2735 lines
74 KiB
C
2735 lines
74 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2021, Intel Corporation. */
|
|
|
|
#include "ice.h"
|
|
#include "ice_lib.h"
|
|
#include "ice_trace.h"
|
|
|
|
#define E810_OUT_PROP_DELAY_NS 1
|
|
|
|
#define UNKNOWN_INCVAL_E822 0x100000000ULL
|
|
|
|
static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
|
|
/* name idx func chan */
|
|
{ "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
|
|
{ "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
|
|
{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
|
|
{ "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
|
|
{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
|
|
};
|
|
|
|
/**
|
|
* ice_get_sma_config_e810t
|
|
* @hw: pointer to the hw struct
|
|
* @ptp_pins: pointer to the ptp_pin_desc struture
|
|
*
|
|
* Read the configuration of the SMA control logic and put it into the
|
|
* ptp_pin_desc structure
|
|
*/
|
|
static int
|
|
ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
|
|
{
|
|
u8 data, i;
|
|
int status;
|
|
|
|
/* Read initial pin state */
|
|
status = ice_read_sma_ctrl_e810t(hw, &data);
|
|
if (status)
|
|
return status;
|
|
|
|
/* initialize with defaults */
|
|
for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
|
|
snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
|
|
"%s", ice_pin_desc_e810t[i].name);
|
|
ptp_pins[i].index = ice_pin_desc_e810t[i].index;
|
|
ptp_pins[i].func = ice_pin_desc_e810t[i].func;
|
|
ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
|
|
}
|
|
|
|
/* Parse SMA1/UFL1 */
|
|
switch (data & ICE_SMA1_MASK_E810T) {
|
|
case ICE_SMA1_MASK_E810T:
|
|
default:
|
|
ptp_pins[SMA1].func = PTP_PF_NONE;
|
|
ptp_pins[UFL1].func = PTP_PF_NONE;
|
|
break;
|
|
case ICE_SMA1_DIR_EN_E810T:
|
|
ptp_pins[SMA1].func = PTP_PF_PEROUT;
|
|
ptp_pins[UFL1].func = PTP_PF_NONE;
|
|
break;
|
|
case ICE_SMA1_TX_EN_E810T:
|
|
ptp_pins[SMA1].func = PTP_PF_EXTTS;
|
|
ptp_pins[UFL1].func = PTP_PF_NONE;
|
|
break;
|
|
case 0:
|
|
ptp_pins[SMA1].func = PTP_PF_EXTTS;
|
|
ptp_pins[UFL1].func = PTP_PF_PEROUT;
|
|
break;
|
|
}
|
|
|
|
/* Parse SMA2/UFL2 */
|
|
switch (data & ICE_SMA2_MASK_E810T) {
|
|
case ICE_SMA2_MASK_E810T:
|
|
default:
|
|
ptp_pins[SMA2].func = PTP_PF_NONE;
|
|
ptp_pins[UFL2].func = PTP_PF_NONE;
|
|
break;
|
|
case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
|
|
ptp_pins[SMA2].func = PTP_PF_EXTTS;
|
|
ptp_pins[UFL2].func = PTP_PF_NONE;
|
|
break;
|
|
case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
|
|
ptp_pins[SMA2].func = PTP_PF_PEROUT;
|
|
ptp_pins[UFL2].func = PTP_PF_NONE;
|
|
break;
|
|
case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
|
|
ptp_pins[SMA2].func = PTP_PF_NONE;
|
|
ptp_pins[UFL2].func = PTP_PF_EXTTS;
|
|
break;
|
|
case ICE_SMA2_DIR_EN_E810T:
|
|
ptp_pins[SMA2].func = PTP_PF_PEROUT;
|
|
ptp_pins[UFL2].func = PTP_PF_EXTTS;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_sma_config_e810t
|
|
* @hw: pointer to the hw struct
|
|
* @ptp_pins: pointer to the ptp_pin_desc struture
|
|
*
|
|
* Set the configuration of the SMA control logic based on the configuration in
|
|
* num_pins parameter
|
|
*/
|
|
static int
|
|
ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
|
|
const struct ptp_pin_desc *ptp_pins)
|
|
{
|
|
int status;
|
|
u8 data;
|
|
|
|
/* SMA1 and UFL1 cannot be set to TX at the same time */
|
|
if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
|
|
ptp_pins[UFL1].func == PTP_PF_PEROUT)
|
|
return -EINVAL;
|
|
|
|
/* SMA2 and UFL2 cannot be set to RX at the same time */
|
|
if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
|
|
ptp_pins[UFL2].func == PTP_PF_EXTTS)
|
|
return -EINVAL;
|
|
|
|
/* Read initial pin state value */
|
|
status = ice_read_sma_ctrl_e810t(hw, &data);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Set the right sate based on the desired configuration */
|
|
data &= ~ICE_SMA1_MASK_E810T;
|
|
if (ptp_pins[SMA1].func == PTP_PF_NONE &&
|
|
ptp_pins[UFL1].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
|
|
data |= ICE_SMA1_MASK_E810T;
|
|
} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
|
|
ptp_pins[UFL1].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA1 RX");
|
|
data |= ICE_SMA1_TX_EN_E810T;
|
|
} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
|
|
ptp_pins[UFL1].func == PTP_PF_PEROUT) {
|
|
/* U.FL 1 TX will always enable SMA 1 RX */
|
|
dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
|
|
} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
|
|
ptp_pins[UFL1].func == PTP_PF_PEROUT) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
|
|
} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
|
|
ptp_pins[UFL1].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA1 TX");
|
|
data |= ICE_SMA1_DIR_EN_E810T;
|
|
}
|
|
|
|
data &= ~ICE_SMA2_MASK_E810T;
|
|
if (ptp_pins[SMA2].func == PTP_PF_NONE &&
|
|
ptp_pins[UFL2].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
|
|
data |= ICE_SMA2_MASK_E810T;
|
|
} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
|
|
ptp_pins[UFL2].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA2 RX");
|
|
data |= (ICE_SMA2_TX_EN_E810T |
|
|
ICE_SMA2_UFL2_RX_DIS_E810T);
|
|
} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
|
|
ptp_pins[UFL2].func == PTP_PF_EXTTS) {
|
|
dev_info(ice_hw_to_dev(hw), "UFL2 RX");
|
|
data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
|
|
} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
|
|
ptp_pins[UFL2].func == PTP_PF_NONE) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA2 TX");
|
|
data |= (ICE_SMA2_DIR_EN_E810T |
|
|
ICE_SMA2_UFL2_RX_DIS_E810T);
|
|
} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
|
|
ptp_pins[UFL2].func == PTP_PF_EXTTS) {
|
|
dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
|
|
data |= ICE_SMA2_DIR_EN_E810T;
|
|
}
|
|
|
|
return ice_write_sma_ctrl_e810t(hw, data);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_sma_e810t
|
|
* @info: the driver's PTP info structure
|
|
* @pin: pin index in kernel structure
|
|
* @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
|
|
*
|
|
* Set the configuration of a single SMA pin
|
|
*/
|
|
static int
|
|
ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
|
|
enum ptp_pin_function func)
|
|
{
|
|
struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
|
|
if (pin < SMA1 || func > PTP_PF_PEROUT)
|
|
return -EOPNOTSUPP;
|
|
|
|
err = ice_get_sma_config_e810t(hw, ptp_pins);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Disable the same function on the other pin sharing the channel */
|
|
if (pin == SMA1 && ptp_pins[UFL1].func == func)
|
|
ptp_pins[UFL1].func = PTP_PF_NONE;
|
|
if (pin == UFL1 && ptp_pins[SMA1].func == func)
|
|
ptp_pins[SMA1].func = PTP_PF_NONE;
|
|
|
|
if (pin == SMA2 && ptp_pins[UFL2].func == func)
|
|
ptp_pins[UFL2].func = PTP_PF_NONE;
|
|
if (pin == UFL2 && ptp_pins[SMA2].func == func)
|
|
ptp_pins[SMA2].func = PTP_PF_NONE;
|
|
|
|
/* Set up new pin function in the temp table */
|
|
ptp_pins[pin].func = func;
|
|
|
|
return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
|
|
}
|
|
|
|
/**
|
|
* ice_verify_pin_e810t
|
|
* @info: the driver's PTP info structure
|
|
* @pin: Pin index
|
|
* @func: Assigned function
|
|
* @chan: Assigned channel
|
|
*
|
|
* Verify if pin supports requested pin function. If the Check pins consistency.
