFROFF_SHIFT);
value |= B43_DMA64_RXENABLE;
value |= (addrext << B43_DMA64_RXADDREXT_SHIFT)
& B43_DMA64_RXADDREXT_MASK;
if (!parity)
value |= B43_DMA64_RXPARITYDISABLE;
b43_dma_write(ring, B43_DMA64_RXCTL, value);
b43_dma_write(ring, B43_DMA64_RXRINGLO, addrlo);
b43_dma_write(ring, B43_DMA64_RXRINGHI, addrhi);
b43_dma_write(ring, B43_DMA64_RXINDEX, ring->nr_slots *
sizeof(struct b43_dmadesc64));
} else {
u32 ringbase = (u32) (ring->dmabase);
addrext = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_EXT);
addrlo = b43_dma_address(&ring->dev->dma, ringbase, B43_DMA_ADDR_LOW);
value = (ring->frameoffset << B43_DMA32_RXFROFF_SHIFT);
value |= B43_DMA32_RXENABLE;
value |= (addrext << B43_DMA32_RXADDREXT_SHIFT)
& B43_DMA32_RXADDREXT_MASK;
if (!parity)
value |= B43_DMA32_RXPARITYDISABLE;
b43_dma_write(ring, B43_DMA32_RXCTL, value);
b43_dma_write(ring, B43_DMA32_RXRING, addrlo);
b43_dma_write(ring, B43_DMA32_RXINDEX, ring->nr_slots *
sizeof(struct b43_dmadesc32));
}
}
out:
return err;
}
/* Shutdown the DMA controller. */
static void dmacontroller_cleanup(struct b43_dmaring *ring)
{
if (ring->tx) {
b43_dmacontroller_tx_reset(ring->dev, ring->mmio_base,
ring->type);
if (ring->type == B43_DMA_64BIT) {
b43_dma_write(ring, B43_DMA64_TXRINGLO, 0);
b43_dma_write(ring, B43_DMA64_TXRINGHI, 0);
} else
b43_dma_write(ring, B43_DMA32_TXRING, 0);
} else {
b43_dmacontroller_rx_reset(ring->dev, ring->mmio_base,
ring->type);
if (ring->type == B43_DMA_64BIT) {
b43_dma_write(ring, B43_DMA64_RXRINGLO, 0);
b43_dma_write(ring, B43_DMA64_RXRINGHI, 0);
} else
b43_dma_write(ring, B43_DMA32_RXRING, 0);
}
}
static void free_all_descbuffers(struct b43_dmaring *ring)
{
struct b43_dmadesc_meta *meta;
int i;
if (!ring->used_slots)
return;
for (i = 0; i < ring->nr_slots; i++) {
/* get meta - ignore returned value */
ring->ops->idx2desc(ring, i, &meta);
if (!meta->skb || b43_dma_ptr_is_poisoned(meta->skb)) {
B43_WARN_ON(!ring->tx);
continue;
}
if (ring->tx) {
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
} else {
unmap_descbuffer(ring, meta->dmaaddr,
ring->rx_buffersize, 0);
}
free_descriptor_buffer(ring, meta);
}
}
static enum b43_dmatype b43_engine_type(struct b43_wldev *dev)
{
u32 tmp;
u16 mmio_base;
switch (dev->dev->bus_type) {
#ifdef CONFIG_B43_BCMA
case B43_BUS_BCMA:
tmp = bcma_aread32(dev->dev->bdev, BCMA_IOST);
if (tmp & BCMA_IOST_DMA64)
return B43_DMA_64BIT;
break;
#endif
#ifdef CONFIG_B43_SSB
case B43_BUS_SSB:
tmp = ssb_read32(dev->dev->sdev, SSB_TMSHIGH);
if (tmp & SSB_TMSHIGH_DMA64)
return B43_DMA_64BIT;
break;
#endif
}
mmio_base = b43_dmacontroller_base(0, 0);
b43_write32(dev, mmio_base + B43_DMA32_TXCTL, B43_DMA32_TXADDREXT_MASK);
tmp = b43_read32(dev, mmio_base + B43_DMA32_TXCTL);
if (tmp & B43_DMA32_TXADDREXT_MASK)
return B43_DMA_32BIT;
return B43_DMA_30BIT;
}
/* Main initialization function. */
static
struct b43_dmaring *b43_setup_dmaring(struct b43_wldev *dev,
int controller_index,
int for_tx,
enum b43_dmatype type)
{
struct b43_dmaring *ring;
int i, err;
dma_addr_t dma_test;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out;
ring->nr_slots = B43_RXRING_SLOTS;
if (for_tx)
ring->nr_slots = B43_TXRING_SLOTS;
ring->meta = kcalloc(ring->nr_slots, sizeof(struct b43_dmadesc_meta),
GFP_KERNEL);
if (!ring->meta)
goto err_kfree_ring;
for (i = 0; i < ring->nr_slots; i++)
ring->meta->skb = B43_DMA_PTR_POISON;
