3445 lines
91 KiB
C
3445 lines
91 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2021, Intel Corporation. */
|
|
|
|
#include <linux/delay.h>
|
|
#include "ice_common.h"
|
|
#include "ice_ptp_hw.h"
|
|
#include "ice_ptp_consts.h"
|
|
#include "ice_cgu_regs.h"
|
|
|
|
/* Low level functions for interacting with and managing the device clock used
|
|
* for the Precision Time Protocol.
|
|
*
|
|
* The ice hardware represents the current time using three registers:
|
|
*
|
|
* GLTSYN_TIME_H GLTSYN_TIME_L GLTSYN_TIME_R
|
|
* +---------------+ +---------------+ +---------------+
|
|
* | 32 bits | | 32 bits | | 32 bits |
|
|
* +---------------+ +---------------+ +---------------+
|
|
*
|
|
* The registers are incremented every clock tick using a 40bit increment
|
|
* value defined over two registers:
|
|
*
|
|
* GLTSYN_INCVAL_H GLTSYN_INCVAL_L
|
|
* +---------------+ +---------------+
|
|
* | 8 bit s | | 32 bits |
|
|
* +---------------+ +---------------+
|
|
*
|
|
* The increment value is added to the GLSTYN_TIME_R and GLSTYN_TIME_L
|
|
* registers every clock source tick. Depending on the specific device
|
|
* configuration, the clock source frequency could be one of a number of
|
|
* values.
|
|
*
|
|
* For E810 devices, the increment frequency is 812.5 MHz
|
|
*
|
|
* For E822 devices the clock can be derived from different sources, and the
|
|
* increment has an effective frequency of one of the following:
|
|
* - 823.4375 MHz
|
|
* - 783.36 MHz
|
|
* - 796.875 MHz
|
|
* - 816 MHz
|
|
* - 830.078125 MHz
|
|
* - 783.36 MHz
|
|
*
|
|
* The hardware captures timestamps in the PHY for incoming packets, and for
|
|
* outgoing packets on request. To support this, the PHY maintains a timer
|
|
* that matches the lower 64 bits of the global source timer.
|
|
*
|
|
* In order to ensure that the PHY timers and the source timer are equivalent,
|
|
* shadow registers are used to prepare the desired initial values. A special
|
|
* sync command is issued to trigger copying from the shadow registers into
|
|
* the appropriate source and PHY registers simultaneously.
|
|
*
|
|
* The driver supports devices which have different PHYs with subtly different
|
|
* mechanisms to program and control the timers. We divide the devices into
|
|
* families named after the first major device, E810 and similar devices, and
|
|
* E822 and similar devices.
|
|
*
|
|
* - E822 based devices have additional support for fine grained Vernier
|
|
* calibration which requires significant setup
|
|
* - The layout of timestamp data in the PHY register blocks is different
|
|
* - The way timer synchronization commands are issued is different.
|
|
*
|
|
* To support this, very low level functions have an e810 or e822 suffix
|
|
* indicating what type of device they work on. Higher level abstractions for
|
|
* tasks that can be done on both devices do not have the suffix and will
|
|
* correctly look up the appropriate low level function when running.
|
|
*
|
|
* Functions which only make sense on a single device family may not have
|
|
* a suitable generic implementation
|
|
*/
|
|
|
|
/**
|
|
* ice_get_ptp_src_clock_index - determine source clock index
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Determine the source clock index currently in use, based on device
|
|
* capabilities reported during initialization.
|
|
*/
|
|
u8 ice_get_ptp_src_clock_index(struct ice_hw *hw)
|
|
{
|
|
return hw->func_caps.ts_func_info.tmr_index_assoc;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_read_src_incval - Read source timer increment value
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Read the increment value of the source timer and return it.
|
|
*/
|
|
static u64 ice_ptp_read_src_incval(struct ice_hw *hw)
|
|
{
|
|
u32 lo, hi;
|
|
u8 tmr_idx;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
|
|
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
|
|
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
|
|
|
|
return ((u64)(hi & INCVAL_HIGH_M) << 32) | lo;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_src_cmd - Prepare source timer for a timer command
|
|
* @hw: pointer to HW structure
|
|
* @cmd: Timer command
|
|
*
|
|
* Prepare the source timer for an upcoming timer sync command.
|
|
*/
|
|
static void ice_ptp_src_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
|
|
{
|
|
u32 cmd_val;
|
|
u8 tmr_idx;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
cmd_val = tmr_idx << SEL_CPK_SRC;
|
|
|
|
switch (cmd) {
|
|
case INIT_TIME:
|
|
cmd_val |= GLTSYN_CMD_INIT_TIME;
|
|
break;
|
|
case INIT_INCVAL:
|
|
cmd_val |= GLTSYN_CMD_INIT_INCVAL;
|
|
break;
|
|
case ADJ_TIME:
|
|
cmd_val |= GLTSYN_CMD_ADJ_TIME;
|
|
break;
|
|
case ADJ_TIME_AT_TIME:
|
|
cmd_val |= GLTSYN_CMD_ADJ_INIT_TIME;
|
|
break;
|
|
case READ_TIME:
|
|
cmd_val |= GLTSYN_CMD_READ_TIME;
|
|
break;
|
|
case ICE_PTP_NOP:
|
|
break;
|
|
}
|
|
|
|
wr32(hw, GLTSYN_CMD, cmd_val);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_exec_tmr_cmd - Execute all prepared timer commands
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Write the SYNC_EXEC_CMD bit to the GLTSYN_CMD_SYNC register, and flush the
|
|
* write immediately. This triggers the hardware to begin executing all of the
|
|
* source and PHY timer commands synchronously.
|
|
*/
|
|
static void ice_ptp_exec_tmr_cmd(struct ice_hw *hw)
|
|
{
|
|
wr32(hw, GLTSYN_CMD_SYNC, SYNC_EXEC_CMD);
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/* E822 family functions
|
|
*
|
|
* The following functions operate on the E822 family of devices.
|
|
*/
|
|
|
|
/**
|
|
* ice_fill_phy_msg_e822 - Fill message data for a PHY register access
|
|
* @msg: the PHY message buffer to fill in
|
|
* @port: the port to access
|
|
* @offset: the register offset
|
|
*/
|
|
static void
|
|
ice_fill_phy_msg_e822(struct ice_sbq_msg_input *msg, u8 port, u16 offset)
|
|
{
|
|
int phy_port, phy, quadtype;
|
|
|
|
phy_port = port % ICE_PORTS_PER_PHY;
|
|
phy = port / ICE_PORTS_PER_PHY;
|
|
quadtype = (port / ICE_PORTS_PER_QUAD) % ICE_NUM_QUAD_TYPE;
|
|
|
|
if (quadtype == 0) {
|
|
msg->msg_addr_low = P_Q0_L(P_0_BASE + offset, phy_port);
|
|
msg->msg_addr_high = P_Q0_H(P_0_BASE + offset, phy_port);
|
|
} else {
|
|
msg->msg_addr_low = P_Q1_L(P_4_BASE + offset, phy_port);
|
|
msg->msg_addr_high = P_Q1_H(P_4_BASE + offset, phy_port);
|
|
}
|
|
|
|
if (phy == 0)
|
|
msg->dest_dev = rmn_0;
|
|
else if (phy == 1)
|
|
msg->dest_dev = rmn_1;
|
|
else
|
|
msg->dest_dev = rmn_2;
|
|
}
|
|
|
|
/**
|
|
* ice_is_64b_phy_reg_e822 - Check if this is a 64bit PHY register
|
|
* @low_addr: the low address to check
|
|
* @high_addr: on return, contains the high address of the 64bit register
|
|
*
|
|
* Checks if the provided low address is one of the known 64bit PHY values
|
|
* represented as two 32bit registers. If it is, return the appropriate high
|
|
* register offset to use.
|
|
*/
|
|
static bool ice_is_64b_phy_reg_e822(u16 low_addr, u16 *high_addr)
|
|
{
|
|
switch (low_addr) {
|
|
case P_REG_PAR_PCS_TX_OFFSET_L:
|
|
*high_addr = P_REG_PAR_PCS_TX_OFFSET_U;
|
|
return true;
|
|
case P_REG_PAR_PCS_RX_OFFSET_L:
|
|
*high_addr = P_REG_PAR_PCS_RX_OFFSET_U;
|
|
return true;
|
|
case P_REG_PAR_TX_TIME_L:
|
|
*high_addr = P_REG_PAR_TX_TIME_U;
|
|
return true;
|
|
case P_REG_PAR_RX_TIME_L:
|
|
*high_addr = P_REG_PAR_RX_TIME_U;
|
|
return true;
|
|
case P_REG_TOTAL_TX_OFFSET_L:
|
|
*high_addr = P_REG_TOTAL_TX_OFFSET_U;
|
|
return true;
|
|
case P_REG_TOTAL_RX_OFFSET_L:
|
|
*high_addr = P_REG_TOTAL_RX_OFFSET_U;
|
|
return true;
|
|
case P_REG_UIX66_10G_40G_L:
|
|
*high_addr = P_REG_UIX66_10G_40G_U;
|
|
return true;
|
|
case P_REG_UIX66_25G_100G_L:
|
|
*high_addr = P_REG_UIX66_25G_100G_U;
|
|
return true;
|
|
case P_REG_TX_CAPTURE_L:
|
|
*high_addr = P_REG_TX_CAPTURE_U;
|
|
return true;
|
|
case P_REG_RX_CAPTURE_L:
|
|
*high_addr = P_REG_RX_CAPTURE_U;
|
|
return true;
|
|
case P_REG_TX_TIMER_INC_PRE_L:
|
|
*high_addr = P_REG_TX_TIMER_INC_PRE_U;
|
|
return true;
|
|
case P_REG_RX_TIMER_INC_PRE_L:
|
|
*high_addr = P_REG_RX_TIMER_INC_PRE_U;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_is_40b_phy_reg_e822 - Check if this is a 40bit PHY register
|
|
* @low_addr: the low address to check
|
|
* @high_addr: on return, contains the high address of the 40bit value
|
|
*
|
|
* Checks if the provided low address is one of the known 40bit PHY values
|
|
* split into two registers with the lower 8 bits in the low register and the
|
|
* upper 32 bits in the high register. If it is, return the appropriate high
|
|
* register offset to use.
|
|
*/
|
|
static bool ice_is_40b_phy_reg_e822(u16 low_addr, u16 *high_addr)
|
|
{
|
|
switch (low_addr) {
|
|
case P_REG_TIMETUS_L:
|
|
*high_addr = P_REG_TIMETUS_U;
|
|
return true;
|
|
case P_REG_PAR_RX_TUS_L:
|
|
*high_addr = P_REG_PAR_RX_TUS_U;
|
|
return true;
|
|
case P_REG_PAR_TX_TUS_L:
|
|
*high_addr = P_REG_PAR_TX_TUS_U;
|
|
return true;
|
|
case P_REG_PCS_RX_TUS_L:
|
|
*high_addr = P_REG_PCS_RX_TUS_U;
|
|
return true;
|
|
case P_REG_PCS_TX_TUS_L:
|
|
*high_addr = P_REG_PCS_TX_TUS_U;
|
|
return true;
|
|
case P_REG_DESK_PAR_RX_TUS_L:
|
|
*high_addr = P_REG_DESK_PAR_RX_TUS_U;
|
|
return true;
|
|
case P_REG_DESK_PAR_TX_TUS_L:
|
|
*high_addr = P_REG_DESK_PAR_TX_TUS_U;
|
|
return true;
|
|
case P_REG_DESK_PCS_RX_TUS_L:
|
|
*high_addr = P_REG_DESK_PCS_RX_TUS_U;
|
|
return true;
|
|
case P_REG_DESK_PCS_TX_TUS_L:
|
|
*high_addr = P_REG_DESK_PCS_TX_TUS_U;
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_reg_e822 - Read a PHY register
|
|
* @hw: pointer to the HW struct
|
|
* @port: PHY port to read from
|
|
* @offset: PHY register offset to read
|
|
* @val: on return, the contents read from the PHY
|
|
*
|
|
* Read a PHY register for the given port over the device sideband queue.
|
|
*/
|
|
int
|
|
ice_read_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 *val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
ice_fill_phy_msg_e822(&msg, port, offset);
|
|
msg.opcode = ice_sbq_msg_rd;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
*val = msg.data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_64b_phy_reg_e822 - Read a 64bit value from PHY registers
|
|
* @hw: pointer to the HW struct
|
|
* @port: PHY port to read from
|
|
* @low_addr: offset of the lower register to read from
|
|
* @val: on return, the contents of the 64bit value from the PHY registers
|
|
*
|
|
* Reads the two registers associated with a 64bit value and returns it in the
|
|
* val pointer. The offset always specifies the lower register offset to use.
|
|
* The high offset is looked up. This function only operates on registers
|
|
* known to be two parts of a 64bit value.
|
|
*/
|
|
static int
|
|
ice_read_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 *val)
|
|
{
|
|
u32 low, high;
|
|
u16 high_addr;
|
|
int err;
|
|
|
|
/* Only operate on registers known to be split into two 32bit
|
|
* registers.