|
|
* Reconfigure the SMA logic attached to the given pin to enable its
|
|
* desired functionality
|
|
*/
|
|
static int
|
|
ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
|
|
enum ptp_pin_function func, unsigned int chan)
|
|
{
|
|
/* Don't allow channel reassignment */
|
|
if (chan != ice_pin_desc_e810t[pin].chan)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Check if functions are properly assigned */
|
|
switch (func) {
|
|
case PTP_PF_NONE:
|
|
break;
|
|
case PTP_PF_EXTTS:
|
|
if (pin == UFL1)
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
case PTP_PF_PEROUT:
|
|
if (pin == UFL2 || pin == GNSS)
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
case PTP_PF_PHYSYNC:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return ice_ptp_set_sma_e810t(info, pin, func);
|
|
}
|
|
|
|
/**
|
|
* ice_set_tx_tstamp - Enable or disable Tx timestamping
|
|
* @pf: The PF pointer to search in
|
|
* @on: bool value for whether timestamps are enabled or disabled
|
|
*/
|
|
static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
|
|
{
|
|
struct ice_vsi *vsi;
|
|
u32 val;
|
|
u16 i;
|
|
|
|
vsi = ice_get_main_vsi(pf);
|
|
if (!vsi)
|
|
return;
|
|
|
|
/* Set the timestamp enable flag for all the Tx rings */
|
|
ice_for_each_txq(vsi, i) {
|
|
if (!vsi->tx_rings[i])
|
|
continue;
|
|
vsi->tx_rings[i]->ptp_tx = on;
|
|
}
|
|
|
|
/* Configure the Tx timestamp interrupt */
|
|
val = rd32(&pf->hw, PFINT_OICR_ENA);
|
|
if (on)
|
|
val |= PFINT_OICR_TSYN_TX_M;
|
|
else
|
|
val &= ~PFINT_OICR_TSYN_TX_M;
|
|
wr32(&pf->hw, PFINT_OICR_ENA, val);
|
|
|
|
pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
|
|
}
|
|
|
|
/**
|
|
* ice_set_rx_tstamp - Enable or disable Rx timestamping
|
|
* @pf: The PF pointer to search in
|
|
* @on: bool value for whether timestamps are enabled or disabled
|
|
*/
|
|
static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
|
|
{
|
|
struct ice_vsi *vsi;
|
|
u16 i;
|
|
|
|
vsi = ice_get_main_vsi(pf);
|
|
if (!vsi)
|
|
return;
|
|
|
|
/* Set the timestamp flag for all the Rx rings */
|
|
ice_for_each_rxq(vsi, i) {
|
|
if (!vsi->rx_rings[i])
|
|
continue;
|
|
vsi->rx_rings[i]->ptp_rx = on;
|
|
}
|
|
|
|
pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
|
|
HWTSTAMP_FILTER_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
|
|
* @pf: Board private structure
|
|
* @ena: bool value to enable or disable time stamp
|
|
*
|
|
* This function will configure timestamping during PTP initialization
|
|
* and deinitialization
|
|
*/
|
|
void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
|
|
{
|
|
ice_set_tx_tstamp(pf, ena);
|
|
ice_set_rx_tstamp(pf, ena);
|
|
}
|
|
|
|
/**
|
|
* ice_get_ptp_clock_index - Get the PTP clock index
|
|
* @pf: the PF pointer
|
|
*
|
|
* Determine the clock index of the PTP clock associated with this device. If
|
|
* this is the PF controlling the clock, just use the local access to the
|
|
* clock device pointer.
|
|
*
|
|
* Otherwise, read from the driver shared parameters to determine the clock
|
|
* index value.
|
|
*
|
|
* Returns: the index of the PTP clock associated with this device, or -1 if
|
|
* there is no associated clock.
|
|
*/
|
|
int ice_get_ptp_clock_index(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
enum ice_aqc_driver_params param_idx;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 tmr_idx;
|
|
u32 value;
|
|
int err;
|
|
|
|
/* Use the ptp_clock structure if we're the main PF */
|
|
if (pf->ptp.clock)
|
|
return ptp_clock_index(pf->ptp.clock);
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
|
|
if (!tmr_idx)
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
|
|
else
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
|
|
|
|
err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
|
|
if (err) {
|
|
dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
|
|
err, ice_aq_str(hw->adminq.sq_last_status));
|
|
return -1;
|
|
}
|
|
|
|
/* The PTP clock index is an integer, and will be between 0 and
|
|
* INT_MAX. The highest bit of the driver shared parameter is used to
|
|
* indicate whether or not the currently stored clock index is valid.
|
|
*/
|
|
if (!(value & PTP_SHARED_CLK_IDX_VALID))
|
|
return -1;
|
|
|
|
return value & ~PTP_SHARED_CLK_IDX_VALID;
|
|
}
|
|
|
|
/**
|
|
* ice_set_ptp_clock_index - Set the PTP clock index
|
|
* @pf: the PF pointer
|
|
*
|
|
* Set the PTP clock index for this device into the shared driver parameters,
|
|
* so that other PFs associated with this device can read it.
|
|
*
|
|
* If the PF is unable to store the clock index, it will log an error, but
|
|
* will continue operating PTP.
|
|
*/
|
|
static void ice_set_ptp_clock_index(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
enum ice_aqc_driver_params param_idx;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 tmr_idx;
|
|
u32 value;
|
|
int err;
|
|
|
|
if (!pf->ptp.clock)
|
|
return;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
|
|
if (!tmr_idx)
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
|
|
else
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
|
|
|
|
value = (u32)ptp_clock_index(pf->ptp.clock);
|
|
if (value > INT_MAX) {
|
|
dev_err(dev, "PTP Clock index is too large to store\n");
|
|
return;
|
|
}
|
|
value |= PTP_SHARED_CLK_IDX_VALID;
|
|
|
|
err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
|
|
if (err) {
|
|
dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
|
|
err, ice_aq_str(hw->adminq.sq_last_status));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_clear_ptp_clock_index - Clear the PTP clock index
|
|
* @pf: the PF pointer
|
|
*
|
|
* Clear the PTP clock index for this device. Must be called when
|
|
* unregistering the PTP clock, in order to ensure other PFs stop reporting
|
|
* a clock object that no longer exists.
|
|
*/
|
|
static void ice_clear_ptp_clock_index(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
enum ice_aqc_driver_params param_idx;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 tmr_idx;
|
|
int err;
|
|
|
|
/* Do not clear the index if we don't own the timer */
|
|
if (!hw->func_caps.ts_func_info.src_tmr_owned)
|
|
return;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
|
|
if (!tmr_idx)
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
|
|
else
|
|
param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
|
|
|
|
err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
|
|
if (err) {
|
|
dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
|
|
err, ice_aq_str(hw->adminq.sq_last_status));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_read_src_clk_reg - Read the source clock register
|
|
* @pf: Board private structure
|
|
* @sts: Optional parameter for holding a pair of system timestamps from
|
|
* the system clock. Will be ignored if NULL is given.
|
|
*/
|
|
static u64
|
|
ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 hi, lo, lo2;
|
|
u8 tmr_idx;
|
|
|
|
tmr_idx = ice_get_ptp_src_clock_index(hw);
|
|
/* Read the system timestamp pre PHC read */
|
|
ptp_read_system_prets(sts);
|
|
|
|
lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
|
|
|
|
/* Read the system timestamp post PHC read */
|
|
ptp_read_system_postts(sts);
|
|
|
|
hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
|
|
lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
|
|
|
|
if (lo2 < lo) {
|
|
/* if TIME_L rolled over read TIME_L again and update
|
|
* system timestamps
|
|
*/
|
|
ptp_read_system_prets(sts);
|
|
lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
|
|
ptp_read_system_postts(sts);
|
|
hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
|
|
}
|
|
|
|
return ((u64)hi << 32) | lo;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
|
|
* @cached_phc_time: recently cached copy of PHC time
|
|
* @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
|
|
*
|
|
* Hardware captures timestamps which contain only 32 bits of nominal
|
|
* nanoseconds, as opposed to the 64bit timestamps that the stack expects.
|
|
* Note that the captured timestamp values may be 40 bits, but the lower
|
|
* 8 bits are sub-nanoseconds and generally discarded.
|
|
*
|
|
* Extend the 32bit nanosecond timestamp using the following algorithm and
|
|
* assumptions:
|
|
*
|
|
* 1) have a recently cached copy of the PHC time
|
|
* 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
|
|
* seconds) before or after the PHC time was captured.