ring->type = type;
ring->dev = dev;
ring->mmio_base = b43_dmacontroller_base(type, controller_index);
ring->index = controller_index;
if (type == B43_DMA_64BIT)
ring->ops = &dma64_ops;
else
ring->ops = &dma32_ops;
if (for_tx) {
ring->tx = true;
ring->current_slot = -1;
} else {
if (ring->index == 0) {
switch (dev->fw.hdr_format) {
case B43_FW_HDR_598:
ring->rx_buffersize = B43_DMA0_RX_FW598_BUFSIZE;
ring->frameoffset = B43_DMA0_RX_FW598_FO;
break;
case B43_FW_HDR_410:
case B43_FW_HDR_351:
ring->rx_buffersize = B43_DMA0_RX_FW351_BUFSIZE;
ring->frameoffset = B43_DMA0_RX_FW351_FO;
break;
}
} else
B43_WARN_ON(1);
}
#ifdef CONFIG_B43_DEBUG
ring->last_injected_overflow = jiffies;
#endif
if (for_tx) {
/* Assumption: B43_TXRING_SLOTS can be divided by TX_SLOTS_PER_FRAME */
BUILD_BUG_ON(B43_TXRING_SLOTS % TX_SLOTS_PER_FRAME != 0);
ring->txhdr_cache = kcalloc(ring->nr_slots / TX_SLOTS_PER_FRAME,
b43_txhdr_size(dev),
GFP_KERNEL);
if (!ring->txhdr_cache)
goto err_kfree_meta;
/* test for ability to dma to txhdr_cache */
dma_test = dma_map_single(dev->dev->dma_dev,
ring->txhdr_cache,
b43_txhdr_size(dev),
DMA_TO_DEVICE);
if (b43_dma_mapping_error(ring, dma_test,
b43_txhdr_size(dev), 1)) {
/* ugh realloc */
kfree(ring->txhdr_cache);
ring->txhdr_cache = kcalloc(ring->nr_slots / TX_SLOTS_PER_FRAME,
b43_txhdr_size(dev),
GFP_KERNEL | GFP_DMA);
if (!ring->txhdr_cache)
goto err_kfree_meta;
dma_test = dma_map_single(dev->dev->dma_dev,
ring->txhdr_cache,
b43_txhdr_size(dev),
DMA_TO_DEVICE);
if (b43_dma_mapping_error(ring, dma_test,
b43_txhdr_size(dev), 1)) {
b43err(dev->wl,
"TXHDR DMA allocation failed\n");
goto err_kfree_txhdr_cache;
}
}
dma_unmap_single(dev->dev->dma_dev,
dma_test, b43_txhdr_size(dev),
DMA_TO_DEVICE);
}
err = alloc_ringmemory(ring);
if (err)
goto err_kfree_txhdr_cache;
err = dmacontroller_setup(ring);
if (err)
goto err_free_ringmemory;
out:
return ring;
err_free_ringmemory:
free_ringmemory(ring);
err_kfree_txhdr_cache:
kfree(ring->txhdr_cache);
err_kfree_meta:
kfree(ring->meta);
err_kfree_ring:
kfree(ring);
ring = NULL;
goto out;
}
#define divide(a, b) ({ \
typeof(a) __a = a; \
do_div(__a, b); \
__a; \
})
#define modulo(a, b) ({ \
typeof(a) __a = a; \
do_div(__a, b); \
})
/* Main cleanup function. */
static void b43_destroy_dmaring(struct b43_dmaring *ring,
const char *ringname)
{
if (!ring)
return;
#ifdef CONFIG_B43_DEBUG
{
/* Print some statistics. */
u64 failed_packets = ring->nr_failed_tx_packets;
u64 succeed_packets = ring->nr_succeed_tx_packets;
u64 nr_packets = failed_packets + succeed_packets;
u64 permille_failed = 0, average_tries = 0;
if (nr_packets)
permille_failed = divide(failed_packets * 1000, nr_packets);
if (nr_packets)
average_tries = divide(ring->nr_total_packet_tries * 100, nr_packets);
b43dbg(ring->dev->wl, "DMA-%u %s: "
"Used slots %d/%d, Failed frames %llu/%llu = %llu.%01llu%%, "
"Average tries %llu.%02llu\n",
(unsigned int)(ring->type), ringname,
ring->max_used_slots,
ring->nr_slots,
(unsigned long long)failed_packets,
(unsigned long long)nr_packets,
(unsigned long long)divide(permille_failed, 10),
(unsigned long long)modulo(permille_failed, 10),
(unsigned long long)divide(average_tries, 100),
(unsigned long long)modulo(average_tries, 100));
}
#endif /* DEBUG */
/* Device IRQs are disabled prior entering this function,
* so no need to take care of concurrency with rx handler stuff.