|
|
*/
|
|
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
|
|
low_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, low_addr, &low);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read from low register 0x%08x\n, err %d",
|
|
low_addr, err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, high_addr, &high);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read from high register 0x%08x\n, err %d",
|
|
high_addr, err);
|
|
return err;
|
|
}
|
|
|
|
*val = (u64)high << 32 | low;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_phy_reg_e822 - Write a PHY register
|
|
* @hw: pointer to the HW struct
|
|
* @port: PHY port to write to
|
|
* @offset: PHY register offset to write
|
|
* @val: The value to write to the register
|
|
*
|
|
* Write a PHY register for the given port over the device sideband queue.
|
|
*/
|
|
int
|
|
ice_write_phy_reg_e822(struct ice_hw *hw, u8 port, u16 offset, u32 val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
ice_fill_phy_msg_e822(&msg, port, offset);
|
|
msg.opcode = ice_sbq_msg_wr;
|
|
msg.data = val;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_40b_phy_reg_e822 - Write a 40b value to the PHY
|
|
* @hw: pointer to the HW struct
|
|
* @port: port to write to
|
|
* @low_addr: offset of the low register
|
|
* @val: 40b value to write
|
|
*
|
|
* Write the provided 40b value to the two associated registers by splitting
|
|
* it up into two chunks, the lower 8 bits and the upper 32 bits.
|
|
*/
|
|
static int
|
|
ice_write_40b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
|
|
{
|
|
u32 low, high;
|
|
u16 high_addr;
|
|
int err;
|
|
|
|
/* Only operate on registers known to be split into a lower 8 bit
|
|
* register and an upper 32 bit register.
|
|
*/
|
|
if (!ice_is_40b_phy_reg_e822(low_addr, &high_addr)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Invalid 40b register addr 0x%08x\n",
|
|
low_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
low = (u32)(val & P_REG_40B_LOW_M);
|
|
high = (u32)(val >> P_REG_40B_HIGH_S);
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
|
|
low_addr, err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
|
|
high_addr, err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_64b_phy_reg_e822 - Write a 64bit value to PHY registers
|
|
* @hw: pointer to the HW struct
|
|
* @port: PHY port to read from
|
|
* @low_addr: offset of the lower register to read from
|
|
* @val: the contents of the 64bit value to write to PHY
|
|
*
|
|
* Write the 64bit value to the two associated 32bit PHY registers. The offset
|
|
* is always specified as the lower register, and the high address is looked
|
|
* up. This function only operates on registers known to be two parts of
|
|
* a 64bit value.
|
|
*/
|
|
static int
|
|
ice_write_64b_phy_reg_e822(struct ice_hw *hw, u8 port, u16 low_addr, u64 val)
|
|
{
|
|
u32 low, high;
|
|
u16 high_addr;
|
|
int err;
|
|
|
|
/* Only operate on registers known to be split into two 32bit
|
|
* registers.
|
|
*/
|
|
if (!ice_is_64b_phy_reg_e822(low_addr, &high_addr)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Invalid 64b register addr 0x%08x\n",
|
|
low_addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
low = lower_32_bits(val);
|
|
high = upper_32_bits(val);
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, low_addr, low);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write to low register 0x%08x\n, err %d",
|
|
low_addr, err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, high_addr, high);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write to high register 0x%08x\n, err %d",
|
|
high_addr, err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_quad_msg_e822 - Fill message data for quad register access
|
|
* @msg: the PHY message buffer to fill in
|
|
* @quad: the quad to access
|
|
* @offset: the register offset
|
|
*
|
|
* Fill a message buffer for accessing a register in a quad shared between
|
|
* multiple PHYs.
|
|
*/
|
|
static void
|
|
ice_fill_quad_msg_e822(struct ice_sbq_msg_input *msg, u8 quad, u16 offset)
|
|
{
|
|
u32 addr;
|
|
|
|
msg->dest_dev = rmn_0;
|
|
|
|
if ((quad % ICE_NUM_QUAD_TYPE) == 0)
|
|
addr = Q_0_BASE + offset;
|
|
else
|
|
addr = Q_1_BASE + offset;
|
|
|
|
msg->msg_addr_low = lower_16_bits(addr);
|
|
msg->msg_addr_high = upper_16_bits(addr);
|
|
}
|
|
|
|
/**
|
|
* ice_read_quad_reg_e822 - Read a PHY quad register
|
|
* @hw: pointer to the HW struct
|
|
* @quad: quad to read from
|
|
* @offset: quad register offset to read
|
|
* @val: on return, the contents read from the quad
|
|
*
|
|
* Read a quad register over the device sideband queue. Quad registers are
|
|
* shared between multiple PHYs.
|
|
*/
|
|
int
|
|
ice_read_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 *val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
if (quad >= ICE_MAX_QUAD)
|
|
return -EINVAL;
|
|
|
|
ice_fill_quad_msg_e822(&msg, quad, offset);
|
|
msg.opcode = ice_sbq_msg_rd;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
*val = msg.data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_quad_reg_e822 - Write a PHY quad register
|
|
* @hw: pointer to the HW struct
|
|
* @quad: quad to write to
|
|
* @offset: quad register offset to write
|
|
* @val: The value to write to the register
|
|
*
|
|
* Write a quad register over the device sideband queue. Quad registers are
|
|
* shared between multiple PHYs.
|
|
*/
|
|
int
|
|
ice_write_quad_reg_e822(struct ice_hw *hw, u8 quad, u16 offset, u32 val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
if (quad >= ICE_MAX_QUAD)
|
|
return -EINVAL;
|
|
|
|
ice_fill_quad_msg_e822(&msg, quad, offset);
|
|
msg.opcode = ice_sbq_msg_wr;
|
|
msg.data = val;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_tstamp_e822 - Read a PHY timestamp out of the quad block
|
|
* @hw: pointer to the HW struct
|
|
* @quad: the quad to read from
|
|
* @idx: the timestamp index to read
|
|
* @tstamp: on return, the 40bit timestamp value
|
|
*
|
|
* Read a 40bit timestamp value out of the two associated registers in the
|
|
* quad memory block that is shared between the internal PHYs of the E822
|
|
* family of devices.
|
|
*/
|
|
static int
|
|
ice_read_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx, u64 *tstamp)
|
|
{
|
|
u16 lo_addr, hi_addr;
|
|
u32 lo, hi;
|
|
int err;
|
|
|
|
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
|
|
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
|
|
|
|
err = ice_read_quad_reg_e822(hw, quad, lo_addr, &lo);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_read_quad_reg_e822(hw, quad, hi_addr, &hi);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* For E822 based internal PHYs, the timestamp is reported with the
|
|
* lower 8 bits in the low register, and the upper 32 bits in the high
|
|
* register.
|
|
*/
|
|
*tstamp = ((u64)hi) << TS_PHY_HIGH_S | ((u64)lo & TS_PHY_LOW_M);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_phy_tstamp_e822 - Clear a timestamp from the quad block
|
|
* @hw: pointer to the HW struct
|
|
* @quad: the quad to read from
|
|
* @idx: the timestamp index to reset
|
|
*
|
|
* Clear a timestamp, resetting its valid bit, from the PHY quad block that is
|
|
* shared between the internal PHYs on the E822 devices.
|
|
*/
|
|
static int
|
|
ice_clear_phy_tstamp_e822(struct ice_hw *hw, u8 quad, u8 idx)
|
|
{
|
|
u16 lo_addr, hi_addr;
|
|
int err;
|
|
|
|
lo_addr = (u16)TS_L(Q_REG_TX_MEMORY_BANK_START, idx);
|
|
hi_addr = (u16)TS_H(Q_REG_TX_MEMORY_BANK_START, idx);
|
|
|
|
err = ice_write_quad_reg_e822(hw, quad, lo_addr, 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_quad_reg_e822(hw, quad, hi_addr, 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_cgu_reg_e822 - Read a CGU register
|
|
* @hw: pointer to the HW struct
|
|
* @addr: Register address to read
|
|
* @val: storage for register value read
|
|
*
|
|
* Read the contents of a register of the Clock Generation Unit. Only
|
|
* applicable to E822 devices.
|
|
*/
|
|
static int
|
|
ice_read_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 *val)
|
|
{
|
|
struct ice_sbq_msg_input cgu_msg;
|
|
int err;
|
|
|
|
cgu_msg.opcode = ice_sbq_msg_rd;
|
|
cgu_msg.dest_dev = cgu;
|
|
cgu_msg.msg_addr_low = addr;
|
|
cgu_msg.msg_addr_high = 0x0;
|
|
|
|
err = ice_sbq_rw_reg(hw, &cgu_msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
|
|
addr, err);
|
|
return err;
|
|
}
|
|
|
|
*val = cgu_msg.data;
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_write_cgu_reg_e822 - Write a CGU register
|
|
* @hw: pointer to the HW struct
|
|
* @addr: Register address to write
|
|
* @val: value to write into the register
|
|
*
|
|
* Write the specified value to a register of the Clock Generation Unit. Only
|
|
* applicable to E822 devices.
|
|
*/
|
|
static int
|
|
ice_write_cgu_reg_e822(struct ice_hw *hw, u32 addr, u32 val)
|
|
{
|
|
struct ice_sbq_msg_input cgu_msg;
|
|
int err;
|
|
|
|
cgu_msg.opcode = ice_sbq_msg_wr;
|
|
cgu_msg.dest_dev = cgu;
|
|
cgu_msg.msg_addr_low = addr;
|
|
cgu_msg.msg_addr_high = 0x0;
|
|
cgu_msg.data = val;
|
|
|
|
err = ice_sbq_rw_reg(hw, &cgu_msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
|
|
addr, err);
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_clk_freq_str - Convert time_ref_freq to string
|
|
* @clk_freq: Clock frequency
|
|
*
|
|
* Convert the specified TIME_REF clock frequency to a string.
|
|
*/
|
|
static const char *ice_clk_freq_str(u8 clk_freq)
|
|
{
|
|
switch ((enum ice_time_ref_freq)clk_freq) {
|
|
case ICE_TIME_REF_FREQ_25_000:
|
|
return "25 MHz";
|
|
case ICE_TIME_REF_FREQ_122_880:
|
|
return "122.88 MHz";
|
|
case ICE_TIME_REF_FREQ_125_000:
|
|
return "125 MHz";
|
|
case ICE_TIME_REF_FREQ_153_600:
|
|
return "153.6 MHz";
|
|
case ICE_TIME_REF_FREQ_156_250:
|
|
return "156.25 MHz";
|
|
case ICE_TIME_REF_FREQ_245_760:
|
|
return "245.76 MHz";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_clk_src_str - Convert time_ref_src to string
|
|
* @clk_src: Clock source
|
|
*
|
|
* Convert the specified clock source to its string name.
|
|
*/
|
|
static const char *ice_clk_src_str(u8 clk_src)
|
|
{
|
|
switch ((enum ice_clk_src)clk_src) {
|
|
case ICE_CLK_SRC_TCX0:
|
|
return "TCX0";
|
|
case ICE_CLK_SRC_TIME_REF:
|
|
return "TIME_REF";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_cgu_pll_e822 - Configure the Clock Generation Unit
|
|
* @hw: pointer to the HW struct
|
|
* @clk_freq: Clock frequency to program
|
|
* @clk_src: Clock source to select (TIME_REF, or TCX0)
|
|
*
|
|
* Configure the Clock Generation Unit with the desired clock frequency and
|
|
* time reference, enabling the PLL which drives the PTP hardware clock.