|
|
* 3) calculate the delta between the cached time and the timestamp
|
|
* 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
|
|
* captured after the PHC time. In this case, the full timestamp is just
|
|
* the cached PHC time plus the delta.
|
|
* 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
|
|
* timestamp was captured *before* the PHC time, i.e. because the PHC
|
|
* cache was updated after the timestamp was captured by hardware. In this
|
|
* case, the full timestamp is the cached time minus the inverse delta.
|
|
*
|
|
* This algorithm works even if the PHC time was updated after a Tx timestamp
|
|
* was requested, but before the Tx timestamp event was reported from
|
|
* hardware.
|
|
*
|
|
* This calculation primarily relies on keeping the cached PHC time up to
|
|
* date. If the timestamp was captured more than 2^31 nanoseconds after the
|
|
* PHC time, it is possible that the lower 32bits of PHC time have
|
|
* overflowed more than once, and we might generate an incorrect timestamp.
|
|
*
|
|
* This is prevented by (a) periodically updating the cached PHC time once
|
|
* a second, and (b) discarding any Tx timestamp packet if it has waited for
|
|
* a timestamp for more than one second.
|
|
*/
|
|
static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
|
|
{
|
|
u32 delta, phc_time_lo;
|
|
u64 ns;
|
|
|
|
/* Extract the lower 32 bits of the PHC time */
|
|
phc_time_lo = (u32)cached_phc_time;
|
|
|
|
/* Calculate the delta between the lower 32bits of the cached PHC
|
|
* time and the in_tstamp value
|
|
*/
|
|
delta = (in_tstamp - phc_time_lo);
|
|
|
|
/* Do not assume that the in_tstamp is always more recent than the
|
|
* cached PHC time. If the delta is large, it indicates that the
|
|
* in_tstamp was taken in the past, and should be converted
|
|
* forward.
|
|
*/
|
|
if (delta > (U32_MAX / 2)) {
|
|
/* reverse the delta calculation here */
|
|
delta = (phc_time_lo - in_tstamp);
|
|
ns = cached_phc_time - delta;
|
|
} else {
|
|
ns = cached_phc_time + delta;
|
|
}
|
|
|
|
return ns;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
|
|
* @pf: Board private structure
|
|
* @in_tstamp: Ingress/egress 40b timestamp value
|
|
*
|
|
* The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
|
|
* nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
|
|
*
|
|
* *--------------------------------------------------------------*
|
|
* | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
|
|
* *--------------------------------------------------------------*
|
|
*
|
|
* The low bit is an indicator of whether the timestamp is valid. The next
|
|
* 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
|
|
* and the remaining 32 bits are the lower 32 bits of the PHC timer.
|
|
*
|
|
* It is assumed that the caller verifies the timestamp is valid prior to
|
|
* calling this function.
|
|
*
|
|
* Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
|
|
* time stored in the device private PTP structure as the basis for timestamp
|
|
* extension.
|
|
*
|
|
* See ice_ptp_extend_32b_ts for a detailed explanation of the extension
|
|
* algorithm.
|
|
*/
|
|
static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
|
|
{
|
|
const u64 mask = GENMASK_ULL(31, 0);
|
|
unsigned long discard_time;
|
|
|
|
/* Discard the hardware timestamp if the cached PHC time is too old */
|
|
discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
|
|
if (time_is_before_jiffies(discard_time)) {
|
|
pf->ptp.tx_hwtstamp_discarded++;
|
|
return 0;
|
|
}
|
|
|
|
return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
|
|
(in_tstamp >> 8) & mask);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_tx_tstamp - Process Tx timestamps for a port
|
|
* @tx: the PTP Tx timestamp tracker
|
|
*
|
|
* Process timestamps captured by the PHY associated with this port. To do
|
|
* this, loop over each index with a waiting skb.
|
|
*
|
|
* If a given index has a valid timestamp, perform the following steps:
|
|
*
|
|
* 1) copy the timestamp out of the PHY register
|
|
* 4) clear the timestamp valid bit in the PHY register
|
|
* 5) unlock the index by clearing the associated in_use bit.
|
|
* 2) extend the 40b timestamp value to get a 64bit timestamp
|
|
* 3) send that timestamp to the stack
|
|
*
|
|
* Returns true if all timestamps were handled, and false if any slots remain
|
|
* without a timestamp.
|
|
*
|
|
* After looping, if we still have waiting SKBs, return false. This may cause
|
|
* us effectively poll even when not strictly necessary. We do this because
|
|
* it's possible a new timestamp was requested around the same time as the
|
|
* interrupt. In some cases hardware might not interrupt us again when the
|
|
* timestamp is captured.
|
|
*
|
|
* Note that we only take the tracking lock when clearing the bit and when
|
|
* checking if we need to re-queue this task. The only place where bits can be
|
|
* set is the hard xmit routine where an SKB has a request flag set. The only
|
|
* places where we clear bits are this work function, or the periodic cleanup
|
|
* thread. If the cleanup thread clears a bit we're processing we catch it
|
|
* when we lock to clear the bit and then grab the SKB pointer. If a Tx thread
|
|
* starts a new timestamp, we might not begin processing it right away but we
|
|
* will notice it at the end when we re-queue the task. If a Tx thread starts
|
|
* a new timestamp just after this function exits without re-queuing,
|
|
* the interrupt when the timestamp finishes should trigger. Avoiding holding
|
|
* the lock for the entire function is important in order to ensure that Tx
|
|
* threads do not get blocked while waiting for the lock.
|
|
*/
|
|
static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
|
|
{
|
|
struct ice_ptp_port *ptp_port;
|
|
bool more_timestamps;
|
|
struct ice_pf *pf;
|
|
u8 idx;
|
|
|
|
if (!tx->init)
|
|
return true;
|
|
|
|
ptp_port = container_of(tx, struct ice_ptp_port, tx);
|
|
pf = ptp_port_to_pf(ptp_port);
|
|
|
|
for_each_set_bit(idx, tx->in_use, tx->len) {
|
|
struct skb_shared_hwtstamps shhwtstamps = {};
|
|
u8 phy_idx = idx + tx->quad_offset;
|
|
u64 raw_tstamp, tstamp;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
|
|
|
|
err = ice_read_phy_tstamp(&pf->hw, tx->quad, phy_idx,
|
|
&raw_tstamp);
|
|
if (err)
|
|
continue;
|
|
|
|
ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
|
|
|
|
/* Check if the timestamp is invalid or stale */
|
|
if (!(raw_tstamp & ICE_PTP_TS_VALID) ||
|
|
raw_tstamp == tx->tstamps[idx].cached_tstamp)
|
|
continue;
|
|
|
|
/* The timestamp is valid, so we'll go ahead and clear this
|
|
* index and then send the timestamp up to the stack.
|
|
*/
|
|
spin_lock(&tx->lock);
|
|
tx->tstamps[idx].cached_tstamp = raw_tstamp;
|
|
clear_bit(idx, tx->in_use);
|
|
skb = tx->tstamps[idx].skb;
|
|
tx->tstamps[idx].skb = NULL;
|
|
spin_unlock(&tx->lock);
|
|
|
|
/* it's (unlikely but) possible we raced with the cleanup
|
|
* thread for discarding old timestamp requests.
|
|
*/
|
|
if (!skb)
|
|
continue;
|
|
|
|
/* Extend the timestamp using cached PHC time */
|
|
tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
|
|
if (tstamp) {
|
|
shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
|
|
ice_trace(tx_tstamp_complete, skb, idx);
|
|
}
|
|
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/* Check if we still have work to do. If so, re-queue this task to
|
|
* poll for remaining timestamps.
|
|
*/
|
|
spin_lock(&tx->lock);
|
|
more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
|
|
spin_unlock(&tx->lock);
|
|
|
|
return !more_timestamps;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
|
|
* @tx: Tx tracking structure to initialize
|
|
*
|
|
* Assumes that the length has already been initialized. Do not call directly,
|
|
* use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead.