*/
dmacontroller_cleanup(ring);
free_all_descbuffers(ring);
free_ringmemory(ring);
kfree(ring->txhdr_cache);
kfree(ring->meta);
kfree(ring);
}
#define destroy_ring(dma, ring) do { \
b43_destroy_dmaring((dma)->ring, __stringify(ring)); \
(dma)->ring = NULL; \
} while (0)
void b43_dma_free(struct b43_wldev *dev)
{
struct b43_dma *dma;
if (b43_using_pio_transfers(dev))
return;
dma = &dev->dma;
destroy_ring(dma, rx_ring);
destroy_ring(dma, tx_ring_AC_BK);
destroy_ring(dma, tx_ring_AC_BE);
destroy_ring(dma, tx_ring_AC_VI);
destroy_ring(dma, tx_ring_AC_VO);
destroy_ring(dma, tx_ring_mcast);
}
/* Some hardware with 64-bit DMA seems to be bugged and looks for translation
* bit in low address word instead of high one.
*/
static bool b43_dma_translation_in_low_word(struct b43_wldev *dev,
enum b43_dmatype type)
{
if (type != B43_DMA_64BIT)
return true;
#ifdef CONFIG_B43_SSB
if (dev->dev->bus_type == B43_BUS_SSB &&
dev->dev->sdev->bus->bustype == SSB_BUSTYPE_PCI &&
!(pci_is_pcie(dev->dev->sdev->bus->host_pci) &&
ssb_read32(dev->dev->sdev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64))
return true;
#endif
return false;
}
int b43_dma_init(struct b43_wldev *dev)
{
struct b43_dma *dma = &dev->dma;
enum b43_dmatype type = b43_engine_type(dev);
int err;
err = dma_set_mask_and_coherent(dev->dev->dma_dev, DMA_BIT_MASK(type));
if (err) {
b43err(dev->wl, "The machine/kernel does not support "
"the required %u-bit DMA mask\n", type);
return err;
}
switch (dev->dev->bus_type) {
#ifdef CONFIG_B43_BCMA
case B43_BUS_BCMA:
dma->translation = bcma_core_dma_translation(dev->dev->bdev);
break;
#endif
#ifdef CONFIG_B43_SSB
case B43_BUS_SSB:
dma->translation = ssb_dma_translation(dev->dev->sdev);
break;
#endif
}
dma->translation_in_low = b43_dma_translation_in_low_word(dev, type);
dma->parity = true;
#ifdef CONFIG_B43_BCMA
/* TODO: find out which SSB devices need disabling parity */
if (dev->dev->bus_type == B43_BUS_BCMA)
dma->parity = false;
#endif
err = -ENOMEM;
/* setup TX DMA channels. */
dma->tx_ring_AC_BK = b43_setup_dmaring(dev, 0, 1, type);
if (!dma->tx_ring_AC_BK)
goto out;
dma->tx_ring_AC_BE = b43_setup_dmaring(dev, 1, 1, type);
if (!dma->tx_ring_AC_BE)
goto err_destroy_bk;
dma->tx_ring_AC_VI = b43_setup_dmaring(dev, 2, 1, type);
if (!dma->tx_ring_AC_VI)
goto err_destroy_be;
dma->tx_ring_AC_VO = b43_setup_dmaring(dev, 3, 1, type);
if (!dma->tx_ring_AC_VO)
goto err_destroy_vi;