|
|
*/
|
|
static int
|
|
ice_cfg_cgu_pll_e822(struct ice_hw *hw, enum ice_time_ref_freq clk_freq,
|
|
enum ice_clk_src clk_src)
|
|
{
|
|
union tspll_ro_bwm_lf bwm_lf;
|
|
union nac_cgu_dword19 dw19;
|
|
union nac_cgu_dword22 dw22;
|
|
union nac_cgu_dword24 dw24;
|
|
union nac_cgu_dword9 dw9;
|
|
int err;
|
|
|
|
if (clk_freq >= NUM_ICE_TIME_REF_FREQ) {
|
|
dev_warn(ice_hw_to_dev(hw), "Invalid TIME_REF frequency %u\n",
|
|
clk_freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (clk_src >= NUM_ICE_CLK_SRC) {
|
|
dev_warn(ice_hw_to_dev(hw), "Invalid clock source %u\n",
|
|
clk_src);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (clk_src == ICE_CLK_SRC_TCX0 &&
|
|
clk_freq != ICE_TIME_REF_FREQ_25_000) {
|
|
dev_warn(ice_hw_to_dev(hw),
|
|
"TCX0 only supports 25 MHz frequency\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD9, &dw9.val);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Log the current clock configuration */
|
|
ice_debug(hw, ICE_DBG_PTP, "Current CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
|
|
dw24.field.ts_pll_enable ? "enabled" : "disabled",
|
|
ice_clk_src_str(dw24.field.time_ref_sel),
|
|
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
|
|
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
|
|
|
|
/* Disable the PLL before changing the clock source or frequency */
|
|
if (dw24.field.ts_pll_enable) {
|
|
dw24.field.ts_pll_enable = 0;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Set the frequency */
|
|
dw9.field.time_ref_freq_sel = clk_freq;
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD9, dw9.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the TS PLL feedback divisor */
|
|
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD19, &dw19.val);
|
|
if (err)
|
|
return err;
|
|
|
|
dw19.field.tspll_fbdiv_intgr = e822_cgu_params[clk_freq].feedback_div;
|
|
dw19.field.tspll_ndivratio = 1;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD19, dw19.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the TS PLL post divisor */
|
|
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD22, &dw22.val);
|
|
if (err)
|
|
return err;
|
|
|
|
dw22.field.time1588clk_div = e822_cgu_params[clk_freq].post_pll_div;
|
|
dw22.field.time1588clk_sel_div2 = 0;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD22, dw22.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the TS PLL pre divisor and clock source */
|
|
err = ice_read_cgu_reg_e822(hw, NAC_CGU_DWORD24, &dw24.val);
|
|
if (err)
|
|
return err;
|
|
|
|
dw24.field.ref1588_ck_div = e822_cgu_params[clk_freq].refclk_pre_div;
|
|
dw24.field.tspll_fbdiv_frac = e822_cgu_params[clk_freq].frac_n_div;
|
|
dw24.field.time_ref_sel = clk_src;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Finally, enable the PLL */
|
|
dw24.field.ts_pll_enable = 1;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, NAC_CGU_DWORD24, dw24.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Wait to verify if the PLL locks */
|
|
usleep_range(1000, 5000);
|
|
|
|
err = ice_read_cgu_reg_e822(hw, TSPLL_RO_BWM_LF, &bwm_lf.val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!bwm_lf.field.plllock_true_lock_cri) {
|
|
dev_warn(ice_hw_to_dev(hw), "CGU PLL failed to lock\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Log the current clock configuration */
|
|
ice_debug(hw, ICE_DBG_PTP, "New CGU configuration -- %s, clk_src %s, clk_freq %s, PLL %s\n",
|
|
dw24.field.ts_pll_enable ? "enabled" : "disabled",
|
|
ice_clk_src_str(dw24.field.time_ref_sel),
|
|
ice_clk_freq_str(dw9.field.time_ref_freq_sel),
|
|
bwm_lf.field.plllock_true_lock_cri ? "locked" : "unlocked");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_init_cgu_e822 - Initialize CGU with settings from firmware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize the Clock Generation Unit of the E822 device.
|
|
*/
|
|
static int ice_init_cgu_e822(struct ice_hw *hw)
|
|
{
|
|
struct ice_ts_func_info *ts_info = &hw->func_caps.ts_func_info;
|
|
union tspll_cntr_bist_settings cntr_bist;
|
|
int err;
|
|
|
|
err = ice_read_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
|
|
&cntr_bist.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Disable sticky lock detection so lock err reported is accurate */
|
|
cntr_bist.field.i_plllock_sel_0 = 0;
|
|
cntr_bist.field.i_plllock_sel_1 = 0;
|
|
|
|
err = ice_write_cgu_reg_e822(hw, TSPLL_CNTR_BIST_SETTINGS,
|
|
cntr_bist.val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the CGU PLL using the parameters from the function
|
|
* capabilities.
|
|
*/
|
|
err = ice_cfg_cgu_pll_e822(hw, ts_info->time_ref,
|
|
(enum ice_clk_src)ts_info->clk_src);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_vernier_wl - Set the window length for vernier calibration
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Set the window length used for the vernier port calibration process.
|
|
*/
|
|
static int ice_ptp_set_vernier_wl(struct ice_hw *hw)
|
|
{
|
|
u8 port;
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
int err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_WL,
|
|
PTP_VERNIER_WL);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to set vernier window length for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_phc_e822 - Perform E822 specific PHC initialization
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Perform PHC initialization steps specific to E822 devices.
|
|
*/
|
|
static int ice_ptp_init_phc_e822(struct ice_hw *hw)
|
|
{
|
|
int err;
|
|
u32 regval;
|
|
|
|
/* Enable reading switch and PHY registers over the sideband queue */
|
|
#define PF_SB_REM_DEV_CTL_SWITCH_READ BIT(1)
|
|
#define PF_SB_REM_DEV_CTL_PHY0 BIT(2)
|
|
regval = rd32(hw, PF_SB_REM_DEV_CTL);
|
|
regval |= (PF_SB_REM_DEV_CTL_SWITCH_READ |
|
|
PF_SB_REM_DEV_CTL_PHY0);
|
|
wr32(hw, PF_SB_REM_DEV_CTL, regval);
|
|
|
|
/* Initialize the Clock Generation Unit */
|
|
err = ice_init_cgu_e822(hw);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Set window length for all the ports */
|
|
return ice_ptp_set_vernier_wl(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_time_e822 - Prepare PHY port with initial time
|
|
* @hw: pointer to the HW struct
|
|
* @time: Time to initialize the PHY port clocks to
|
|
*
|
|
* Program the PHY port registers with a new initial time value. The port
|
|
* clock will be initialized once the driver issues an INIT_TIME sync
|
|
* command. The time value is the upper 32 bits of the PHY timer, usually in
|
|
* units of nominal nanoseconds.
|
|
*/
|
|
static int
|
|
ice_ptp_prep_phy_time_e822(struct ice_hw *hw, u32 time)
|
|
{
|
|
u64 phy_time;
|
|
u8 port;
|
|
int err;
|
|
|
|
/* The time represents the upper 32 bits of the PHY timer, so we need
|
|
* to shift to account for this when programming.
|
|
*/
|
|
phy_time = (u64)time << 32;
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
/* Tx case */
|
|
err = ice_write_64b_phy_reg_e822(hw, port,
|
|
P_REG_TX_TIMER_INC_PRE_L,
|
|
phy_time);
|
|
if (err)
|
|
goto exit_err;
|
|
|
|
/* Rx case */
|
|
err = ice_write_64b_phy_reg_e822(hw, port,
|
|
P_REG_RX_TIMER_INC_PRE_L,
|
|
phy_time);
|
|
if (err)
|
|
goto exit_err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_err:
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write init time for port %u, err %d\n",
|
|
port, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_port_adj_e822 - Prepare a single port for time adjust
|
|
* @hw: pointer to HW struct
|
|
* @port: Port number to be programmed
|
|
* @time: time in cycles to adjust the port Tx and Rx clocks
|
|
*
|
|
* Program the port for an atomic adjustment by writing the Tx and Rx timer
|
|
* registers. The atomic adjustment won't be completed until the driver issues
|
|
* an ADJ_TIME command.
|
|
*
|
|
* Note that time is not in units of nanoseconds. It is in clock time
|
|
* including the lower sub-nanosecond portion of the port timer.
|
|
*
|
|
* Negative adjustments are supported using 2s complement arithmetic.
|
|
*/
|
|
int
|
|
ice_ptp_prep_port_adj_e822(struct ice_hw *hw, u8 port, s64 time)
|
|
{
|
|
u32 l_time, u_time;
|
|
int err;
|
|
|
|
l_time = lower_32_bits(time);
|
|
u_time = upper_32_bits(time);
|
|
|
|
/* Tx case */
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_L,
|
|
l_time);
|
|
if (err)
|
|
goto exit_err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TIMER_INC_PRE_U,
|
|
u_time);
|
|
if (err)
|
|
goto exit_err;
|
|
|
|
/* Rx case */
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_L,
|
|
l_time);
|
|
if (err)
|
|
goto exit_err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TIMER_INC_PRE_U,
|
|
u_time);
|
|
if (err)
|
|
goto exit_err;
|
|
|
|
return 0;
|
|
|
|
exit_err:
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write time adjust for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_adj_e822 - Prep PHY ports for a time adjustment
|
|
* @hw: pointer to HW struct
|
|
* @adj: adjustment in nanoseconds
|
|
*
|
|
* Prepare the PHY ports for an atomic time adjustment by programming the PHY
|
|
* Tx and Rx port registers. The actual adjustment is completed by issuing an
|
|
* ADJ_TIME or ADJ_TIME_AT_TIME sync command.
|
|
*/
|
|
static int
|
|
ice_ptp_prep_phy_adj_e822(struct ice_hw *hw, s32 adj)
|
|
{
|
|
s64 cycles;
|
|
u8 port;
|
|
|
|
/* The port clock supports adjustment of the sub-nanosecond portion of
|
|
* the clock. We shift the provided adjustment in nanoseconds to
|
|
* calculate the appropriate adjustment to program into the PHY ports.
|
|
*/
|
|
if (adj > 0)
|
|
cycles = (s64)adj << 32;
|
|
else
|
|
cycles = -(((s64)-adj) << 32);
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
int err;
|
|
|
|
err = ice_ptp_prep_port_adj_e822(hw, port, cycles);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_incval_e822 - Prepare PHY ports for time adjustment
|
|
* @hw: pointer to HW struct
|
|
* @incval: new increment value to prepare
|
|
*
|
|
* Prepare each of the PHY ports for a new increment value by programming the
|
|
* port's TIMETUS registers. The new increment value will be updated after
|
|
* issuing an INIT_INCVAL command.
|
|
*/
|
|
static int
|
|
ice_ptp_prep_phy_incval_e822(struct ice_hw *hw, u64 incval)
|
|
{
|
|
int err;
|
|
u8 port;
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L,
|
|
incval);
|
|
if (err)
|
|
goto exit_err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_err:
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval for port %u, err %d\n",
|
|
port, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_read_port_capture - Read a port's local time capture
|
|
* @hw: pointer to HW struct
|
|
* @port: Port number to read
|
|
* @tx_ts: on return, the Tx port time capture
|
|
* @rx_ts: on return, the Rx port time capture
|
|
*
|
|
* Read the port's Tx and Rx local time capture values.
|
|
*
|
|
* Note this has no equivalent for the E810 devices.
|
|
*/
|
|
static int
|
|
ice_ptp_read_port_capture(struct ice_hw *hw, u8 port, u64 *tx_ts, u64 *rx_ts)
|
|
{
|
|
int err;
|
|
|
|
/* Tx case */
|
|
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_TX_CAPTURE_L, tx_ts);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read REG_TX_CAPTURE, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_PTP, "tx_init = 0x%016llx\n",
|
|
(unsigned long long)*tx_ts);
|
|
|
|
/* Rx case */
|
|
err = ice_read_64b_phy_reg_e822(hw, port, P_REG_RX_CAPTURE_L, rx_ts);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_CAPTURE, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_PTP, "rx_init = 0x%016llx\n",
|
|
(unsigned long long)*rx_ts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_write_port_cmd_e822 - Prepare a single PHY port for a timer command
|
|
* @hw: pointer to HW struct
|
|
* @port: Port to which cmd has to be sent
|
|
* @cmd: Command to be sent to the port
|
|
*
|
|
* Prepare the requested port for an upcoming timer sync command.
|
|
*
|
|
* Do not use this function directly. If you want to configure exactly one
|
|
* port, use ice_ptp_one_port_cmd() instead.
|
|
*/
|
|
static int
|
|
ice_ptp_write_port_cmd_e822(struct ice_hw *hw, u8 port, enum ice_ptp_tmr_cmd cmd)
|
|
{
|
|
u32 cmd_val, val;
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
cmd_val = tmr_idx << SEL_PHY_SRC;
|
|
switch (cmd) {
|
|
case INIT_TIME:
|
|
cmd_val |= PHY_CMD_INIT_TIME;
|
|
break;
|
|
case INIT_INCVAL:
|
|
cmd_val |= PHY_CMD_INIT_INCVAL;
|
|
break;
|
|
case ADJ_TIME:
|
|
cmd_val |= PHY_CMD_ADJ_TIME;
|
|
break;
|
|
case READ_TIME:
|
|
cmd_val |= PHY_CMD_READ_TIME;
|
|
break;
|
|
case ADJ_TIME_AT_TIME:
|
|
cmd_val |= PHY_CMD_ADJ_TIME_AT_TIME;
|
|
break;
|
|
case ICE_PTP_NOP:
|
|
break;
|
|
}
|
|
|
|
/* Tx case */
|
|
/* Read, modify, write */
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_TMR_CMD, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* Modify necessary bits only and perform write */
|
|
val &= ~TS_CMD_MASK;
|
|
val |= cmd_val;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_TMR_CMD, val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_TMR_CMD, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* Rx case */
|
|
/* Read, modify, write */
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_TMR_CMD, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* Modify necessary bits only and perform write */
|
|
val &= ~TS_CMD_MASK;
|
|
val |= cmd_val;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_TMR_CMD, val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write back RX_TMR_CMD, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_one_port_cmd - Prepare one port for a timer command
|
|
* @hw: pointer to the HW struct
|
|
* @configured_port: the port to configure with configured_cmd
|
|
* @configured_cmd: timer command to prepare on the configured_port
|
|
*
|
|
* Prepare the configured_port for the configured_cmd, and prepare all other
|
|
* ports for ICE_PTP_NOP. This causes the configured_port to execute the
|
|
* desired command while all other ports perform no operation.
|
|
*/
|
|
static int
|
|
ice_ptp_one_port_cmd(struct ice_hw *hw, u8 configured_port,
|
|
enum ice_ptp_tmr_cmd configured_cmd)
|
|
{
|
|
u8 port;
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
enum ice_ptp_tmr_cmd cmd;
|
|
int err;
|
|
|
|
if (port == configured_port)
|
|
cmd = configured_cmd;
|
|
else
|
|
cmd = ICE_PTP_NOP;
|
|
|
|
err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_port_cmd_e822 - Prepare all ports for a timer command
|
|
* @hw: pointer to the HW struct
|
|
* @cmd: timer command to prepare
|
|
*
|
|
* Prepare all ports connected to this device for an upcoming timer sync
|
|
* command.