|
|
*/
|
|
static int
|
|
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
|
|
{
|
|
tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL);
|
|
if (!tx->tstamps)
|
|
return -ENOMEM;
|
|
|
|
tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
|
|
if (!tx->in_use) {
|
|
kfree(tx->tstamps);
|
|
tx->tstamps = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&tx->lock);
|
|
|
|
tx->init = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
|
|
* @pf: Board private structure
|
|
* @tx: the tracker to flush
|
|
*/
|
|
static void
|
|
ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
|
|
{
|
|
u8 idx;
|
|
|
|
for (idx = 0; idx < tx->len; idx++) {
|
|
u8 phy_idx = idx + tx->quad_offset;
|
|
|
|
spin_lock(&tx->lock);
|
|
if (tx->tstamps[idx].skb) {
|
|
dev_kfree_skb_any(tx->tstamps[idx].skb);
|
|
tx->tstamps[idx].skb = NULL;
|
|
pf->ptp.tx_hwtstamp_flushed++;
|
|
}
|
|
clear_bit(idx, tx->in_use);
|
|
spin_unlock(&tx->lock);
|
|
|
|
/* Clear any potential residual timestamp in the PHY block */
|
|
if (!pf->hw.reset_ongoing)
|
|
ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
|
|
* @pf: Board private structure
|
|
* @tx: Tx tracking structure to release
|
|
*
|
|
* Free memory associated with the Tx timestamp tracker.
|
|
*/
|
|
static void
|
|
ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
|
|
{
|
|
tx->init = 0;
|
|
|
|
/* wait for potentially outstanding interrupt to complete */
|
|
synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
|
|
|
|
ice_ptp_flush_tx_tracker(pf, tx);
|
|
|
|
kfree(tx->tstamps);
|
|
tx->tstamps = NULL;
|
|
|
|
bitmap_free(tx->in_use);
|
|
tx->in_use = NULL;
|
|
|
|
tx->len = 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
|
|
* @pf: Board private structure
|
|
* @tx: the Tx tracking structure to initialize
|
|
* @port: the port this structure tracks
|
|
*
|
|
* Initialize the Tx timestamp tracker for this port. For generic MAC devices,
|
|
* the timestamp block is shared for all ports in the same quad. To avoid
|
|
* ports using the same timestamp index, logically break the block of
|
|
* registers into chunks based on the port number.
|
|
*/
|
|
static int
|
|
ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
|
|
{
|
|
tx->quad = port / ICE_PORTS_PER_QUAD;
|
|
tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT;
|
|
tx->len = INDEX_PER_PORT;
|
|
|
|
return ice_ptp_alloc_tx_tracker(tx);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
|
|
* @pf: Board private structure
|
|
* @tx: the Tx tracking structure to initialize
|
|
*
|
|
* Initialize the Tx timestamp tracker for this PF. For E810 devices, each
|
|
* port has its own block of timestamps, independent of the other ports.
|
|
*/
|
|
static int
|
|
ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
|
|
{
|
|
tx->quad = pf->hw.port_info->lport;
|
|
tx->quad_offset = 0;
|
|
tx->len = INDEX_PER_QUAD;
|
|
|
|
return ice_ptp_alloc_tx_tracker(tx);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped
|
|
* @pf: pointer to the PF struct
|
|
* @tx: PTP Tx tracker to clean up
|
|
*
|
|
* Loop through the Tx timestamp requests and see if any of them have been
|
|
* waiting for a long time. Discard any SKBs that have been waiting for more
|
|
* than 2 seconds. This is long enough to be reasonably sure that the
|
|
* timestamp will never be captured. This might happen if the packet gets
|
|
* discarded before it reaches the PHY timestamping block.
|
|
*/
|
|
static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 idx;
|
|
|
|
if (!tx->init)
|
|
return;
|
|
|
|
for_each_set_bit(idx, tx->in_use, tx->len) {
|
|
struct sk_buff *skb;
|
|
u64 raw_tstamp;
|
|
|
|
/* Check if this SKB has been waiting for too long */
|
|
if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ))
|
|
continue;
|
|
|
|
/* Read tstamp to be able to use this register again */
|
|
ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset,
|
|
&raw_tstamp);
|
|
|
|
spin_lock(&tx->lock);
|
|
skb = tx->tstamps[idx].skb;
|
|
tx->tstamps[idx].skb = NULL;
|
|
clear_bit(idx, tx->in_use);
|
|
spin_unlock(&tx->lock);
|
|
|
|
/* Count the number of Tx timestamps which have timed out */
|
|
pf->ptp.tx_hwtstamp_timeouts++;
|
|
|
|
/* Free the SKB after we've cleared the bit */
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_update_cached_phctime - Update the cached PHC time values
|
|
* @pf: Board specific private structure
|
|
*
|
|
* This function updates the system time values which are cached in the PF
|
|
* structure and the Rx rings.
|
|
*
|
|
* This function must be called periodically to ensure that the cached value
|
|
* is never more than 2 seconds old.
|
|
*
|
|
* Note that the cached copy in the PF PTP structure is always updated, even
|
|
* if we can't update the copy in the Rx rings.
|
|
*
|
|
* Return:
|
|
* * 0 - OK, successfully updated
|
|
* * -EAGAIN - PF was busy, need to reschedule the update
|
|
*/
|
|
static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
unsigned long update_before;
|
|
u64 systime;
|
|
int i;
|
|
|
|
update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
|
|
if (pf->ptp.cached_phc_time &&
|
|
time_is_before_jiffies(update_before)) {
|
|
unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
|
|
|
|
dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
|
|
jiffies_to_msecs(time_taken));
|
|
pf->ptp.late_cached_phc_updates++;
|
|
}
|
|
|
|
/* Read the current PHC time */
|
|
systime = ice_ptp_read_src_clk_reg(pf, NULL);
|
|
|
|
/* Update the cached PHC time stored in the PF structure */
|
|
WRITE_ONCE(pf->ptp.cached_phc_time, systime);
|
|
WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
|
|
|
|
if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
|
|
return -EAGAIN;
|
|
|
|
ice_for_each_vsi(pf, i) {
|
|
struct ice_vsi *vsi = pf->vsi[i];
|
|
int j;
|
|
|
|
if (!vsi)
|
|
continue;
|
|
|
|
if (vsi->type != ICE_VSI_PF)
|
|
continue;
|
|
|
|
ice_for_each_rxq(vsi, j) {
|
|
if (!vsi->rx_rings[j])
|
|
continue;
|
|
WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
|
|
}
|
|
}
|
|
clear_bit(ICE_CFG_BUSY, pf->state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
|
|
* @pf: Board specific private structure
|
|
*
|
|
* This function must be called when the cached PHC time is no longer valid,
|
|
* such as after a time adjustment. It discards any outstanding Tx timestamps,
|
|
* and updates the cached PHC time for both the PF and Rx rings. If updating
|
|
* the PHC time cannot be done immediately, a warning message is logged and
|
|
* the work item is scheduled.
|
|
*
|
|
* These steps are required in order to ensure that we do not accidentally
|
|
* report a timestamp extended by the wrong PHC cached copy. Note that we
|
|
* do not directly update the cached timestamp here because it is possible
|
|
* this might produce an error when ICE_CFG_BUSY is set. If this occurred, we
|
|
* would have to try again. During that time window, timestamps might be
|
|
* requested and returned with an invalid extension. Thus, on failure to
|
|
* immediately update the cached PHC time we would need to zero the value
|
|
* anyways. For this reason, we just zero the value immediately and queue the
|
|
* update work item.
|
|
*/
|
|
static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
/* Update the cached PHC time immediately if possible, otherwise
|
|
* schedule the work item to execute soon.
|
|
*/
|
|
err = ice_ptp_update_cached_phctime(pf);
|
|
if (err) {
|
|
/* If another thread is updating the Rx rings, we won't
|
|
* properly reset them here. This could lead to reporting of
|
|
* invalid timestamps, but there isn't much we can do.
|
|
*/
|
|
dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
|
|
__func__);
|
|
|
|
/* Queue the work item to update the Rx rings when possible */
|
|
kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
|
|
msecs_to_jiffies(10));
|
|
}
|
|
|
|
/* Flush any outstanding Tx timestamps */
|
|
ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_read_time - Read the time from the device
|
|
* @pf: Board private structure
|
|
* @ts: timespec structure to hold the current time value
|
|
* @sts: Optional parameter for holding a pair of system timestamps from
|
|
* the system clock. Will be ignored if NULL is given.
|
|
*
|
|
* This function reads the source clock registers and stores them in a timespec.
|
|
* However, since the registers are 64 bits of nanoseconds, we must convert the
|
|
* result to a timespec before we can return.
|
|
*/
|
|
static void
|
|
ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
|
|
|
|
*ts = ns_to_timespec64(time_ns);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_write_init - Set PHC time to provided value
|
|
* @pf: Board private structure
|
|
* @ts: timespec structure that holds the new time value
|
|
*
|
|
* Set the PHC time to the specified time provided in the timespec.