dma->tx_ring_mcast = b43_setup_dmaring(dev, 4, 1, type);
if (!dma->tx_ring_mcast)
goto err_destroy_vo;
/* setup RX DMA channel. */
dma->rx_ring = b43_setup_dmaring(dev, 0, 0, type);
if (!dma->rx_ring)
goto err_destroy_mcast;
/* No support for the TX status DMA ring. */
B43_WARN_ON(dev->dev->core_rev < 5);
b43dbg(dev->wl, "%u-bit DMA initialized\n",
(unsigned int)type);
err = 0;
out:
return err;
err_destroy_mcast:
destroy_ring(dma, tx_ring_mcast);
err_destroy_vo:
destroy_ring(dma, tx_ring_AC_VO);
err_destroy_vi:
destroy_ring(dma, tx_ring_AC_VI);
err_destroy_be:
destroy_ring(dma, tx_ring_AC_BE);
err_destroy_bk:
destroy_ring(dma, tx_ring_AC_BK);
return err;
}
/* Generate a cookie for the TX header. */
static u16 generate_cookie(struct b43_dmaring *ring, int slot)
{
u16 cookie;
/* Use the upper 4 bits of the cookie as
* DMA controller ID and store the slot number
* in the lower 12 bits.
* Note that the cookie must never be 0, as this
* is a special value used in RX path.
* It can also not be 0xFFFF because that is special
* for multicast frames.
*/
cookie = (((u16)ring->index + 1) << 12);
B43_WARN_ON(slot & ~0x0FFF);
cookie |= (u16)slot;
return cookie;
}
/* Inspect a cookie and find out to which controller/slot it belongs. */
static
struct b43_dmaring *parse_cookie(struct b43_wldev *dev, u16 cookie, int *slot)
{
struct b43_dma *dma = &dev->dma;
struct b43_dmaring *ring = NULL;
switch (cookie & 0xF000) {
case 0x1000:
ring = dma->tx_ring_AC_BK;
break;
case 0x2000:
ring = dma->tx_ring_AC_BE;
break;
case 0x3000:
ring = dma->tx_ring_AC_VI;
break;
case 0x4000:
ring = dma->tx_ring_AC_VO;
break;
case 0x5000:
ring = dma->tx_ring_mcast;
break;
}
*slot = (cookie & 0x0FFF);
if (unlikely(!ring || *slot < 0 || *slot >= ring->nr_slots)) {
b43dbg(dev->wl, "TX-status contains "
"invalid cookie: 0x%04X\n", cookie);
return NULL;
}
return ring;
}
static int dma_tx_fragment(struct b43_dmaring *ring,
struct sk_buff *skb)
{
const struct b43_dma_ops *ops = ring->ops;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct b43_private_tx_info *priv_info = b43_get_priv_tx_info(info);
u8 *header;
int slot, old_top_slot, old_used_slots;
int err;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
struct b43_dmadesc_meta *meta_hdr;
u16 cookie;
size_t hdrsize = b43_txhdr_size(ring->dev);
/* Important note: If the number of used DMA slots per TX frame
* is changed here, the TX_SLOTS_PER_FRAME definition at the top of
* the file has to be updated, too!