|
|
*/
|
|
static int
|
|
ice_ptp_port_cmd_e822(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
|
|
{
|
|
u8 port;
|
|
|
|
for (port = 0; port < ICE_NUM_EXTERNAL_PORTS; port++) {
|
|
int err;
|
|
|
|
err = ice_ptp_write_port_cmd_e822(hw, port, cmd);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* E822 Vernier calibration functions
|
|
*
|
|
* The following functions are used as part of the vernier calibration of
|
|
* a port. This calibration increases the precision of the timestamps on the
|
|
* port.
|
|
*/
|
|
|
|
/**
|
|
* ice_phy_get_speed_and_fec_e822 - Get link speed and FEC based on serdes mode
|
|
* @hw: pointer to HW struct
|
|
* @port: the port to read from
|
|
* @link_out: if non-NULL, holds link speed on success
|
|
* @fec_out: if non-NULL, holds FEC algorithm on success
|
|
*
|
|
* Read the serdes data for the PHY port and extract the link speed and FEC
|
|
* algorithm.
|
|
*/
|
|
static int
|
|
ice_phy_get_speed_and_fec_e822(struct ice_hw *hw, u8 port,
|
|
enum ice_ptp_link_spd *link_out,
|
|
enum ice_ptp_fec_mode *fec_out)
|
|
{
|
|
enum ice_ptp_link_spd link;
|
|
enum ice_ptp_fec_mode fec;
|
|
u32 serdes;
|
|
int err;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_LINK_SPEED, &serdes);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read serdes info\n");
|
|
return err;
|
|
}
|
|
|
|
/* Determine the FEC algorithm */
|
|
fec = (enum ice_ptp_fec_mode)P_REG_LINK_SPEED_FEC_MODE(serdes);
|
|
|
|
serdes &= P_REG_LINK_SPEED_SERDES_M;
|
|
|
|
/* Determine the link speed */
|
|
if (fec == ICE_PTP_FEC_MODE_RS_FEC) {
|
|
switch (serdes) {
|
|
case ICE_PTP_SERDES_25G:
|
|
link = ICE_PTP_LNK_SPD_25G_RS;
|
|
break;
|
|
case ICE_PTP_SERDES_50G:
|
|
link = ICE_PTP_LNK_SPD_50G_RS;
|
|
break;
|
|
case ICE_PTP_SERDES_100G:
|
|
link = ICE_PTP_LNK_SPD_100G_RS;
|
|
break;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
} else {
|
|
switch (serdes) {
|
|
case ICE_PTP_SERDES_1G:
|
|
link = ICE_PTP_LNK_SPD_1G;
|
|
break;
|
|
case ICE_PTP_SERDES_10G:
|
|
link = ICE_PTP_LNK_SPD_10G;
|
|
break;
|
|
case ICE_PTP_SERDES_25G:
|
|
link = ICE_PTP_LNK_SPD_25G;
|
|
break;
|
|
case ICE_PTP_SERDES_40G:
|
|
link = ICE_PTP_LNK_SPD_40G;
|
|
break;
|
|
case ICE_PTP_SERDES_50G:
|
|
link = ICE_PTP_LNK_SPD_50G;
|
|
break;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
if (link_out)
|
|
*link_out = link;
|
|
if (fec_out)
|
|
*fec_out = fec;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_lane_e822 - Configure PHY quad for single/multi-lane timestamp
|
|
* @hw: pointer to HW struct
|
|
* @port: to configure the quad for
|
|
*/
|
|
static void ice_phy_cfg_lane_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
enum ice_ptp_link_spd link_spd;
|
|
int err;
|
|
u32 val;
|
|
u8 quad;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, NULL);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to get PHY link speed, err %d\n",
|
|
err);
|
|
return;
|
|
}
|
|
|
|
quad = port / ICE_PORTS_PER_QUAD;
|
|
|
|
err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_MEM_GLB_CFG, err %d\n",
|
|
err);
|
|
return;
|
|
}
|
|
|
|
if (link_spd >= ICE_PTP_LNK_SPD_40G)
|
|
val &= ~Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
|
|
else
|
|
val |= Q_REG_TX_MEM_GBL_CFG_LANE_TYPE_M;
|
|
|
|
err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write back TX_MEM_GBL_CFG, err %d\n",
|
|
err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_uix_e822 - Configure Serdes UI to TU conversion for E822
|
|
* @hw: pointer to the HW structure
|
|
* @port: the port to configure
|
|
*
|
|
* Program the conversion ration of Serdes clock "unit intervals" (UIs) to PHC
|
|
* hardware clock time units (TUs). That is, determine the number of TUs per
|
|
* serdes unit interval, and program the UIX registers with this conversion.
|
|
*
|
|
* This conversion is used as part of the calibration process when determining
|
|
* the additional error of a timestamp vs the real time of transmission or
|
|
* receipt of the packet.
|
|
*
|
|
* Hardware uses the number of TUs per 66 UIs, written to the UIX registers
|
|
* for the two main serdes clock rates, 10G/40G and 25G/100G serdes clocks.
|
|
*
|
|
* To calculate the conversion ratio, we use the following facts:
|
|
*
|
|
* a) the clock frequency in Hz (cycles per second)
|
|
* b) the number of TUs per cycle (the increment value of the clock)
|
|
* c) 1 second per 1 billion nanoseconds
|
|
* d) the duration of 66 UIs in nanoseconds
|
|
*
|
|
* Given these facts, we can use the following table to work out what ratios
|
|
* to multiply in order to get the number of TUs per 66 UIs:
|
|
*
|
|
* cycles | 1 second | incval (TUs) | nanoseconds
|
|
* -------+--------------+--------------+-------------
|
|
* second | 1 billion ns | cycle | 66 UIs
|
|
*
|
|
* To perform the multiplication using integers without too much loss of
|
|
* precision, we can take use the following equation:
|
|
*
|
|
* (freq * incval * 6600 LINE_UI ) / ( 100 * 1 billion)
|
|
*
|
|
* We scale up to using 6600 UI instead of 66 in order to avoid fractional
|
|
* nanosecond UIs (66 UI at 10G/40G is 6.4 ns)
|
|
*
|
|
* The increment value has a maximum expected range of about 34 bits, while
|
|
* the frequency value is about 29 bits. Multiplying these values shouldn't
|
|
* overflow the 64 bits. However, we must then further multiply them again by
|
|
* the Serdes unit interval duration. To avoid overflow here, we split the
|
|
* overall divide by 1e11 into a divide by 256 (shift down by 8 bits) and
|
|
* a divide by 390,625,000. This does lose some precision, but avoids
|
|
* miscalculation due to arithmetic overflow.
|
|
*/
|
|
static int ice_phy_cfg_uix_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
u64 cur_freq, clk_incval, tu_per_sec, uix;
|
|
int err;
|
|
|
|
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
|
|
clk_incval = ice_ptp_read_src_incval(hw);
|
|
|
|
/* Calculate TUs per second divided by 256 */
|
|
tu_per_sec = (cur_freq * clk_incval) >> 8;
|
|
|
|
#define LINE_UI_10G_40G 640 /* 6600 UIs is 640 nanoseconds at 10Gb/40Gb */
|
|
#define LINE_UI_25G_100G 256 /* 6600 UIs is 256 nanoseconds at 25Gb/100Gb */
|
|
|
|
/* Program the 10Gb/40Gb conversion ratio */
|
|
uix = div_u64(tu_per_sec * LINE_UI_10G_40G, 390625000);
|
|
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_10G_40G_L,
|
|
uix);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_10G_40G, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* Program the 25Gb/100Gb conversion ratio */
|
|
uix = div_u64(tu_per_sec * LINE_UI_25G_100G, 390625000);
|
|
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_UIX66_25G_100G_L,
|
|
uix);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write UIX66_25G_100G, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_parpcs_e822 - Configure TUs per PAR/PCS clock cycle
|
|
* @hw: pointer to the HW struct
|
|
* @port: port to configure
|
|
*
|
|
* Configure the number of TUs for the PAR and PCS clocks used as part of the
|
|
* timestamp calibration process. This depends on the link speed, as the PHY
|
|
* uses different markers depending on the speed.
|
|
*
|
|
* 1Gb/10Gb/25Gb:
|
|
* - Tx/Rx PAR/PCS markers
|
|
*
|
|
* 25Gb RS:
|
|
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
|
|
*
|
|
* 40Gb/50Gb:
|
|
* - Tx/Rx PAR/PCS markers
|
|
* - Rx Deskew PAR/PCS markers
|
|
*
|
|
* 50G RS and 100GB RS:
|
|
* - Tx/Rx Reed Solomon gearbox PAR/PCS markers
|
|
* - Rx Deskew PAR/PCS markers
|
|
* - Tx PAR/PCS markers
|
|
*
|
|
* To calculate the conversion, we use the PHC clock frequency (cycles per
|
|
* second), the increment value (TUs per cycle), and the related PHY clock
|
|
* frequency to calculate the TUs per unit of the PHY link clock. The
|
|
* following table shows how the units convert:
|
|
*
|
|
* cycles | TUs | second
|
|
* -------+-------+--------
|
|
* second | cycle | cycles
|
|
*
|
|
* For each conversion register, look up the appropriate frequency from the
|
|
* e822 PAR/PCS table and calculate the TUs per unit of that clock. Program
|
|
* this to the appropriate register, preparing hardware to perform timestamp
|
|
* calibration to calculate the total Tx or Rx offset to adjust the timestamp
|
|
* in order to calibrate for the internal PHY delays.
|
|
*
|
|
* Note that the increment value ranges up to ~34 bits, and the clock
|
|
* frequency is ~29 bits, so multiplying them together should fit within the
|
|
* 64 bit arithmetic.
|
|
*/
|
|
static int ice_phy_cfg_parpcs_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
u64 cur_freq, clk_incval, tu_per_sec, phy_tus;
|
|
enum ice_ptp_link_spd link_spd;
|
|
enum ice_ptp_fec_mode fec_mode;
|
|
int err;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
|
|
if (err)
|
|
return err;
|
|
|
|
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
|
|
clk_incval = ice_ptp_read_src_incval(hw);
|
|
|
|
/* Calculate TUs per cycle of the PHC clock */
|
|
tu_per_sec = cur_freq * clk_incval;
|
|
|
|
/* For each PHY conversion register, look up the appropriate link
|
|
* speed frequency and determine the TUs per that clock's cycle time.
|
|
* Split this into a high and low value and then program the
|
|
* appropriate register. If that link speed does not use the
|
|
* associated register, write zeros to clear it instead.
|
|
*/
|
|
|
|
/* P_REG_PAR_TX_TUS */
|
|
if (e822_vernier[link_spd].tx_par_clk)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].tx_par_clk);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_TX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_PAR_RX_TUS */
|
|
if (e822_vernier[link_spd].rx_par_clk)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].rx_par_clk);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PAR_RX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_PCS_TX_TUS */
|
|
if (e822_vernier[link_spd].tx_pcs_clk)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].tx_pcs_clk);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_TX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_PCS_RX_TUS */
|
|
if (e822_vernier[link_spd].rx_pcs_clk)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].rx_pcs_clk);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_PCS_RX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_DESK_PAR_TX_TUS */
|
|
if (e822_vernier[link_spd].tx_desk_rsgb_par)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].tx_desk_rsgb_par);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_TX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_DESK_PAR_RX_TUS */
|
|
if (e822_vernier[link_spd].rx_desk_rsgb_par)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].rx_desk_rsgb_par);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PAR_RX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_DESK_PCS_TX_TUS */
|
|
if (e822_vernier[link_spd].tx_desk_rsgb_pcs)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].tx_desk_rsgb_pcs);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_TX_TUS_L,
|
|
phy_tus);
|
|
if (err)
|
|
return err;
|
|
|
|
/* P_REG_DESK_PCS_RX_TUS */
|
|
if (e822_vernier[link_spd].rx_desk_rsgb_pcs)
|
|
phy_tus = div_u64(tu_per_sec,
|
|
e822_vernier[link_spd].rx_desk_rsgb_pcs);
|
|
else
|
|
phy_tus = 0;
|
|
|
|
return ice_write_40b_phy_reg_e822(hw, port, P_REG_DESK_PCS_RX_TUS_L,
|
|
phy_tus);
|
|
}
|
|
|
|
/**
|
|
* ice_calc_fixed_tx_offset_e822 - Calculated Fixed Tx offset for a port
|
|
* @hw: pointer to the HW struct
|
|
* @link_spd: the Link speed to calculate for
|
|
*
|
|
* Calculate the fixed offset due to known static latency data.
|
|
*/
|
|
static u64
|
|
ice_calc_fixed_tx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
|
|
{
|
|
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
|
|
|
|
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
|
|
clk_incval = ice_ptp_read_src_incval(hw);
|
|
|
|
/* Calculate TUs per second */
|
|
tu_per_sec = cur_freq * clk_incval;
|
|
|
|
/* Calculate number of TUs to add for the fixed Tx latency. Since the
|
|
* latency measurement is in 1/100th of a nanosecond, we need to
|
|
* multiply by tu_per_sec and then divide by 1e11. This calculation
|
|
* overflows 64 bit integer arithmetic, so break it up into two
|
|
* divisions by 1e4 first then by 1e7.