|
|
*/
|
|
static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
|
|
{
|
|
u64 ns = timespec64_to_ns(ts);
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
return ice_ptp_init_time(hw, ns);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_write_adj - Adjust PHC clock time atomically
|
|
* @pf: Board private structure
|
|
* @adj: Adjustment in nanoseconds
|
|
*
|
|
* Perform an atomic adjustment of the PHC time by the specified number of
|
|
* nanoseconds.
|
|
*/
|
|
static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
return ice_ptp_adj_clock(hw, adj);
|
|
}
|
|
|
|
/**
|
|
* ice_base_incval - Get base timer increment value
|
|
* @pf: Board private structure
|
|
*
|
|
* Look up the base timer increment value for this device. The base increment
|
|
* value is used to define the nominal clock tick rate. This increment value
|
|
* is programmed during device initialization. It is also used as the basis
|
|
* for calculating adjustments using scaled_ppm.
|
|
*/
|
|
static u64 ice_base_incval(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
u64 incval;
|
|
|
|
if (ice_is_e810(hw))
|
|
incval = ICE_PTP_NOMINAL_INCVAL_E810;
|
|
else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
|
|
incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
|
|
else
|
|
incval = UNKNOWN_INCVAL_E822;
|
|
|
|
dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
|
|
incval);
|
|
|
|
return incval;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad
|
|
* @pf: The PF private data structure
|
|
* @quad: The quad (0-4)
|
|
*/
|
|
static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M);
|
|
ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
|
|
* @port: PTP port for which Tx FIFO is checked
|
|
*/
|
|
static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
|
|
{
|
|
int quad = port->port_num / ICE_PORTS_PER_QUAD;
|
|
int offs = port->port_num % ICE_PORTS_PER_QUAD;
|
|
struct ice_pf *pf;
|
|
struct ice_hw *hw;
|
|
u32 val, phy_sts;
|
|
int err;
|
|
|
|
pf = ptp_port_to_pf(port);
|
|
hw = &pf->hw;
|
|
|
|
if (port->tx_fifo_busy_cnt == FIFO_OK)
|
|
return 0;
|
|
|
|
/* need to read FIFO state */
|
|
if (offs == 0 || offs == 1)
|
|
err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
|
|
&val);
|
|
else
|
|
err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
|
|
&val);
|
|
|
|
if (err) {
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
|
|
port->port_num, err);
|
|
return err;
|
|
}
|
|
|
|
if (offs & 0x1)
|
|
phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
|
|
else
|
|
phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
|
|
|
|
if (phy_sts & FIFO_EMPTY) {
|
|
port->tx_fifo_busy_cnt = FIFO_OK;
|
|
return 0;
|
|
}
|
|
|
|
port->tx_fifo_busy_cnt++;
|
|
|
|
dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
|
|
port->tx_fifo_busy_cnt, port->port_num);
|
|
|
|
if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
|
|
dev_dbg(ice_pf_to_dev(pf),
|
|
"Port %d Tx FIFO still not empty; resetting quad %d\n",
|
|
port->port_num, quad);
|
|
ice_ptp_reset_ts_memory_quad(pf, quad);
|
|
port->tx_fifo_busy_cnt = FIFO_OK;
|
|
return 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid
|
|
* @port: the PTP port to check
|
|
*
|
|
* Checks whether the Tx offset for the PHY associated with this port is
|
|
* valid. Returns 0 if the offset is valid, and a non-zero error code if it is
|
|
* not.
|
|
*/
|
|
static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port)
|
|
{
|
|
struct ice_pf *pf = ptp_port_to_pf(port);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 val;
|
|
int err;
|
|
|
|
err = ice_ptp_check_tx_fifo(port);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS,
|
|
&val);
|
|
if (err) {
|
|
dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n",
|
|
port->port_num, err);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!(val & P_REG_TX_OV_STATUS_OV_M))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid
|
|
* @port: the PTP port to check
|
|
*
|
|
* Checks whether the Rx offset for the PHY associated with this port is
|
|
* valid. Returns 0 if the offset is valid, and a non-zero error code if it is
|
|
* not.
|
|
*/
|
|
static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port)
|
|
{
|
|
struct ice_pf *pf = ptp_port_to_pf(port);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
u32 val;
|
|
|
|
err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS,
|
|
&val);
|
|
if (err) {
|
|
dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n",
|
|
port->port_num, err);
|
|
return err;
|
|
}
|
|
|
|
if (!(val & P_REG_RX_OV_STATUS_OV_M))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_check_offset_valid - Check port offset valid bit
|
|
* @port: Port for which offset valid bit is checked
|
|
*
|
|
* Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the
|
|
* offset is not ready.
|
|
*/
|
|
static int ice_ptp_check_offset_valid(struct ice_ptp_port *port)
|
|
{
|
|
int tx_err, rx_err;
|
|
|
|
/* always check both Tx and Rx offset validity */
|
|
tx_err = ice_ptp_check_tx_offset_valid(port);
|
|
rx_err = ice_ptp_check_rx_offset_valid(port);
|
|
|
|
if (tx_err || rx_err)
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets
|
|
* @work: Pointer to the kthread_work structure for this task
|
|
*
|
|
* Check whether both the Tx and Rx offsets are valid for enabling the vernier
|
|
* calibration.
|
|
*
|
|
* Once we have valid offsets from hardware, update the total Tx and Rx
|
|
* offsets, and exit bypass mode. This enables more precise timestamps using
|
|
* the extra data measured during the vernier calibration process.
|
|
*/
|
|
static void ice_ptp_wait_for_offset_valid(struct kthread_work *work)
|
|
{
|
|
struct ice_ptp_port *port;
|
|
int err;
|
|
struct device *dev;
|
|
struct ice_pf *pf;
|
|
struct ice_hw *hw;
|
|
|
|
port = container_of(work, struct ice_ptp_port, ov_work.work);
|
|
pf = ptp_port_to_pf(port);
|
|
hw = &pf->hw;
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
if (ice_is_reset_in_progress(pf->state))
|
|
return;
|
|
|
|
if (ice_ptp_check_offset_valid(port)) {
|
|
/* Offsets not ready yet, try again later */
|
|
kthread_queue_delayed_work(pf->ptp.kworker,
|
|
&port->ov_work,
|
|
msecs_to_jiffies(100));
|
|
return;
|
|
}
|
|
|
|
/* Offsets are valid, so it is safe to exit bypass mode */
|
|
err = ice_phy_exit_bypass_e822(hw, port->port_num);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n",
|
|
port->port_num, err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_port_phy_stop - Stop timestamping for a PHY port
|
|
* @ptp_port: PTP port to stop
|
|
*/
|
|
static int
|
|
ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
|
|
{
|
|
struct ice_pf *pf = ptp_port_to_pf(ptp_port);
|
|
u8 port = ptp_port->port_num;
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
|
|
if (ice_is_e810(hw))
|
|
return 0;
|
|
|
|
mutex_lock(&ptp_port->ps_lock);
|
|
|
|
kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
|
|
|
|
err = ice_stop_phy_timer_e822(hw, port, true);
|
|
if (err)
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
|
|
port, err);
|
|
|
|
mutex_unlock(&ptp_port->ps_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
|
|
* @ptp_port: PTP port for which the PHY start is set
|
|
*
|
|
* Start the PHY timestamping block, and initiate Vernier timestamping
|
|
* calibration. If timestamping cannot be calibrated (such as if link is down)
|
|
* then disable the timestamping block instead.