*/
old_top_slot = ring->current_slot;
old_used_slots = ring->used_slots;
/* Get a slot for the header. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta_hdr);
memset(meta_hdr, 0, sizeof(*meta_hdr));
header = &(ring->txhdr_cache[(slot / TX_SLOTS_PER_FRAME) * hdrsize]);
cookie = generate_cookie(ring, slot);
err = b43_generate_txhdr(ring->dev, header,
skb, info, cookie);
if (unlikely(err)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return err;
}
meta_hdr->dmaaddr = map_descbuffer(ring, (unsigned char *)header,
hdrsize, 1);
if (b43_dma_mapping_error(ring, meta_hdr->dmaaddr, hdrsize, 1)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return -EIO;
}
ops->fill_descriptor(ring, desc, meta_hdr->dmaaddr,
hdrsize, 1, 0, 0);
/* Get a slot for the payload. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta);
memset(meta, 0, sizeof(*meta));
meta->skb = skb;
meta->is_last_fragment = true;
priv_info->bouncebuffer = NULL;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
/* create a bounce buffer in zone_dma on mapping failure. */
if (b43_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
priv_info->bouncebuffer = kmemdup(skb->data, skb->len,
GFP_ATOMIC | GFP_DMA);
if (!priv_info->bouncebuffer) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -ENOMEM;
goto out_unmap_hdr;
}
meta->dmaaddr = map_descbuffer(ring, priv_info->bouncebuffer, skb->len, 1);
if (b43_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
kfree(priv_info->bouncebuffer);
priv_info->bouncebuffer = NULL;
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -EIO;
goto out_unmap_hdr;
}
}
ops->fill_descriptor(ring, desc, meta->dmaaddr, skb->len, 0, 1, 1);
if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
/* Tell the firmware about the cookie of the last
* mcast frame, so it can clear the more-data bit in it. */
b43_shm_write16(ring->dev, B43_SHM_SHARED,
B43_SHM_SH_MCASTCOOKIE, cookie);
}
/* Now transfer the whole frame. */
wmb();
ops->poke_tx(ring, next_slot(ring, slot));
return 0;
out_unmap_hdr:
unmap_descbuffer(ring, meta_hdr->dmaaddr,
hdrsize, 1);
return err;
}
static inline int should_inject_overflow(struct b43_dmaring *ring)
{
#ifdef CONFIG_B43_DEBUG
if (unlikely(b43_debug(ring->dev, B43_DBG_DMAOVERFLOW))) {
/* Check if we should inject another ringbuffer overflow
* to test handling of this situation in the stack. */
unsigned long next_overflow;
next_overflow = ring->last_injected_overflow + HZ;
if (time_after(jiffies, next_overflow)) {
ring->last_injected_overflow = jiffies;
b43dbg(ring->dev->wl,
"Injecting TX ring overflow on "
"DMA controller %d\n", ring->index);
return 1;
}
}
#endif /* CONFIG_B43_DEBUG */
return 0;
}
/* Static mapping of mac80211's queues (priorities) to b43 DMA rings. */
static struct b43_dmaring *select_ring_by_priority(struct b43_wldev *dev,
u8 queue_prio)
{
struct b43_dmaring *ring;
if (dev->qos_enabled) {
/* 0 = highest priority */
switch (queue_prio) {
default:
B43_WARN_ON(1);
fallthrough;
case 0:
ring = dev->dma.tx_ring_AC_VO;
break;
case 1:
ring = dev->dma.tx_ring_AC_VI;
break;
case 2:
ring = dev->dma.tx_ring_AC_BE;
break;
case 3:
ring = dev->dma.tx_ring_AC_BK;
break;
}
} else
ring = dev->dma.tx_ring_AC_BE;
return ring;
}
int b43_dma_tx(struct b43_wldev *dev, struct sk_buff *skb)
{
struct b43_dmaring *ring;
struct ieee80211_hdr *hdr;
int err = 0;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
hdr = (struct ieee80211_hdr *)skb->data;
if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
/* The multicast ring will be sent after the DTIM */
ring = dev->dma.tx_ring_mcast;
/* Set the more-data bit. Ucode will clear it on
* the last frame for us. */
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
} else {
/* Decide by priority where to put this frame. */
ring = select_ring_by_priority(
dev, skb_get_queue_mapping(skb));
}
B43_WARN_ON(!ring->tx);
if (unlikely(ring->stopped)) {
/* We get here only because of a bug in mac80211.
* Because of a race, one packet may be queued after
* the queue is stopped, thus we got called when we shouldn't.