|
|
*/
|
|
fixed_offset = div_u64(tu_per_sec, 10000);
|
|
fixed_offset *= e822_vernier[link_spd].tx_fixed_delay;
|
|
fixed_offset = div_u64(fixed_offset, 10000000);
|
|
|
|
return fixed_offset;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_tx_offset_e822 - Configure total Tx timestamp offset
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to configure
|
|
*
|
|
* Program the P_REG_TOTAL_TX_OFFSET register with the total number of TUs to
|
|
* adjust Tx timestamps by. This is calculated by combining some known static
|
|
* latency along with the Vernier offset computations done by hardware.
|
|
*
|
|
* This function must be called only after the offset registers are valid,
|
|
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
|
|
* has measured the offset.
|
|
*
|
|
* To avoid overflow, when calculating the offset based on the known static
|
|
* latency values, we use measurements in 1/100th of a nanosecond, and divide
|
|
* the TUs per second up front. This avoids overflow while allowing
|
|
* calculation of the adjustment using integer arithmetic.
|
|
*/
|
|
static int ice_phy_cfg_tx_offset_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
enum ice_ptp_link_spd link_spd;
|
|
enum ice_ptp_fec_mode fec_mode;
|
|
u64 total_offset, val;
|
|
int err;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
|
|
|
|
/* Read the first Vernier offset from the PHY register and add it to
|
|
* the total offset.
|
|
*/
|
|
if (link_spd == ICE_PTP_LNK_SPD_1G ||
|
|
link_spd == ICE_PTP_LNK_SPD_10G ||
|
|
link_spd == ICE_PTP_LNK_SPD_25G ||
|
|
link_spd == ICE_PTP_LNK_SPD_25G_RS ||
|
|
link_spd == ICE_PTP_LNK_SPD_40G ||
|
|
link_spd == ICE_PTP_LNK_SPD_50G) {
|
|
err = ice_read_64b_phy_reg_e822(hw, port,
|
|
P_REG_PAR_PCS_TX_OFFSET_L,
|
|
&val);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset += val;
|
|
}
|
|
|
|
/* For Tx, we only need to use the second Vernier offset for
|
|
* multi-lane link speeds with RS-FEC. The lanes will always be
|
|
* aligned.
|
|
*/
|
|
if (link_spd == ICE_PTP_LNK_SPD_50G_RS ||
|
|
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
|
|
err = ice_read_64b_phy_reg_e822(hw, port,
|
|
P_REG_PAR_TX_TIME_L,
|
|
&val);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset += val;
|
|
}
|
|
|
|
/* Now that the total offset has been calculated, program it to the
|
|
* PHY and indicate that the Tx offset is ready. After this,
|
|
* timestamps will be enabled.
|
|
*/
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
|
|
total_offset);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_fixed_tx_offset_e822 - Configure Tx offset for bypass mode
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to configure
|
|
*
|
|
* Calculate and program the fixed Tx offset, and indicate that the offset is
|
|
* ready. This can be used when operating in bypass mode.
|
|
*/
|
|
static int
|
|
ice_phy_cfg_fixed_tx_offset_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
enum ice_ptp_link_spd link_spd;
|
|
enum ice_ptp_fec_mode fec_mode;
|
|
u64 total_offset;
|
|
int err;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset = ice_calc_fixed_tx_offset_e822(hw, link_spd);
|
|
|
|
/* Program the fixed Tx offset into the P_REG_TOTAL_TX_OFFSET_L
|
|
* register, then indicate that the Tx offset is ready. After this,
|
|
* timestamps will be enabled.
|
|
*
|
|
* Note that this skips including the more precise offsets generated
|
|
* by the Vernier calibration.
|
|
*/
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_TX_OFFSET_L,
|
|
total_offset);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_calc_pmd_adj_e822 - Calculate PMD adjustment for Rx
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to adjust for
|
|
* @link_spd: the current link speed of the PHY
|
|
* @fec_mode: the current FEC mode of the PHY
|
|
* @pmd_adj: on return, the amount to adjust the Rx total offset by
|
|
*
|
|
* Calculates the adjustment to Rx timestamps due to PMD alignment in the PHY.
|
|
* This varies by link speed and FEC mode. The value calculated accounts for
|
|
* various delays caused when receiving a packet.
|
|
*/
|
|
static int
|
|
ice_phy_calc_pmd_adj_e822(struct ice_hw *hw, u8 port,
|
|
enum ice_ptp_link_spd link_spd,
|
|
enum ice_ptp_fec_mode fec_mode, u64 *pmd_adj)
|
|
{
|
|
u64 cur_freq, clk_incval, tu_per_sec, mult, adj;
|
|
u8 pmd_align;
|
|
u32 val;
|
|
int err;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_PMD_ALIGNMENT, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read PMD alignment, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
pmd_align = (u8)val;
|
|
|
|
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
|
|
clk_incval = ice_ptp_read_src_incval(hw);
|
|
|
|
/* Calculate TUs per second */
|
|
tu_per_sec = cur_freq * clk_incval;
|
|
|
|
/* The PMD alignment adjustment measurement depends on the link speed,
|
|
* and whether FEC is enabled. For each link speed, the alignment
|
|
* adjustment is calculated by dividing a value by the length of
|
|
* a Time Unit in nanoseconds.
|
|
*
|
|
* 1G: align == 4 ? 10 * 0.8 : (align + 6 % 10) * 0.8
|
|
* 10G: align == 65 ? 0 : (align * 0.1 * 32/33)
|
|
* 10G w/FEC: align * 0.1 * 32/33
|
|
* 25G: align == 65 ? 0 : (align * 0.4 * 32/33)
|
|
* 25G w/FEC: align * 0.4 * 32/33
|
|
* 40G: align == 65 ? 0 : (align * 0.1 * 32/33)
|
|
* 40G w/FEC: align * 0.1 * 32/33
|
|
* 50G: align == 65 ? 0 : (align * 0.4 * 32/33)
|
|
* 50G w/FEC: align * 0.8 * 32/33
|
|
*
|
|
* For RS-FEC, if align is < 17 then we must also add 1.6 * 32/33.
|
|
*
|
|
* To allow for calculating this value using integer arithmetic, we
|
|
* instead start with the number of TUs per second, (inverse of the
|
|
* length of a Time Unit in nanoseconds), multiply by a value based
|
|
* on the PMD alignment register, and then divide by the right value
|
|
* calculated based on the table above. To avoid integer overflow this
|
|
* division is broken up into a step of dividing by 125 first.
|
|
*/
|
|
if (link_spd == ICE_PTP_LNK_SPD_1G) {
|
|
if (pmd_align == 4)
|
|
mult = 10;
|
|
else
|
|
mult = (pmd_align + 6) % 10;
|
|
} else if (link_spd == ICE_PTP_LNK_SPD_10G ||
|
|
link_spd == ICE_PTP_LNK_SPD_25G ||
|
|
link_spd == ICE_PTP_LNK_SPD_40G ||
|
|
link_spd == ICE_PTP_LNK_SPD_50G) {
|
|
/* If Clause 74 FEC, always calculate PMD adjust */
|
|
if (pmd_align != 65 || fec_mode == ICE_PTP_FEC_MODE_CLAUSE74)
|
|
mult = pmd_align;
|
|
else
|
|
mult = 0;
|
|
} else if (link_spd == ICE_PTP_LNK_SPD_25G_RS ||
|
|
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
|
|
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
|
|
if (pmd_align < 17)
|
|
mult = pmd_align + 40;
|
|
else
|
|
mult = pmd_align;
|
|
} else {
|
|
ice_debug(hw, ICE_DBG_PTP, "Unknown link speed %d, skipping PMD adjustment\n",
|
|
link_spd);
|
|
mult = 0;
|
|
}
|
|
|
|
/* In some cases, there's no need to adjust for the PMD alignment */
|
|
if (!mult) {
|
|
*pmd_adj = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate the adjustment by multiplying TUs per second by the
|
|
* appropriate multiplier and divisor. To avoid overflow, we first
|
|
* divide by 125, and then handle remaining divisor based on the link
|
|
* speed pmd_adj_divisor value.
|
|
*/
|
|
adj = div_u64(tu_per_sec, 125);
|
|
adj *= mult;
|
|
adj = div_u64(adj, e822_vernier[link_spd].pmd_adj_divisor);
|
|
|
|
/* Finally, for 25G-RS and 50G-RS, a further adjustment for the Rx
|
|
* cycle count is necessary.
|
|
*/
|
|
if (link_spd == ICE_PTP_LNK_SPD_25G_RS) {
|
|
u64 cycle_adj;
|
|
u8 rx_cycle;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_40_TO_160_CNT,
|
|
&val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read 25G-RS Rx cycle count, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
rx_cycle = val & P_REG_RX_40_TO_160_CNT_RXCYC_M;
|
|
if (rx_cycle) {
|
|
mult = (4 - rx_cycle) * 40;
|
|
|
|
cycle_adj = div_u64(tu_per_sec, 125);
|
|
cycle_adj *= mult;
|
|
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
|
|
|
|
adj += cycle_adj;
|
|
}
|
|
} else if (link_spd == ICE_PTP_LNK_SPD_50G_RS) {
|
|
u64 cycle_adj;
|
|
u8 rx_cycle;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_80_TO_160_CNT,
|
|
&val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read 50G-RS Rx cycle count, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
rx_cycle = val & P_REG_RX_80_TO_160_CNT_RXCYC_M;
|
|
if (rx_cycle) {
|
|
mult = rx_cycle * 40;
|
|
|
|
cycle_adj = div_u64(tu_per_sec, 125);
|
|
cycle_adj *= mult;
|
|
cycle_adj = div_u64(cycle_adj, e822_vernier[link_spd].pmd_adj_divisor);
|
|
|
|
adj += cycle_adj;
|
|
}
|
|
}
|
|
|
|
/* Return the calculated adjustment */
|
|
*pmd_adj = adj;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_calc_fixed_rx_offset_e822 - Calculated the fixed Rx offset for a port
|
|
* @hw: pointer to HW struct
|
|
* @link_spd: The Link speed to calculate for
|
|
*
|
|
* Determine the fixed Rx latency for a given link speed.
|
|
*/
|
|
static u64
|
|
ice_calc_fixed_rx_offset_e822(struct ice_hw *hw, enum ice_ptp_link_spd link_spd)
|
|
{
|
|
u64 cur_freq, clk_incval, tu_per_sec, fixed_offset;
|
|
|
|
cur_freq = ice_e822_pll_freq(ice_e822_time_ref(hw));
|
|
clk_incval = ice_ptp_read_src_incval(hw);
|
|
|
|
/* Calculate TUs per second */
|
|
tu_per_sec = cur_freq * clk_incval;
|
|
|
|
/* Calculate number of TUs to add for the fixed Rx latency. Since the
|
|
* latency measurement is in 1/100th of a nanosecond, we need to
|
|
* multiply by tu_per_sec and then divide by 1e11. This calculation
|
|
* overflows 64 bit integer arithmetic, so break it up into two
|
|
* divisions by 1e4 first then by 1e7.
|
|
*/
|
|
fixed_offset = div_u64(tu_per_sec, 10000);
|
|
fixed_offset *= e822_vernier[link_spd].rx_fixed_delay;
|
|
fixed_offset = div_u64(fixed_offset, 10000000);
|
|
|
|
return fixed_offset;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_rx_offset_e822 - Configure total Rx timestamp offset
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to configure
|
|
*
|
|
* Program the P_REG_TOTAL_RX_OFFSET register with the number of Time Units to
|
|
* adjust Rx timestamps by. This combines calculations from the Vernier offset
|
|
* measurements taken in hardware with some data about known fixed delay as
|
|
* well as adjusting for multi-lane alignment delay.
|
|
*
|
|
* This function must be called only after the offset registers are valid,
|
|
* i.e. after the Vernier calibration wait has passed, to ensure that the PHY
|
|
* has measured the offset.
|
|
*
|
|
* To avoid overflow, when calculating the offset based on the known static
|
|
* latency values, we use measurements in 1/100th of a nanosecond, and divide
|
|
* the TUs per second up front. This avoids overflow while allowing
|
|
* calculation of the adjustment using integer arithmetic.
|
|
*/
|
|
static int ice_phy_cfg_rx_offset_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
enum ice_ptp_link_spd link_spd;
|
|
enum ice_ptp_fec_mode fec_mode;
|
|
u64 total_offset, pmd, val;
|
|
int err;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
|
|
|
|
/* Read the first Vernier offset from the PHY register and add it to
|
|
* the total offset.
|
|
*/
|
|
err = ice_read_64b_phy_reg_e822(hw, port,
|
|
P_REG_PAR_PCS_RX_OFFSET_L,
|
|
&val);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset += val;
|
|
|
|
/* For Rx, all multi-lane link speeds include a second Vernier
|
|
* calibration, because the lanes might not be aligned.