|
|
*/
|
|
static int
|
|
ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
|
|
{
|
|
struct ice_pf *pf = ptp_port_to_pf(ptp_port);
|
|
u8 port = ptp_port->port_num;
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
|
|
if (ice_is_e810(hw))
|
|
return 0;
|
|
|
|
if (!ptp_port->link_up)
|
|
return ice_ptp_port_phy_stop(ptp_port);
|
|
|
|
mutex_lock(&ptp_port->ps_lock);
|
|
|
|
kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
|
|
|
|
/* temporarily disable Tx timestamps while calibrating PHY offset */
|
|
ptp_port->tx.calibrating = true;
|
|
ptp_port->tx_fifo_busy_cnt = 0;
|
|
|
|
/* Start the PHY timer in bypass mode */
|
|
err = ice_start_phy_timer_e822(hw, port, true);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
/* Enable Tx timestamps right away */
|
|
ptp_port->tx.calibrating = false;
|
|
|
|
kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
|
|
|
|
out_unlock:
|
|
if (err)
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
|
|
port, err);
|
|
|
|
mutex_unlock(&ptp_port->ps_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_link_change - Set or clear port registers for timestamping
|
|
* @pf: Board private structure
|
|
* @port: Port for which the PHY start is set
|
|
* @linkup: Link is up or down
|
|
*/
|
|
int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
|
|
{
|
|
struct ice_ptp_port *ptp_port;
|
|
|
|
if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
|
|
return 0;
|
|
|
|
if (port >= ICE_NUM_EXTERNAL_PORTS)
|
|
return -EINVAL;
|
|
|
|
ptp_port = &pf->ptp.port;
|
|
if (ptp_port->port_num != port)
|
|
return -EINVAL;
|
|
|
|
/* Update cached link err for this port immediately */
|
|
ptp_port->link_up = linkup;
|
|
|
|
if (!test_bit(ICE_FLAG_PTP, pf->flags))
|
|
/* PTP is not setup */
|
|
return -EAGAIN;
|
|
|
|
return ice_ptp_port_phy_restart(ptp_port);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_reset_ts_memory - Reset timestamp memory for all quads
|
|
* @pf: The PF private data structure
|
|
*/
|
|
static void ice_ptp_reset_ts_memory(struct ice_pf *pf)
|
|
{
|
|
int quad;
|
|
|
|
quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD;
|
|
ice_ptp_reset_ts_memory_quad(pf, quad);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
|
|
* @pf: PF private structure
|
|
* @ena: bool value to enable or disable interrupt
|
|
* @threshold: Minimum number of packets at which intr is triggered
|
|
*
|
|
* Utility function to enable or disable Tx timestamp interrupt and threshold
|
|
*/
|
|
static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err = 0;
|
|
int quad;
|
|
u32 val;
|
|
|
|
ice_ptp_reset_ts_memory(pf);
|
|
|
|
for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
|
|
err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
|
|
&val);
|
|
if (err)
|
|
break;
|
|
|
|
if (ena) {
|
|
val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
|
|
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
|
|
val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
|
|
Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
|
|
} else {
|
|
val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
|
|
}
|
|
|
|
err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
|
|
val);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
if (err)
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
|
|
* @pf: Board private structure
|
|
*/
|
|
static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
|
|
{
|
|
ice_ptp_port_phy_restart(&pf->ptp.port);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_adjfine - Adjust clock increment rate
|
|
* @info: the driver's PTP info structure
|
|
* @scaled_ppm: Parts per million with 16-bit fractional field
|
|
*
|
|
* Adjust the frequency of the clock by the indicated scaled ppm from the
|
|
* base frequency.
|
|
*/
|
|
static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct ice_hw *hw = &pf->hw;
|
|
u64 incval, diff;
|
|
int neg_adj = 0;
|
|
int err;
|
|
|
|
incval = ice_base_incval(pf);
|
|
|
|
if (scaled_ppm < 0) {
|
|
neg_adj = 1;
|
|
scaled_ppm = -scaled_ppm;
|
|
}
|
|
|
|
diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm,
|
|
1000000ULL << 16);
|
|
if (neg_adj)
|
|
incval -= diff;
|
|
else
|
|
incval += diff;
|
|
|
|
err = ice_ptp_write_incval_locked(hw, incval);
|
|
if (err) {
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
|
|
err);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_extts_event - Process PTP external clock event
|
|
* @pf: Board private structure
|
|
*/
|
|
void ice_ptp_extts_event(struct ice_pf *pf)
|
|
{
|
|
struct ptp_clock_event event;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 chan, tmr_idx;
|
|
u32 hi, lo;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
/* Event time is captured by one of the two matched registers
|
|
* GLTSYN_EVNT_L: 32 LSB of sampled time event
|
|
* GLTSYN_EVNT_H: 32 MSB of sampled time event
|
|
* Event is defined in GLTSYN_EVNT_0 register
|
|
*/
|
|
for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
|
|
/* Check if channel is enabled */
|
|
if (pf->ptp.ext_ts_irq & (1 << chan)) {
|
|
lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
|
|
hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
|
|
event.timestamp = (((u64)hi) << 32) | lo;
|
|
event.type = PTP_CLOCK_EXTTS;
|
|
event.index = chan;
|
|
|
|
/* Fire event */
|
|
ptp_clock_event(pf->ptp.clock, &event);
|
|
pf->ptp.ext_ts_irq &= ~(1 << chan);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_cfg_extts - Configure EXTTS pin and channel
|
|
* @pf: Board private structure
|
|
* @ena: true to enable; false to disable
|
|
* @chan: GPIO channel (0-3)
|
|
* @gpio_pin: GPIO pin
|
|
* @extts_flags: request flags from the ptp_extts_request.flags
|
|
*/
|
|
static int
|
|
ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
|
|
unsigned int extts_flags)
|
|
{
|
|
u32 func, aux_reg, gpio_reg, irq_reg;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u8 tmr_idx;
|
|
|
|
if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
|
|
return -EINVAL;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
irq_reg = rd32(hw, PFINT_OICR_ENA);
|
|
|
|
if (ena) {
|
|
/* Enable the interrupt */
|
|
irq_reg |= PFINT_OICR_TSYN_EVNT_M;
|
|
aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
|
|
|
|
#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
|
|
#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
|
|
|
|
/* set event level to requested edge */
|
|
if (extts_flags & PTP_FALLING_EDGE)
|
|
aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
|
|
if (extts_flags & PTP_RISING_EDGE)
|
|
aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
|
|
|
|
/* Write GPIO CTL reg.
|
|
* 0x1 is input sampled by EVENT register(channel)
|
|
* + num_in_channels * tmr_idx
|
|
*/
|
|
func = 1 + chan + (tmr_idx * 3);
|
|
gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
|
|
GLGEN_GPIO_CTL_PIN_FUNC_M);
|
|
pf->ptp.ext_ts_chan |= (1 << chan);
|
|
} else {
|
|
/* clear the values we set to reset defaults */
|
|
aux_reg = 0;
|
|
gpio_reg = 0;
|
|
pf->ptp.ext_ts_chan &= ~(1 << chan);
|
|
if (!pf->ptp.ext_ts_chan)
|
|
irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
|
|
}
|
|
|
|
wr32(hw, PFINT_OICR_ENA, irq_reg);
|
|
wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
|
|
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_cfg_clkout - Configure clock to generate periodic wave
|
|
* @pf: Board private structure
|
|
* @chan: GPIO channel (0-3)
|
|
* @config: desired periodic clk configuration. NULL will disable channel
|
|
* @store: If set to true the values will be stored
|
|
*
|
|
* Configure the internal clock generator modules to generate the clock wave of
|
|
* specified period.
|
|
*/
|
|
static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
|
|
struct ice_perout_channel *config, bool store)
|
|
{
|
|
u64 current_time, period, start_time, phase;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 func, val, gpio_pin;
|
|
u8 tmr_idx;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
|
|
|
|
/* 0. Reset mode & out_en in AUX_OUT */
|
|
wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
|
|
|
|
/* If we're disabling the output, clear out CLKO and TGT and keep
|
|
* output level low
|
|
*/
|
|
if (!config || !config->ena) {
|
|
wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
|
|
wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
|
|
wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
|
|
|
|
val = GLGEN_GPIO_CTL_PIN_DIR_M;
|
|
gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
|
|
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
|
|
|
|
/* Store the value if requested */
|
|
if (store)
|
|
memset(&pf->ptp.perout_channels[chan], 0,
|
|
sizeof(struct ice_perout_channel));
|
|
|
|
return 0;
|
|
}
|
|
period = config->period;
|
|
start_time = config->start_time;
|
|
div64_u64_rem(start_time, period, &phase);
|
|
gpio_pin = config->gpio_pin;
|
|
|
|
/* 1. Write clkout with half of required period value */
|
|
if (period & 0x1) {
|
|
dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
|
|
goto err;
|
|
}
|
|
|
|
period >>= 1;
|
|
|
|
/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
|
|
*/
|
|
#define MIN_PULSE 3
|
|
if (period <= MIN_PULSE || period > U32_MAX) {
|
|
dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
|
|
MIN_PULSE * 2);
|
|
goto err;
|
|
}
|
|
|
|
wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
|
|
|
|
/* Allow time for programming before start_time is hit */
|
|
current_time = ice_ptp_read_src_clk_reg(pf, NULL);
|
|
|
|
/* if start time is in the past start the timer at the nearest second
|
|
* maintaining phase
|
|
*/
|
|
if (start_time < current_time)
|
|
start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
|
|
NSEC_PER_SEC) * NSEC_PER_SEC + phase;
|
|
|
|
if (ice_is_e810(hw))
|
|
start_time -= E810_OUT_PROP_DELAY_NS;
|
|
else
|
|
start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
|
|
|
|
/* 2. Write TARGET time */
|
|
wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
|
|
wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
|
|
|
|
/* 3. Write AUX_OUT register */
|
|
val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
|
|
wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
|
|
|
|
/* 4. write GPIO CTL reg */
|
|
func = 8 + chan + (tmr_idx * 4);
|
|
val = GLGEN_GPIO_CTL_PIN_DIR_M |
|
|
((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
|
|
wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
|
|
|
|
/* Store the value if requested */
|
|
if (store) {
|
|
memcpy(&pf->ptp.perout_channels[chan], config,
|
|
sizeof(struct ice_perout_channel));
|
|
pf->ptp.perout_channels[chan].start_time = phase;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_disable_all_clkout - Disable all currently configured outputs
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Disable all currently configured clock outputs. This is necessary before
|
|
* certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
|
|
* re-enable the clocks again.