* For now, just refuse the transmit. */
if (b43_debug(dev, B43_DBG_DMAVERBOSE))
b43err(dev->wl, "Packet after queue stopped\n");
err = -ENOSPC;
goto out;
}
if (WARN_ON(free_slots(ring) < TX_SLOTS_PER_FRAME)) {
/* If we get here, we have a real error with the queue
* full, but queues not stopped. */
b43err(dev->wl, "DMA queue overflow\n");
err = -ENOSPC;
goto out;
}
/* Assign the queue number to the ring (if not already done before)
* so TX status handling can use it. The queue to ring mapping is
* static, so we don't need to store it per frame. */
ring->queue_prio = skb_get_queue_mapping(skb);
err = dma_tx_fragment(ring, skb);
if (unlikely(err == -ENOKEY)) {
/* Drop this packet, as we don't have the encryption key
* anymore and must not transmit it unencrypted. */
ieee80211_free_txskb(dev->wl->hw, skb);
err = 0;
goto out;
}
if (unlikely(err)) {
b43err(dev->wl, "DMA tx mapping failure\n");
goto out;
}
if ((free_slots(ring) < TX_SLOTS_PER_FRAME) ||
should_inject_overflow(ring)) {
/* This TX ring is full. */
unsigned int skb_mapping = skb_get_queue_mapping(skb);
ieee80211_stop_queue(dev->wl->hw, skb_mapping);
dev->wl->tx_queue_stopped[skb_mapping] = true;
ring->stopped = true;
if (b43_debug(dev, B43_DBG_DMAVERBOSE)) {
b43dbg(dev->wl, "Stopped TX ring %d\n", ring->index);
}
}
out:
return err;
}
void b43_dma_handle_txstatus(struct b43_wldev *dev,
const struct b43_txstatus *status)
{
const struct b43_dma_ops *ops;
struct b43_dmaring *ring;
struct b43_dmadesc_meta *meta;
static const struct b43_txstatus fake; /* filled with 0 */
const struct b43_txstatus *txstat;
int slot, firstused;
bool frame_succeed;
int skip;
static u8 err_out1;
ring = parse_cookie(dev, status->cookie, &slot);
if (unlikely(!ring))
return;
B43_WARN_ON(!ring->tx);
/* Sanity check: TX packets are processed in-order on one ring.
* Check if the slot deduced from the cookie really is the first
* used slot. */
firstused = ring->current_slot - ring->used_slots + 1;
if (firstused < 0)
firstused = ring->nr_slots + firstused;
skip = 0;
if (unlikely(slot != firstused)) {
/* This possibly is a firmware bug and will result in
* malfunction, memory leaks and/or stall of DMA functionality.
*/
if (slot == next_slot(ring, next_slot(ring, firstused))) {
/* If a single header/data pair was missed, skip over
* the first two slots in an attempt to recover.
*/
slot = firstused;
skip = 2;
if (!err_out1) {
/* Report the error once. */
b43dbg(dev->wl,
"Skip on DMA ring %d slot %d.\n",
ring->index, slot);
err_out1 = 1;
}
} else {
/* More than a single header/data pair were missed.
* Report this error. If running with open-source
* firmware, then reset the controller to
* revive operation.
*/
b43dbg(dev->wl,
"Out of order TX status report on DMA ring %d. Expected %d, but got %d\n",
ring->index, firstused, slot);
if (dev->fw.opensource)
b43_controller_restart(dev, "Out of order TX");
return;
}
}
ops = ring->ops;
while (1) {
B43_WARN_ON(slot < 0 || slot >= ring->nr_slots);
/* get meta - ignore returned value */
ops->idx2desc(ring, slot, &meta);
if (b43_dma_ptr_is_poisoned(meta->skb)) {
b43dbg(dev->wl, "Poisoned TX slot %d (first=%d) "
"on ring %d\n",
slot, firstused, ring->index);
break;
}
if (meta->skb) {
struct b43_private_tx_info *priv_info =
b43_get_priv_tx_info(IEEE80211_SKB_CB(meta->skb));
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
kfree(priv_info->bouncebuffer);
priv_info->bouncebuffer = NULL;
} else {
unmap_descbuffer(ring, meta->dmaaddr,
b43_txhdr_size(dev), 1);
}
if (meta->is_last_fragment) {
struct ieee80211_tx_info *info;
if (unlikely(!meta->skb)) {
/* This is a scatter-gather fragment of a frame,
* so the skb pointer must not be NULL.
*/
b43dbg(dev->wl, "TX status unexpected NULL skb "
"at slot %d (first=%d) on ring %d\n",
slot, firstused, ring->index);
break;
}
info = IEEE80211_SKB_CB(meta->skb);
/*
* Call back to inform the ieee80211 subsystem about
* the status of the transmission. When skipping over
* a missed TX status report, use a status structure
* filled with zeros to indicate that the frame was not
* sent (frame_count 0) and not acknowledged
*/
if (unlikely(skip))
txstat = &fake;
else
txstat = status;
frame_succeed = b43_fill_txstatus_report(dev, info,
txstat);
#ifdef CONFIG_B43_DEBUG
if (frame_succeed)
ring->nr_succeed_tx_packets++;
else
ring->nr_failed_tx_packets++;
ring->nr_total_packet_tries += status->frame_count;
#endif /* DEBUG */
ieee80211_tx_status(dev->wl->hw, meta->skb);
/* skb will be freed by ieee80211_tx_status().