|
|
*/
|
|
if (link_spd == ICE_PTP_LNK_SPD_40G ||
|
|
link_spd == ICE_PTP_LNK_SPD_50G ||
|
|
link_spd == ICE_PTP_LNK_SPD_50G_RS ||
|
|
link_spd == ICE_PTP_LNK_SPD_100G_RS) {
|
|
err = ice_read_64b_phy_reg_e822(hw, port,
|
|
P_REG_PAR_RX_TIME_L,
|
|
&val);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset += val;
|
|
}
|
|
|
|
/* In addition, Rx must account for the PMD alignment */
|
|
err = ice_phy_calc_pmd_adj_e822(hw, port, link_spd, fec_mode, &pmd);
|
|
if (err)
|
|
return err;
|
|
|
|
/* For RS-FEC, this adjustment adds delay, but for other modes, it
|
|
* subtracts delay.
|
|
*/
|
|
if (fec_mode == ICE_PTP_FEC_MODE_RS_FEC)
|
|
total_offset += pmd;
|
|
else
|
|
total_offset -= pmd;
|
|
|
|
/* Now that the total offset has been calculated, program it to the
|
|
* PHY and indicate that the Rx offset is ready. After this,
|
|
* timestamps will be enabled.
|
|
*/
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
|
|
total_offset);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_cfg_fixed_rx_offset_e822 - Configure fixed Rx offset for bypass mode
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to configure
|
|
*
|
|
* Calculate and program the fixed Rx offset, and indicate that the offset is
|
|
* ready. This can be used when operating in bypass mode.
|
|
*/
|
|
static int
|
|
ice_phy_cfg_fixed_rx_offset_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
enum ice_ptp_link_spd link_spd;
|
|
enum ice_ptp_fec_mode fec_mode;
|
|
u64 total_offset;
|
|
int err;
|
|
|
|
err = ice_phy_get_speed_and_fec_e822(hw, port, &link_spd, &fec_mode);
|
|
if (err)
|
|
return err;
|
|
|
|
total_offset = ice_calc_fixed_rx_offset_e822(hw, link_spd);
|
|
|
|
/* Program the fixed Rx offset into the P_REG_TOTAL_RX_OFFSET_L
|
|
* register, then indicate that the Rx offset is ready. After this,
|
|
* timestamps will be enabled.
|
|
*
|
|
* Note that this skips including the more precise offsets generated
|
|
* by Vernier calibration.
|
|
*/
|
|
err = ice_write_64b_phy_reg_e822(hw, port, P_REG_TOTAL_RX_OFFSET_L,
|
|
total_offset);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_and_phc_time_e822 - Simultaneously capture PHC and PHY time
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to read
|
|
* @phy_time: on return, the 64bit PHY timer value
|
|
* @phc_time: on return, the lower 64bits of PHC time
|
|
*
|
|
* Issue a READ_TIME timer command to simultaneously capture the PHY and PHC
|
|
* timer values.
|
|
*/
|
|
static int
|
|
ice_read_phy_and_phc_time_e822(struct ice_hw *hw, u8 port, u64 *phy_time,
|
|
u64 *phc_time)
|
|
{
|
|
u64 tx_time, rx_time;
|
|
u32 zo, lo;
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
|
|
/* Prepare the PHC timer for a READ_TIME capture command */
|
|
ice_ptp_src_cmd(hw, READ_TIME);
|
|
|
|
/* Prepare the PHY timer for a READ_TIME capture command */
|
|
err = ice_ptp_one_port_cmd(hw, port, READ_TIME);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Issue the sync to start the READ_TIME capture */
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
/* Read the captured PHC time from the shadow time registers */
|
|
zo = rd32(hw, GLTSYN_SHTIME_0(tmr_idx));
|
|
lo = rd32(hw, GLTSYN_SHTIME_L(tmr_idx));
|
|
*phc_time = (u64)lo << 32 | zo;
|
|
|
|
/* Read the captured PHY time from the PHY shadow registers */
|
|
err = ice_ptp_read_port_capture(hw, port, &tx_time, &rx_time);
|
|
if (err)
|
|
return err;
|
|
|
|
/* If the PHY Tx and Rx timers don't match, log a warning message.
|
|
* Note that this should not happen in normal circumstances since the
|
|
* driver always programs them together.
|
|
*/
|
|
if (tx_time != rx_time)
|
|
dev_warn(ice_hw_to_dev(hw),
|
|
"PHY port %u Tx and Rx timers do not match, tx_time 0x%016llX, rx_time 0x%016llX\n",
|
|
port, (unsigned long long)tx_time,
|
|
(unsigned long long)rx_time);
|
|
|
|
*phy_time = tx_time;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sync_phy_timer_e822 - Synchronize the PHY timer with PHC timer
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to synchronize
|
|
*
|
|
* Perform an adjustment to ensure that the PHY and PHC timers are in sync.
|
|
* This is done by issuing a READ_TIME command which triggers a simultaneous
|
|
* read of the PHY timer and PHC timer. Then we use the difference to
|
|
* calculate an appropriate 2s complement addition to add to the PHY timer in
|
|
* order to ensure it reads the same value as the primary PHC timer.
|
|
*/
|
|
static int ice_sync_phy_timer_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
u64 phc_time, phy_time, difference;
|
|
int err;
|
|
|
|
if (!ice_ptp_lock(hw)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to acquire PTP semaphore\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
|
|
if (err)
|
|
goto err_unlock;
|
|
|
|
/* Calculate the amount required to add to the port time in order for
|
|
* it to match the PHC time.
|
|
*
|
|
* Note that the port adjustment is done using 2s complement
|
|
* arithmetic. This is convenient since it means that we can simply
|
|
* calculate the difference between the PHC time and the port time,
|
|
* and it will be interpreted correctly.
|
|
*/
|
|
difference = phc_time - phy_time;
|
|
|
|
err = ice_ptp_prep_port_adj_e822(hw, port, (s64)difference);
|
|
if (err)
|
|
goto err_unlock;
|
|
|
|
err = ice_ptp_one_port_cmd(hw, port, ADJ_TIME);
|
|
if (err)
|
|
goto err_unlock;
|
|
|
|
/* Do not perform any action on the main timer */
|
|
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
|
|
|
|
/* Issue the sync to activate the time adjustment */
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
/* Re-capture the timer values to flush the command registers and
|
|
* verify that the time was properly adjusted.
|
|
*/
|
|
err = ice_read_phy_and_phc_time_e822(hw, port, &phy_time, &phc_time);
|
|
if (err)
|
|
goto err_unlock;
|
|
|
|
dev_info(ice_hw_to_dev(hw),
|
|
"Port %u PHY time synced to PHC: 0x%016llX, 0x%016llX\n",
|
|
port, (unsigned long long)phy_time,
|
|
(unsigned long long)phc_time);
|
|
|
|
ice_ptp_unlock(hw);
|
|
|
|
return 0;
|
|
|
|
err_unlock:
|
|
ice_ptp_unlock(hw);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_stop_phy_timer_e822 - Stop the PHY clock timer
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to stop
|
|
* @soft_reset: if true, hold the SOFT_RESET bit of P_REG_PS
|
|
*
|
|
* Stop the clock of a PHY port. This must be done as part of the flow to
|
|
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
|
|
* initialized or when link speed changes.
|
|
*/
|
|
int
|
|
ice_stop_phy_timer_e822(struct ice_hw *hw, u8 port, bool soft_reset)
|
|
{
|
|
int err;
|
|
u32 val;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_TX_OR, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_RX_OR, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
val &= ~P_REG_PS_START_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
val &= ~P_REG_PS_ENA_CLK_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (soft_reset) {
|
|
val |= P_REG_PS_SFT_RESET_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_PTP, "Disabled clock on PHY port %u\n", port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_start_phy_timer_e822 - Start the PHY clock timer
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to start
|
|
* @bypass: if true, start the PHY in bypass mode
|
|
*
|
|
* Start the clock of a PHY port. This must be done as part of the flow to
|
|
* re-calibrate Tx and Rx timestamping offsets whenever the clock time is
|
|
* initialized or when link speed changes.
|
|
*
|
|
* Bypass mode enables timestamps immediately without waiting for Vernier
|
|
* calibration to complete. Hardware will still continue taking Vernier
|
|
* measurements on Tx or Rx of packets, but they will not be applied to
|
|
* timestamps. Use ice_phy_exit_bypass_e822 to exit bypass mode once hardware
|
|
* has completed offset calculation.
|
|
*/
|
|
int
|
|
ice_start_phy_timer_e822(struct ice_hw *hw, u8 port, bool bypass)
|
|
{
|
|
u32 lo, hi, val;
|
|
u64 incval;
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
|
|
err = ice_stop_phy_timer_e822(hw, port, false);
|
|
if (err)
|
|
return err;
|
|
|
|
ice_phy_cfg_lane_e822(hw, port);
|
|
|
|
err = ice_phy_cfg_uix_e822(hw, port);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_phy_cfg_parpcs_e822(hw, port);
|
|
if (err)
|
|
return err;
|
|
|
|
lo = rd32(hw, GLTSYN_INCVAL_L(tmr_idx));
|
|
hi = rd32(hw, GLTSYN_INCVAL_H(tmr_idx));
|
|
incval = (u64)hi << 32 | lo;
|
|
|
|
err = ice_write_40b_phy_reg_e822(hw, port, P_REG_TIMETUS_L, incval);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Do not perform any action on the main timer */
|
|
ice_ptp_src_cmd(hw, ICE_PTP_NOP);
|
|
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
val |= P_REG_PS_SFT_RESET_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
val |= P_REG_PS_START_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
val &= ~P_REG_PS_SFT_RESET_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_ptp_one_port_cmd(hw, port, INIT_INCVAL);
|
|
if (err)
|
|
return err;
|
|
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
val |= P_REG_PS_ENA_CLK_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
val |= P_REG_PS_LOAD_OFFSET_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
err = ice_sync_phy_timer_e822(hw, port);
|
|
if (err)
|
|
return err;
|
|
|
|
if (bypass) {
|
|
val |= P_REG_PS_BYPASS_MODE_M;
|
|
/* Enter BYPASS mode, enabling timestamps immediately. */
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Program the fixed Tx offset */
|
|
err = ice_phy_cfg_fixed_tx_offset_e822(hw, port);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Program the fixed Rx offset */
|
|
err = ice_phy_cfg_fixed_rx_offset_e822(hw, port);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_PTP, "Enabled clock on PHY port %u\n", port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_exit_bypass_e822 - Exit bypass mode, after vernier calculations
|
|
* @hw: pointer to the HW struct
|
|
* @port: the PHY port to configure
|
|
*
|
|
* After hardware finishes vernier calculations for the Tx and Rx offset, this
|
|
* function can be used to exit bypass mode by updating the total Tx and Rx
|
|
* offsets, and then disabling bypass. This will enable hardware to include
|
|
* the more precise offset calibrations, increasing precision of the generated
|
|
* timestamps.
|
|
*
|
|
* This cannot be done until hardware has measured the offsets, which requires
|
|
* waiting until at least one packet has been sent and received by the device.
|
|
*/
|
|
int ice_phy_exit_bypass_e822(struct ice_hw *hw, u8 port)
|
|
{
|
|
int err;
|
|
u32 val;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_TX_OV_STATUS, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read TX_OV_STATUS for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Tx offset is not yet valid for port %u\n",
|
|
port);
|
|
return -EBUSY;
|
|
}
|
|
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_RX_OV_STATUS, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read RX_OV_STATUS for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
if (!(val & P_REG_TX_OV_STATUS_OV_M)) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Rx offset is not yet valid for port %u\n",
|
|
port);
|
|
return -EBUSY;
|
|
}
|
|
|
|
err = ice_phy_cfg_tx_offset_e822(hw, port);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Tx offset for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_phy_cfg_rx_offset_e822(hw, port);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to program total Rx offset for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
/* Exit bypass mode now that the offset has been updated */
|
|
err = ice_read_phy_reg_e822(hw, port, P_REG_PS, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read P_REG_PS for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
if (!(val & P_REG_PS_BYPASS_MODE_M))
|
|
ice_debug(hw, ICE_DBG_PTP, "Port %u not in bypass mode\n",
|
|
port);
|
|
|
|
val &= ~P_REG_PS_BYPASS_MODE_M;
|
|
err = ice_write_phy_reg_e822(hw, port, P_REG_PS, val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to disable bypass for port %u, err %d\n",
|
|
port, err);
|
|
return err;
|
|
}
|
|
|
|
dev_info(ice_hw_to_dev(hw), "Exiting bypass mode on PHY port %u\n",
|
|
port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* E810 functions
|
|
*
|
|
* The following functions operate on the E810 series devices which use
|
|
* a separate external PHY.
|
|
*/
|
|
|
|
/**
|
|
* ice_read_phy_reg_e810 - Read register from external PHY on E810
|
|
* @hw: pointer to the HW struct
|
|
* @addr: the address to read from
|
|
* @val: On return, the value read from the PHY
|
|
*
|
|
* Read a register from the external PHY on the E810 device.