|
|
*/
|
|
static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
|
|
{
|
|
uint i;
|
|
|
|
for (i = 0; i < pf->ptp.info.n_per_out; i++)
|
|
if (pf->ptp.perout_channels[i].ena)
|
|
ice_ptp_cfg_clkout(pf, i, NULL, false);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Enable all currently configured clock outputs. Use this after
|
|
* ice_ptp_disable_all_clkout to reconfigure the output signals according to
|
|
* their configuration.
|
|
*/
|
|
static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
|
|
{
|
|
uint i;
|
|
|
|
for (i = 0; i < pf->ptp.info.n_per_out; i++)
|
|
if (pf->ptp.perout_channels[i].ena)
|
|
ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
|
|
* @info: the driver's PTP info structure
|
|
* @rq: The requested feature to change
|
|
* @on: Enable/disable flag
|
|
*/
|
|
static int
|
|
ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct ice_perout_channel clk_cfg = {0};
|
|
bool sma_pres = false;
|
|
unsigned int chan;
|
|
u32 gpio_pin;
|
|
int err;
|
|
|
|
if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
|
|
sma_pres = true;
|
|
|
|
switch (rq->type) {
|
|
case PTP_CLK_REQ_PEROUT:
|
|
chan = rq->perout.index;
|
|
if (sma_pres) {
|
|
if (chan == ice_pin_desc_e810t[SMA1].chan)
|
|
clk_cfg.gpio_pin = GPIO_20;
|
|
else if (chan == ice_pin_desc_e810t[SMA2].chan)
|
|
clk_cfg.gpio_pin = GPIO_22;
|
|
else
|
|
return -1;
|
|
} else if (ice_is_e810t(&pf->hw)) {
|
|
if (chan == 0)
|
|
clk_cfg.gpio_pin = GPIO_20;
|
|
else
|
|
clk_cfg.gpio_pin = GPIO_22;
|
|
} else if (chan == PPS_CLK_GEN_CHAN) {
|
|
clk_cfg.gpio_pin = PPS_PIN_INDEX;
|
|
} else {
|
|
clk_cfg.gpio_pin = chan;
|
|
}
|
|
|
|
clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
|
|
rq->perout.period.nsec);
|
|
clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
|
|
rq->perout.start.nsec);
|
|
clk_cfg.ena = !!on;
|
|
|
|
err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
|
|
break;
|
|
case PTP_CLK_REQ_EXTTS:
|
|
chan = rq->extts.index;
|
|
if (sma_pres) {
|
|
if (chan < ice_pin_desc_e810t[SMA2].chan)
|
|
gpio_pin = GPIO_21;
|
|
else
|
|
gpio_pin = GPIO_23;
|
|
} else if (ice_is_e810t(&pf->hw)) {
|
|
if (chan == 0)
|
|
gpio_pin = GPIO_21;
|
|
else
|
|
gpio_pin = GPIO_23;
|
|
} else {
|
|
gpio_pin = chan;
|
|
}
|
|
|
|
err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
|
|
rq->extts.flags);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_gettimex64 - Get the time of the clock
|
|
* @info: the driver's PTP info structure
|
|
* @ts: timespec64 structure to hold the current time value
|
|
* @sts: Optional parameter for holding a pair of system timestamps from
|
|
* the system clock. Will be ignored if NULL is given.
|
|
*
|
|
* Read the device clock and return the correct value on ns, after converting it
|
|
* into a timespec struct.
|
|
*/
|
|
static int
|
|
ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
if (!ice_ptp_lock(hw)) {
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
ice_ptp_read_time(pf, ts, sts);
|
|
ice_ptp_unlock(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_settime64 - Set the time of the clock
|
|
* @info: the driver's PTP info structure
|
|
* @ts: timespec64 structure that holds the new time value
|
|
*
|
|
* Set the device clock to the user input value. The conversion from timespec
|
|
* to ns happens in the write function.
|
|
*/
|
|
static int
|
|
ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct timespec64 ts64 = *ts;
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
|
|
/* For Vernier mode, we need to recalibrate after new settime
|
|
* Start with disabling timestamp block
|
|
*/
|
|
if (pf->ptp.port.link_up)
|
|
ice_ptp_port_phy_stop(&pf->ptp.port);
|
|
|
|
if (!ice_ptp_lock(hw)) {
|
|
err = -EBUSY;
|
|
goto exit;
|
|
}
|
|
|
|
/* Disable periodic outputs */
|
|
ice_ptp_disable_all_clkout(pf);
|
|
|
|
err = ice_ptp_write_init(pf, &ts64);
|
|
ice_ptp_unlock(hw);
|
|
|
|
if (!err)
|
|
ice_ptp_reset_cached_phctime(pf);
|
|
|
|
/* Reenable periodic outputs */
|
|
ice_ptp_enable_all_clkout(pf);
|
|
|
|
/* Recalibrate and re-enable timestamp block */
|
|
if (pf->ptp.port.link_up)
|
|
ice_ptp_port_phy_restart(&pf->ptp.port);
|
|
exit:
|
|
if (err) {
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
|
|
* @info: the driver's PTP info structure
|
|
* @delta: Offset in nanoseconds to adjust the time by
|
|
*/
|
|
static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
|
|
{
|
|
struct timespec64 now, then;
|
|
int ret;
|
|
|
|
then = ns_to_timespec64(delta);
|
|
ret = ice_ptp_gettimex64(info, &now, NULL);
|
|
if (ret)
|
|
return ret;
|
|
now = timespec64_add(now, then);
|
|
|
|
return ice_ptp_settime64(info, (const struct timespec64 *)&now);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
|
|
* @info: the driver's PTP info structure
|
|
* @delta: Offset in nanoseconds to adjust the time by
|
|
*/
|
|
static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct device *dev;
|
|
int err;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
/* Hardware only supports atomic adjustments using signed 32-bit
|
|
* integers. For any adjustment outside this range, perform
|
|
* a non-atomic get->adjust->set flow.
|
|
*/
|
|
if (delta > S32_MAX || delta < S32_MIN) {
|
|
dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
|
|
return ice_ptp_adjtime_nonatomic(info, delta);
|
|
}
|
|
|
|
if (!ice_ptp_lock(hw)) {
|
|
dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Disable periodic outputs */
|
|
ice_ptp_disable_all_clkout(pf);
|
|
|
|
err = ice_ptp_write_adj(pf, delta);
|
|
|
|
/* Reenable periodic outputs */
|
|
ice_ptp_enable_all_clkout(pf);
|
|
|
|
ice_ptp_unlock(hw);
|
|
|
|
if (err) {
|
|
dev_err(dev, "PTP failed to adjust time, err %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
ice_ptp_reset_cached_phctime(pf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ICE_HWTS
|
|
/**
|
|
* ice_ptp_get_syncdevicetime - Get the cross time stamp info
|
|
* @device: Current device time
|
|
* @system: System counter value read synchronously with device time
|
|
* @ctx: Context provided by timekeeping code
|
|
*
|
|
* Read device and system (ART) clock simultaneously and return the corrected
|
|
* clock values in ns.