* Poison our pointer. */
meta->skb = B43_DMA_PTR_POISON;
} else {
/* No need to call free_descriptor_buffer here, as
* this is only the txhdr, which is not allocated.
*/
if (unlikely(meta->skb)) {
b43dbg(dev->wl, "TX status unexpected non-NULL skb "
"at slot %d (first=%d) on ring %d\n",
slot, firstused, ring->index);
break;
}
}
/* Everything unmapped and free'd. So it's not used anymore. */
ring->used_slots--;
if (meta->is_last_fragment && !skip) {
/* This is the last scatter-gather
* fragment of the frame. We are done. */
break;
}
slot = next_slot(ring, slot);
if (skip > 0)
--skip;
}
if (ring->stopped) {
B43_WARN_ON(free_slots(ring) < TX_SLOTS_PER_FRAME);
ring->stopped = false;
}
if (dev->wl->tx_queue_stopped[ring->queue_prio]) {
dev->wl->tx_queue_stopped[ring->queue_prio] = false;
} else {
/* If the driver queue is running wake the corresponding
* mac80211 queue. */
ieee80211_wake_queue(dev->wl->hw, ring->queue_prio);
if (b43_debug(dev, B43_DBG_DMAVERBOSE)) {
b43dbg(dev->wl, "Woke up TX ring %d\n", ring->index);
}
}
/* Add work to the queue. */
ieee80211_queue_work(dev->wl->hw, &dev->wl->tx_work);
}
static void dma_rx(struct b43_dmaring *ring, int *slot)
{
const struct b43_dma_ops *ops = ring->ops;
struct b43_dmadesc_generic *desc;
struct b43_dmadesc_meta *meta;
struct b43_rxhdr_fw4 *rxhdr;
struct sk_buff *skb;
u16 len;
int err;
dma_addr_t dmaaddr;
desc = ops->idx2desc(ring, *slot, &meta);
sync_descbuffer_for_cpu(ring, meta->dmaaddr, ring->rx_buffersize);
skb = meta->skb;
rxhdr = (struct b43_rxhdr_fw4 *)skb->data;
len = le16_to_cpu(rxhdr->frame_len);
if (len == 0) {
int i = 0;
do {
udelay(2);
barrier();
len = le16_to_cpu(rxhdr->frame_len);
} while (len == 0 && i++ < 5);
if (unlikely(len == 0)) {
dmaaddr = meta->dmaaddr;
goto drop_recycle_buffer;
}
}
if (unlikely(b43_rx_buffer_is_poisoned(ring, skb))) {
/* Something went wrong with the DMA.
* The device did not touch the buffer and did not overwrite the poison. */
b43dbg(ring->dev->wl, "DMA RX: Dropping poisoned buffer.\n");
dmaaddr = meta->dmaaddr;
goto drop_recycle_buffer;
}
if (unlikely(len + ring->frameoffset > ring->rx_buffersize)) {
/* The data did not fit into one descriptor buffer
* and is split over multiple buffers.
* This should never happen, as we try to allocate buffers
* big enough. So simply ignore this packet.
*/
int cnt = 0;
s32 tmp = len;
while (1) {
desc = ops->idx2desc(ring, *slot, &meta);
/* recycle the descriptor buffer. */
b43_poison_rx_buffer(ring, meta->skb);
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
*slot = next_slot(ring, *slot);
cnt++;
tmp -= ring->rx_buffersize;
if (tmp <= 0)
break;
}
b43err(ring->dev->wl, "DMA RX buffer too small "
"(len: %u, buffer: %u, nr-dropped: %d)\n",
len, ring->rx_buffersize, cnt);
goto drop;
}
dmaaddr = meta->dmaaddr;
err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
if (unlikely(err)) {
b43dbg(ring->dev->wl, "DMA RX: setup_rx_descbuffer() failed\n");
goto drop_recycle_buffer;
}
unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
skb_put(skb, len + ring->frameoffset);
skb_pull(skb, ring->frameoffset);
b43_rx(ring->dev, skb, rxhdr);
drop:
return;
drop_recycle_buffer:
/* Poison and recycle the RX buffer. */
b43_poison_rx_buffer(ring, skb);
sync_descbuffer_for_device(ring, dmaaddr, ring->rx_buffersize);
}
void b43_dma_handle_rx_overflow(struct b43_dmaring *ring)
{
int current_slot, previous_slot;
B43_WARN_ON(ring->tx);
/* Device has filled all buffers, drop all packets and let TCP
* decrease speed.