|
|
*/
|
|
static int ice_read_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 *val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
msg.msg_addr_low = lower_16_bits(addr);
|
|
msg.msg_addr_high = upper_16_bits(addr);
|
|
msg.opcode = ice_sbq_msg_rd;
|
|
msg.dest_dev = rmn_0;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
*val = msg.data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_phy_reg_e810 - Write register on external PHY on E810
|
|
* @hw: pointer to the HW struct
|
|
* @addr: the address to writem to
|
|
* @val: the value to write to the PHY
|
|
*
|
|
* Write a value to a register of the external PHY on the E810 device.
|
|
*/
|
|
static int ice_write_phy_reg_e810(struct ice_hw *hw, u32 addr, u32 val)
|
|
{
|
|
struct ice_sbq_msg_input msg = {0};
|
|
int err;
|
|
|
|
msg.msg_addr_low = lower_16_bits(addr);
|
|
msg.msg_addr_high = upper_16_bits(addr);
|
|
msg.opcode = ice_sbq_msg_wr;
|
|
msg.dest_dev = rmn_0;
|
|
msg.data = val;
|
|
|
|
err = ice_sbq_rw_reg(hw, &msg);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to send message to PHY, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_tstamp_ll_e810 - Read a PHY timestamp registers through the FW
|
|
* @hw: pointer to the HW struct
|
|
* @idx: the timestamp index to read
|
|
* @hi: 8 bit timestamp high value
|
|
* @lo: 32 bit timestamp low value
|
|
*
|
|
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
|
|
* timestamp block of the external PHY on the E810 device using the low latency
|
|
* timestamp read.
|
|
*/
|
|
static int
|
|
ice_read_phy_tstamp_ll_e810(struct ice_hw *hw, u8 idx, u8 *hi, u32 *lo)
|
|
{
|
|
u32 val;
|
|
u8 i;
|
|
|
|
/* Write TS index to read to the PF register so the FW can read it */
|
|
val = FIELD_PREP(TS_LL_READ_TS_IDX, idx) | TS_LL_READ_TS;
|
|
wr32(hw, PF_SB_ATQBAL, val);
|
|
|
|
/* Read the register repeatedly until the FW provides us the TS */
|
|
for (i = TS_LL_READ_RETRIES; i > 0; i--) {
|
|
val = rd32(hw, PF_SB_ATQBAL);
|
|
|
|
/* When the bit is cleared, the TS is ready in the register */
|
|
if (!(FIELD_GET(TS_LL_READ_TS, val))) {
|
|
/* High 8 bit value of the TS is on the bits 16:23 */
|
|
*hi = FIELD_GET(TS_LL_READ_TS_HIGH, val);
|
|
|
|
/* Read the low 32 bit value and set the TS valid bit */
|
|
*lo = rd32(hw, PF_SB_ATQBAH) | TS_VALID;
|
|
return 0;
|
|
}
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
/* FW failed to provide the TS in time */
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read PTP timestamp using low latency read\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_tstamp_sbq_e810 - Read a PHY timestamp registers through the sbq
|
|
* @hw: pointer to the HW struct
|
|
* @lport: the lport to read from
|
|
* @idx: the timestamp index to read
|
|
* @hi: 8 bit timestamp high value
|
|
* @lo: 32 bit timestamp low value
|
|
*
|
|
* Read a 8bit timestamp high value and 32 bit timestamp low value out of the
|
|
* timestamp block of the external PHY on the E810 device using sideband queue.
|
|
*/
|
|
static int
|
|
ice_read_phy_tstamp_sbq_e810(struct ice_hw *hw, u8 lport, u8 idx, u8 *hi,
|
|
u32 *lo)
|
|
{
|
|
u32 hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
|
|
u32 lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
|
|
u32 lo_val, hi_val;
|
|
int err;
|
|
|
|
err = ice_read_phy_reg_e810(hw, lo_addr, &lo_val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read low PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_read_phy_reg_e810(hw, hi_addr, &hi_val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read high PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
*lo = lo_val;
|
|
*hi = (u8)hi_val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_tstamp_e810 - Read a PHY timestamp out of the external PHY
|
|
* @hw: pointer to the HW struct
|
|
* @lport: the lport to read from
|
|
* @idx: the timestamp index to read
|
|
* @tstamp: on return, the 40bit timestamp value
|
|
*
|
|
* Read a 40bit timestamp value out of the timestamp block of the external PHY
|
|
* on the E810 device.
|
|
*/
|
|
static int
|
|
ice_read_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx, u64 *tstamp)
|
|
{
|
|
u32 lo = 0;
|
|
u8 hi = 0;
|
|
int err;
|
|
|
|
if (hw->dev_caps.ts_dev_info.ts_ll_read)
|
|
err = ice_read_phy_tstamp_ll_e810(hw, idx, &hi, &lo);
|
|
else
|
|
err = ice_read_phy_tstamp_sbq_e810(hw, lport, idx, &hi, &lo);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
/* For E810 devices, the timestamp is reported with the lower 32 bits
|
|
* in the low register, and the upper 8 bits in the high register.
|
|
*/
|
|
*tstamp = ((u64)hi) << TS_HIGH_S | ((u64)lo & TS_LOW_M);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_phy_tstamp_e810 - Clear a timestamp from the external PHY
|
|
* @hw: pointer to the HW struct
|
|
* @lport: the lport to read from
|
|
* @idx: the timestamp index to reset
|
|
*
|
|
* Clear a timestamp, resetting its valid bit, from the timestamp block of the
|
|
* external PHY on the E810 device.
|
|
*/
|
|
static int ice_clear_phy_tstamp_e810(struct ice_hw *hw, u8 lport, u8 idx)
|
|
{
|
|
u32 lo_addr, hi_addr;
|
|
int err;
|
|
|
|
lo_addr = TS_EXT(LOW_TX_MEMORY_BANK_START, lport, idx);
|
|
hi_addr = TS_EXT(HIGH_TX_MEMORY_BANK_START, lport, idx);
|
|
|
|
err = ice_write_phy_reg_e810(hw, lo_addr, 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to clear low PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e810(hw, hi_addr, 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to clear high PTP timestamp register, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_phy_e810 - Enable PTP function on the external PHY
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Enable the timesync PTP functionality for the external PHY connected to
|
|
* this function.
|
|
*/
|
|
int ice_ptp_init_phy_e810(struct ice_hw *hw)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_ENA(tmr_idx),
|
|
GLTSYN_ENA_TSYN_ENA_M);
|
|
if (err)
|
|
ice_debug(hw, ICE_DBG_PTP, "PTP failed in ena_phy_time_syn %d\n",
|
|
err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_phc_e810 - Perform E810 specific PHC initialization
|
|
* @hw: pointer to HW struct
|
|
*
|
|
* Perform E810-specific PTP hardware clock initialization steps.
|
|
*/
|
|
static int ice_ptp_init_phc_e810(struct ice_hw *hw)
|
|
{
|
|
/* Ensure synchronization delay is zero */
|
|
wr32(hw, GLTSYN_SYNC_DLAY, 0);
|
|
|
|
/* Initialize the PHY */
|
|
return ice_ptp_init_phy_e810(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_time_e810 - Prepare PHY port with initial time
|
|
* @hw: Board private structure
|
|
* @time: Time to initialize the PHY port clock to
|
|
*
|
|
* Program the PHY port ETH_GLTSYN_SHTIME registers in preparation setting the
|
|
* initial clock time. The time will not actually be programmed until the
|
|
* driver issues an INIT_TIME command.
|
|
*
|
|
* The time value is the upper 32 bits of the PHY timer, usually in units of
|
|
* nominal nanoseconds.
|
|
*/
|
|
static int ice_ptp_prep_phy_time_e810(struct ice_hw *hw, u32 time)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_0(tmr_idx), 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_0, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHTIME_L(tmr_idx), time);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write SHTIME_L, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_adj_e810 - Prep PHY port for a time adjustment
|
|
* @hw: pointer to HW struct
|
|
* @adj: adjustment value to program
|
|
*
|
|
* Prepare the PHY port for an atomic adjustment by programming the PHY
|
|
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual adjustment
|
|
* is completed by issuing an ADJ_TIME sync command.
|
|
*
|
|
* The adjustment value only contains the portion used for the upper 32bits of
|
|
* the PHY timer, usually in units of nominal nanoseconds. Negative
|
|
* adjustments are supported using 2s complement arithmetic.
|
|
*/
|
|
static int ice_ptp_prep_phy_adj_e810(struct ice_hw *hw, s32 adj)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* Adjustments are represented as signed 2's complement values in
|
|
* nanoseconds. Sub-nanosecond adjustment is not supported.
|
|
*/
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), 0);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_L, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), adj);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write adj to PHY SHADJ_H, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prep_phy_incval_e810 - Prep PHY port increment value change
|
|
* @hw: pointer to HW struct
|
|
* @incval: The new 40bit increment value to prepare
|
|
*
|
|
* Prepare the PHY port for a new increment value by programming the PHY
|
|
* ETH_GLTSYN_SHADJ_L and ETH_GLTSYN_SHADJ_H registers. The actual change is
|
|
* completed by issuing an INIT_INCVAL command.
|
|
*/
|
|
static int ice_ptp_prep_phy_incval_e810(struct ice_hw *hw, u64 incval)
|
|
{
|
|
u32 high, low;
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
low = lower_32_bits(incval);
|
|
high = upper_32_bits(incval);
|
|
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_L(tmr_idx), low);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval to PHY SHADJ_L, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_SHADJ_H(tmr_idx), high);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write incval PHY SHADJ_H, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_port_cmd_e810 - Prepare all external PHYs for a timer command
|
|
* @hw: pointer to HW struct
|
|
* @cmd: Command to be sent to the port
|
|
*
|
|
* Prepare the external PHYs connected to this device for a timer sync
|
|
* command.
|
|
*/
|
|
static int ice_ptp_port_cmd_e810(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
|
|
{
|
|
u32 cmd_val, val;
|
|
int err;
|
|
|
|
switch (cmd) {
|
|
case INIT_TIME:
|
|
cmd_val = GLTSYN_CMD_INIT_TIME;
|
|
break;
|
|
case INIT_INCVAL:
|
|
cmd_val = GLTSYN_CMD_INIT_INCVAL;
|
|
break;
|
|
case ADJ_TIME:
|
|
cmd_val = GLTSYN_CMD_ADJ_TIME;
|
|
break;
|
|
case READ_TIME:
|
|
cmd_val = GLTSYN_CMD_READ_TIME;
|
|
break;
|
|
case ADJ_TIME_AT_TIME:
|
|
cmd_val = GLTSYN_CMD_ADJ_INIT_TIME;
|
|
break;
|
|
case ICE_PTP_NOP:
|
|
return 0;
|
|
}
|
|
|
|
/* Read, modify, write */
|
|
err = ice_read_phy_reg_e810(hw, ETH_GLTSYN_CMD, &val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to read GLTSYN_CMD, err %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
/* Modify necessary bits only and perform write */
|
|
val &= ~TS_CMD_MASK_E810;
|
|
val |= cmd_val;
|
|
|
|
err = ice_write_phy_reg_e810(hw, ETH_GLTSYN_CMD, val);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to write back GLTSYN_CMD, err %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Device agnostic functions
|
|
*
|
|
* The following functions implement shared behavior common to both E822 and
|
|
* E810 devices, possibly calling a device specific implementation where
|
|
* necessary.
|
|
*/
|
|
|
|
/**
|
|
* ice_ptp_lock - Acquire PTP global semaphore register lock
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Acquire the global PTP hardware semaphore lock. Returns true if the lock
|
|
* was acquired, false otherwise.
|
|
*
|
|
* The PFTSYN_SEM register sets the busy bit on read, returning the previous
|
|
* value. If software sees the busy bit cleared, this means that this function
|
|
* acquired the lock (and the busy bit is now set). If software sees the busy
|
|
* bit set, it means that another function acquired the lock.
|
|
*
|
|
* Software must clear the busy bit with a write to release the lock for other
|
|
* functions when done.
|
|
*/
|
|
bool ice_ptp_lock(struct ice_hw *hw)
|
|
{
|
|
u32 hw_lock;
|
|
int i;
|
|
|
|
#define MAX_TRIES 5
|
|
|
|
for (i = 0; i < MAX_TRIES; i++) {
|
|
hw_lock = rd32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
|
|
hw_lock = hw_lock & PFTSYN_SEM_BUSY_M;
|
|
if (!hw_lock)
|
|
break;
|
|
|
|
/* Somebody is holding the lock */
|
|
usleep_range(10000, 20000);
|
|
}
|
|
|
|
return !hw_lock;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_unlock - Release PTP global semaphore register lock
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Release the global PTP hardware semaphore lock. This is done by writing to
|
|
* the PFTSYN_SEM register.
|
|
*/
|
|
void ice_ptp_unlock(struct ice_hw *hw)
|
|
{
|
|
wr32(hw, PFTSYN_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), 0);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_tmr_cmd - Prepare and trigger a timer sync command
|
|
* @hw: pointer to HW struct
|
|
* @cmd: the command to issue
|
|
*
|
|
* Prepare the source timer and PHY timers and then trigger the requested
|
|
* command. This causes the shadow registers previously written in preparation
|
|
* for the command to be synchronously applied to both the source and PHY
|
|
* timers.