* Decrement RX index by one will let the device to see all slots
* as free again
*/
/*
*TODO: How to increase rx_drop in mac80211?
*/
current_slot = ring->ops->get_current_rxslot(ring);
previous_slot = prev_slot(ring, current_slot);
ring->ops->set_current_rxslot(ring, previous_slot);
}
void b43_dma_rx(struct b43_dmaring *ring)
{
const struct b43_dma_ops *ops = ring->ops;
int slot, current_slot;
int used_slots = 0;
B43_WARN_ON(ring->tx);
current_slot = ops->get_current_rxslot(ring);
B43_WARN_ON(!(current_slot >= 0 && current_slot < ring->nr_slots));
slot = ring->current_slot;
for (; slot != current_slot; slot = next_slot(ring, slot)) {
dma_rx(ring, &slot);
update_max_used_slots(ring, ++used_slots);
}
wmb();
ops->set_current_rxslot(ring, slot);
ring->current_slot = slot;
}
static void b43_dma_tx_suspend_ring(struct b43_dmaring *ring)
{
B43_WARN_ON(!ring->tx);
ring->ops->tx_suspend(ring);
}
static void b43_dma_tx_resume_ring(struct b43_dmaring *ring)
{
B43_WARN_ON(!ring->tx);
ring->ops->tx_resume(ring);
}
void b43_dma_tx_suspend(struct b43_wldev *dev)
{
b43_power_saving_ctl_bits(dev, B43_PS_AWAKE);
b43_dma_tx_suspend_ring(dev->dma.tx_ring_AC_BK);
b43_dma_tx_suspend_ring(dev->dma.tx_ring_AC_BE);
b43_dma_tx_suspend_ring(dev->dma.tx_ring_AC_VI);
b43_dma_tx_suspend_ring(dev->dma.tx_ring_AC_VO);
b43_dma_tx_suspend_ring(dev->dma.tx_ring_mcast);
}
void b43_dma_tx_resume(struct b43_wldev *dev)
{
b43_dma_tx_resume_ring(dev->dma.tx_ring_mcast);
b43_dma_tx_resume_ring(dev->dma.tx_ring_AC_VO);
b43_dma_tx_resume_ring(dev->dma.tx_ring_AC_VI);
b43_dma_tx_resume_ring(dev->dma.tx_ring_AC_BE);
b43_dma_tx_resume_ring(dev->dma.tx_ring_AC_BK);
b43_power_saving_ctl_bits(dev, 0);
}
static void direct_fifo_rx(struct b43_wldev *dev, enum b43_dmatype type,
u16 mmio_base, bool enable)
{
u32 ctl;
if (type == B43_DMA_64BIT) {
ctl = b43_read32(dev, mmio_base + B43_DMA64_RXCTL);
ctl &= ~B43_DMA64_RXDIRECTFIFO;
if (enable)
ctl |= B43_DMA64_RXDIRECTFIFO;
b43_write32(dev, mmio_base + B43_DMA64_RXCTL, ctl);
} else {
ctl = b43_read32(dev, mmio_base + B43_DMA32_RXCTL);
ctl &= ~B43_DMA32_RXDIRECTFIFO;
if (enable)
ctl |= B43_DMA32_RXDIRECTFIFO;
b43_write32(dev, mmio_base + B43_DMA32_RXCTL, ctl);
}
}
/* Enable/Disable Direct FIFO Receive Mode (PIO) on a RX engine.
* This is called from PIO code, so DMA structures are not available. */
void b43_dma_direct_fifo_rx(struct b43_wldev *dev,
unsigned int engine_index, bool enable)
{
enum b43_dmatype type;
u16 mmio_base;
type = b43_engine_type(dev);
mmio_base = b43_dmacontroller_base(type, engine_index);
direct_fifo_rx(dev, type, mmio_base, enable);
}