|
|
*/
|
|
static int ice_ptp_tmr_cmd(struct ice_hw *hw, enum ice_ptp_tmr_cmd cmd)
|
|
{
|
|
int err;
|
|
|
|
/* First, prepare the source timer */
|
|
ice_ptp_src_cmd(hw, cmd);
|
|
|
|
/* Next, prepare the ports */
|
|
if (ice_is_e810(hw))
|
|
err = ice_ptp_port_cmd_e810(hw, cmd);
|
|
else
|
|
err = ice_ptp_port_cmd_e822(hw, cmd);
|
|
if (err) {
|
|
ice_debug(hw, ICE_DBG_PTP, "Failed to prepare PHY ports for timer command %u, err %d\n",
|
|
cmd, err);
|
|
return err;
|
|
}
|
|
|
|
/* Write the sync command register to drive both source and PHY timer
|
|
* commands synchronously
|
|
*/
|
|
ice_ptp_exec_tmr_cmd(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_time - Initialize device time to provided value
|
|
* @hw: pointer to HW struct
|
|
* @time: 64bits of time (GLTSYN_TIME_L and GLTSYN_TIME_H)
|
|
*
|
|
* Initialize the device to the specified time provided. This requires a three
|
|
* step process:
|
|
*
|
|
* 1) write the new init time to the source timer shadow registers
|
|
* 2) write the new init time to the PHY timer shadow registers
|
|
* 3) issue an init_time timer command to synchronously switch both the source
|
|
* and port timers to the new init time value at the next clock cycle.
|
|
*/
|
|
int ice_ptp_init_time(struct ice_hw *hw, u64 time)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* Source timers */
|
|
wr32(hw, GLTSYN_SHTIME_L(tmr_idx), lower_32_bits(time));
|
|
wr32(hw, GLTSYN_SHTIME_H(tmr_idx), upper_32_bits(time));
|
|
wr32(hw, GLTSYN_SHTIME_0(tmr_idx), 0);
|
|
|
|
/* PHY timers */
|
|
/* Fill Rx and Tx ports and send msg to PHY */
|
|
if (ice_is_e810(hw))
|
|
err = ice_ptp_prep_phy_time_e810(hw, time & 0xFFFFFFFF);
|
|
else
|
|
err = ice_ptp_prep_phy_time_e822(hw, time & 0xFFFFFFFF);
|
|
if (err)
|
|
return err;
|
|
|
|
return ice_ptp_tmr_cmd(hw, INIT_TIME);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_write_incval - Program PHC with new increment value
|
|
* @hw: pointer to HW struct
|
|
* @incval: Source timer increment value per clock cycle
|
|
*
|
|
* Program the PHC with a new increment value. This requires a three-step
|
|
* process:
|
|
*
|
|
* 1) Write the increment value to the source timer shadow registers
|
|
* 2) Write the increment value to the PHY timer shadow registers
|
|
* 3) Issue an INIT_INCVAL timer command to synchronously switch both the
|
|
* source and port timers to the new increment value at the next clock
|
|
* cycle.
|
|
*/
|
|
int ice_ptp_write_incval(struct ice_hw *hw, u64 incval)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* Shadow Adjust */
|
|
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), lower_32_bits(incval));
|
|
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), upper_32_bits(incval));
|
|
|
|
if (ice_is_e810(hw))
|
|
err = ice_ptp_prep_phy_incval_e810(hw, incval);
|
|
else
|
|
err = ice_ptp_prep_phy_incval_e822(hw, incval);
|
|
if (err)
|
|
return err;
|
|
|
|
return ice_ptp_tmr_cmd(hw, INIT_INCVAL);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_write_incval_locked - Program new incval while holding semaphore
|
|
* @hw: pointer to HW struct
|
|
* @incval: Source timer increment value per clock cycle
|
|
*
|
|
* Program a new PHC incval while holding the PTP semaphore.
|
|
*/
|
|
int ice_ptp_write_incval_locked(struct ice_hw *hw, u64 incval)
|
|
{
|
|
int err;
|
|
|
|
if (!ice_ptp_lock(hw))
|
|
return -EBUSY;
|
|
|
|
err = ice_ptp_write_incval(hw, incval);
|
|
|
|
ice_ptp_unlock(hw);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_adj_clock - Adjust PHC clock time atomically
|
|
* @hw: pointer to HW struct
|
|
* @adj: Adjustment in nanoseconds
|
|
*
|
|
* Perform an atomic adjustment of the PHC time by the specified number of
|
|
* nanoseconds. This requires a three-step process:
|
|
*
|
|
* 1) Write the adjustment to the source timer shadow registers
|
|
* 2) Write the adjustment to the PHY timer shadow registers
|
|
* 3) Issue an ADJ_TIME timer command to synchronously apply the adjustment to
|
|
* both the source and port timers at the next clock cycle.
|
|
*/
|
|
int ice_ptp_adj_clock(struct ice_hw *hw, s32 adj)
|
|
{
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* Write the desired clock adjustment into the GLTSYN_SHADJ register.
|
|
* For an ADJ_TIME command, this set of registers represents the value
|
|
* to add to the clock time. It supports subtraction by interpreting
|
|
* the value as a 2's complement integer.
|
|
*/
|
|
wr32(hw, GLTSYN_SHADJ_L(tmr_idx), 0);
|
|
wr32(hw, GLTSYN_SHADJ_H(tmr_idx), adj);
|
|
|
|
if (ice_is_e810(hw))
|
|
err = ice_ptp_prep_phy_adj_e810(hw, adj);
|
|
else
|
|
err = ice_ptp_prep_phy_adj_e822(hw, adj);
|
|
if (err)
|
|
return err;
|
|
|
|
return ice_ptp_tmr_cmd(hw, ADJ_TIME);
|
|
}
|
|
|
|
/**
|
|
* ice_read_phy_tstamp - Read a PHY timestamp from the timestamo block
|
|
* @hw: pointer to the HW struct
|
|
* @block: the block to read from
|
|
* @idx: the timestamp index to read
|
|
* @tstamp: on return, the 40bit timestamp value
|
|
*
|
|
* Read a 40bit timestamp value out of the timestamp block. For E822 devices,
|
|
* the block is the quad to read from. For E810 devices, the block is the
|
|
* logical port to read from.
|
|
*/
|
|
int ice_read_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx, u64 *tstamp)
|
|
{
|
|
if (ice_is_e810(hw))
|
|
return ice_read_phy_tstamp_e810(hw, block, idx, tstamp);
|
|
else
|
|
return ice_read_phy_tstamp_e822(hw, block, idx, tstamp);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_phy_tstamp - Clear a timestamp from the timestamp block
|
|
* @hw: pointer to the HW struct
|
|
* @block: the block to read from
|
|
* @idx: the timestamp index to reset
|
|
*
|
|
* Clear a timestamp, resetting its valid bit, from the timestamp block. For
|
|
* E822 devices, the block is the quad to clear from. For E810 devices, the
|
|
* block is the logical port to clear from.
|
|
*/
|
|
int ice_clear_phy_tstamp(struct ice_hw *hw, u8 block, u8 idx)
|
|
{
|
|
if (ice_is_e810(hw))
|
|
return ice_clear_phy_tstamp_e810(hw, block, idx);
|
|
else
|
|
return ice_clear_phy_tstamp_e822(hw, block, idx);
|
|
}
|
|
|
|
/* E810T SMA functions
|
|
*
|
|
* The following functions operate specifically on E810T hardware and are used
|
|
* to access the extended GPIOs available.
|
|
*/
|
|
|
|
/**
|
|
* ice_get_pca9575_handle
|
|
* @hw: pointer to the hw struct
|
|
* @pca9575_handle: GPIO controller's handle
|
|
*
|
|
* Find and return the GPIO controller's handle in the netlist.
|
|
* When found - the value will be cached in the hw structure and following calls
|
|
* will return cached value
|
|
*/
|
|
static int
|
|
ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
|
|
{
|
|
struct ice_aqc_get_link_topo *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
u8 idx;
|
|
|
|
/* If handle was read previously return cached value */
|
|
if (hw->io_expander_handle) {
|
|
*pca9575_handle = hw->io_expander_handle;
|
|
return 0;
|
|
}
|
|
|
|
/* If handle was not detected read it from the netlist */
|
|
cmd = &desc.params.get_link_topo;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
|
|
|
|
/* Set node type to GPIO controller */
|
|
cmd->addr.topo_params.node_type_ctx =
|
|
(ICE_AQC_LINK_TOPO_NODE_TYPE_M &
|
|
ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL);
|
|
|
|
#define SW_PCA9575_SFP_TOPO_IDX 2
|
|
#define SW_PCA9575_QSFP_TOPO_IDX 1
|
|
|
|
/* Check if the SW IO expander controlling SMA exists in the netlist. */
|
|
if (hw->device_id == ICE_DEV_ID_E810C_SFP)
|
|
idx = SW_PCA9575_SFP_TOPO_IDX;
|
|
else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
|
|
idx = SW_PCA9575_QSFP_TOPO_IDX;
|
|
else
|
|
return -EOPNOTSUPP;
|
|
|
|
cmd->addr.topo_params.index = idx;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
if (status)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Verify if we found the right IO expander type */
|
|
if (desc.params.get_link_topo.node_part_num !=
|
|
ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* If present save the handle and return it */
|
|
hw->io_expander_handle =
|
|
le16_to_cpu(desc.params.get_link_topo.addr.handle);
|
|
*pca9575_handle = hw->io_expander_handle;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_read_sma_ctrl_e810t
|
|
* @hw: pointer to the hw struct
|
|
* @data: pointer to data to be read from the GPIO controller
|
|
*
|
|
* Read the SMA controller state. It is connected to pins 3-7 of Port 1 of the
|
|
* PCA9575 expander, so only bits 3-7 in data are valid.
|
|
*/
|
|
int ice_read_sma_ctrl_e810t(struct ice_hw *hw, u8 *data)
|
|
{
|
|
int status;
|
|
u16 handle;
|
|
u8 i;
|
|
|
|
status = ice_get_pca9575_handle(hw, &handle);
|
|
if (status)
|
|
return status;
|
|
|
|
*data = 0;
|
|
|
|
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
|
|
bool pin;
|
|
|
|
status = ice_aq_get_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
|
|
&pin, NULL);
|
|
if (status)
|
|
break;
|
|
*data |= (u8)(!pin) << i;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_write_sma_ctrl_e810t
|
|
* @hw: pointer to the hw struct
|
|
* @data: data to be written to the GPIO controller
|
|
*
|
|
* Write the data to the SMA controller. It is connected to pins 3-7 of Port 1
|
|
* of the PCA9575 expander, so only bits 3-7 in data are valid.
|
|
*/
|
|
int ice_write_sma_ctrl_e810t(struct ice_hw *hw, u8 data)
|
|
{
|
|
int status;
|
|
u16 handle;
|
|
u8 i;
|
|
|
|
status = ice_get_pca9575_handle(hw, &handle);
|
|
if (status)
|
|
return status;
|
|
|
|
for (i = ICE_SMA_MIN_BIT_E810T; i <= ICE_SMA_MAX_BIT_E810T; i++) {
|
|
bool pin;
|
|
|
|
pin = !(data & (1 << i));
|
|
status = ice_aq_set_gpio(hw, handle, i + ICE_PCA9575_P1_OFFSET,
|
|
pin, NULL);
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_read_pca9575_reg_e810t
|
|
* @hw: pointer to the hw struct
|
|
* @offset: GPIO controller register offset
|
|
* @data: pointer to data to be read from the GPIO controller
|
|
*
|
|
* Read the register from the GPIO controller
|
|
*/
|
|
int ice_read_pca9575_reg_e810t(struct ice_hw *hw, u8 offset, u8 *data)
|
|
{
|
|
struct ice_aqc_link_topo_addr link_topo;
|
|
__le16 addr;
|
|
u16 handle;
|
|
int err;
|
|
|
|
memset(&link_topo, 0, sizeof(link_topo));
|
|
|
|
err = ice_get_pca9575_handle(hw, &handle);
|
|
if (err)
|
|
return err;
|
|
|
|
link_topo.handle = cpu_to_le16(handle);
|
|
link_topo.topo_params.node_type_ctx =
|
|
FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
|
|
ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
|
|
|
|
addr = cpu_to_le16((u16)offset);
|
|
|
|
return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_is_pca9575_present
|
|
* @hw: pointer to the hw struct
|
|
*
|
|
* Check if the SW IO expander is present in the netlist
|
|
*/
|
|
bool ice_is_pca9575_present(struct ice_hw *hw)
|
|
{
|
|
u16 handle = 0;
|
|
int status;
|
|
|
|
if (!ice_is_e810t(hw))
|
|
return false;
|
|
|
|
status = ice_get_pca9575_handle(hw, &handle);
|
|
|
|
return !status && handle;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_phc - Initialize PTP hardware clock
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Perform the steps required to initialize the PTP hardware clock.
|
|
*/
|
|
int ice_ptp_init_phc(struct ice_hw *hw)
|
|
{
|
|
u8 src_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* Enable source clocks */
|
|
wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M);
|
|
|
|
/* Clear event err indications for auxiliary pins */
|
|
(void)rd32(hw, GLTSYN_STAT(src_idx));
|
|
|
|
if (ice_is_e810(hw))
|
|
return ice_ptp_init_phc_e810(hw);
|
|
else
|
|
return ice_ptp_init_phc_e822(hw);
|
|
}
|