|
|
*/
|
|
static int
|
|
ice_ptp_get_syncdevicetime(ktime_t *device,
|
|
struct system_counterval_t *system,
|
|
void *ctx)
|
|
{
|
|
struct ice_pf *pf = (struct ice_pf *)ctx;
|
|
struct ice_hw *hw = &pf->hw;
|
|
u32 hh_lock, hh_art_ctl;
|
|
int i;
|
|
|
|
/* Get the HW lock */
|
|
hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
|
|
if (hh_lock & PFHH_SEM_BUSY_M) {
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Start the ART and device clock sync sequence */
|
|
hh_art_ctl = rd32(hw, GLHH_ART_CTL);
|
|
hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
|
|
wr32(hw, GLHH_ART_CTL, hh_art_ctl);
|
|
|
|
#define MAX_HH_LOCK_TRIES 100
|
|
|
|
for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
|
|
/* Wait for sync to complete */
|
|
hh_art_ctl = rd32(hw, GLHH_ART_CTL);
|
|
if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
|
|
udelay(1);
|
|
continue;
|
|
} else {
|
|
u32 hh_ts_lo, hh_ts_hi, tmr_idx;
|
|
u64 hh_ts;
|
|
|
|
tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
|
|
/* Read ART time */
|
|
hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
|
|
hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
|
|
hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
|
|
*system = convert_art_ns_to_tsc(hh_ts);
|
|
/* Read Device source clock time */
|
|
hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
|
|
hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
|
|
hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
|
|
*device = ns_to_ktime(hh_ts);
|
|
break;
|
|
}
|
|
}
|
|
/* Release HW lock */
|
|
hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
|
|
hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
|
|
wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
|
|
|
|
if (i == MAX_HH_LOCK_TRIES)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
|
|
* @info: the driver's PTP info structure
|
|
* @cts: The memory to fill the cross timestamp info
|
|
*
|
|
* Capture a cross timestamp between the ART and the device PTP hardware
|
|
* clock. Fill the cross timestamp information and report it back to the
|
|
* caller.
|
|
*
|
|
* This is only valid for E822 devices which have support for generating the
|
|
* cross timestamp via PCIe PTM.
|
|
*
|
|
* In order to correctly correlate the ART timestamp back to the TSC time, the
|
|
* CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
|
|
*/
|
|
static int
|
|
ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
|
|
struct system_device_crosststamp *cts)
|
|
{
|
|
struct ice_pf *pf = ptp_info_to_pf(info);
|
|
|
|
return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
|
|
pf, NULL, cts);
|
|
}
|
|
#endif /* CONFIG_ICE_HWTS */
|
|
|
|
/**
|
|
* ice_ptp_get_ts_config - ioctl interface to read the timestamping config
|
|
* @pf: Board private structure
|
|
* @ifr: ioctl data
|
|
*
|
|
* Copy the timestamping config to user buffer
|
|
*/
|
|
int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
|
|
{
|
|
struct hwtstamp_config *config;
|
|
|
|
if (!test_bit(ICE_FLAG_PTP, pf->flags))
|
|
return -EIO;
|
|
|
|
config = &pf->ptp.tstamp_config;
|
|
|
|
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
|
|
* @pf: Board private structure
|
|
* @config: hwtstamp settings requested or saved
|
|
*/
|
|
static int
|
|
ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
|
|
{
|
|
switch (config->tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
ice_set_tx_tstamp(pf, false);
|
|
break;
|
|
case HWTSTAMP_TX_ON:
|
|
ice_set_tx_tstamp(pf, true);
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
ice_set_rx_tstamp(pf, false);
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_NTP_ALL:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
ice_set_rx_tstamp(pf, true);
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_ts_config - ioctl interface to control the timestamping
|
|
* @pf: Board private structure
|
|
* @ifr: ioctl data
|
|
*
|
|
* Get the user config and store it
|
|
*/
|
|
int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
|
|
{
|
|
struct hwtstamp_config config;
|
|
int err;
|
|
|
|
if (!test_bit(ICE_FLAG_PTP, pf->flags))
|
|
return -EAGAIN;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
err = ice_ptp_set_timestamp_mode(pf, &config);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Return the actual configuration set */
|
|
config = pf->ptp.tstamp_config;
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_rx_hwtstamp - Check for an Rx timestamp
|
|
* @rx_ring: Ring to get the VSI info
|
|
* @rx_desc: Receive descriptor
|
|
* @skb: Particular skb to send timestamp with
|
|
*
|
|
* The driver receives a notification in the receive descriptor with timestamp.
|
|
* The timestamp is in ns, so we must convert the result first.
|
|
*/
|
|
void
|
|
ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
|
|
union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
|
|
{
|
|
struct skb_shared_hwtstamps *hwtstamps;
|
|
u64 ts_ns, cached_time;
|
|
u32 ts_high;
|
|
|
|
if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
|
|
return;
|
|
|
|
cached_time = READ_ONCE(rx_ring->cached_phctime);
|
|
|
|
/* Do not report a timestamp if we don't have a cached PHC time */
|
|
if (!cached_time)
|
|
return;
|
|
|
|
/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
|
|
* PHC value, rather than accessing the PF. This also allows us to
|
|
* simply pass the upper 32bits of nanoseconds directly. Calling
|
|
* ice_ptp_extend_40b_ts is unnecessary as it would just discard these
|
|
* bits itself.
|
|
*/
|
|
ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
|
|
ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
|
|
|
|
hwtstamps = skb_hwtstamps(skb);
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
|
|
* @pf: pointer to the PF structure
|
|
* @info: PTP clock info structure
|
|
*
|
|
* Disable the OS access to the SMA pins. Called to clear out the OS
|
|
* indications of pin support when we fail to setup the E810-T SMA control
|
|
* register.
|
|
*/
|
|
static void
|
|
ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
|
|
dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
|
|
|
|
info->enable = NULL;
|
|
info->verify = NULL;
|
|
info->n_pins = 0;
|
|
info->n_ext_ts = 0;
|
|
info->n_per_out = 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
|
|
* @pf: pointer to the PF structure
|
|
* @info: PTP clock info structure
|
|
*
|
|
* Finish setting up the SMA pins by allocating pin_config, and setting it up
|
|
* according to the current status of the SMA. On failure, disable all of the
|
|
* extended SMA pin support.
|
|
*/
|
|
static void
|
|
ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
/* Allocate memory for kernel pins interface */
|
|
info->pin_config = devm_kcalloc(dev, info->n_pins,
|
|
sizeof(*info->pin_config), GFP_KERNEL);
|
|
if (!info->pin_config) {
|
|
ice_ptp_disable_sma_pins_e810t(pf, info);
|
|
return;
|
|
}
|
|
|
|
/* Read current SMA status */
|
|
err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
|
|
if (err)
|
|
ice_ptp_disable_sma_pins_e810t(pf, info);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
|
|
* @pf: pointer to the PF instance
|
|
* @info: PTP clock capabilities
|
|
*/
|
|
static void
|
|
ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
|
|
{
|
|
info->n_per_out = N_PER_OUT_E810;
|
|
|
|
if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS))
|
|
info->n_ext_ts = N_EXT_TS_E810;
|
|
|
|
if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
|
|
info->n_ext_ts = N_EXT_TS_E810;
|
|
info->n_pins = NUM_PTP_PINS_E810T;
|
|
info->verify = ice_verify_pin_e810t;
|
|
|
|
/* Complete setup of the SMA pins */
|
|
ice_ptp_setup_sma_pins_e810t(pf, info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
|
|
* @pf: Board private structure
|
|
* @info: PTP info to fill
|
|
*
|
|
* Assign functions to the PTP capabiltiies structure for E822 devices.
|
|
* Functions which operate across all device families should be set directly
|
|
* in ice_ptp_set_caps. Only add functions here which are distinct for E822
|
|
* devices.
|
|
*/
|
|
static void
|
|
ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
|
|
{
|
|
#ifdef CONFIG_ICE_HWTS
|
|
if (boot_cpu_has(X86_FEATURE_ART) &&
|
|
boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
|
|
info->getcrosststamp = ice_ptp_getcrosststamp_e822;
|
|
#endif /* CONFIG_ICE_HWTS */
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
|
|
* @pf: Board private structure
|
|
* @info: PTP info to fill
|
|
*
|
|
* Assign functions to the PTP capabiltiies structure for E810 devices.
|
|
* Functions which operate across all device families should be set directly
|
|
* in ice_ptp_set_caps. Only add functions here which are distinct for e810
|
|
* devices.
|
|
*/
|
|
static void
|
|
ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
|
|
{
|
|
info->enable = ice_ptp_gpio_enable_e810;
|
|
ice_ptp_setup_pins_e810(pf, info);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_set_caps - Set PTP capabilities
|
|
* @pf: Board private structure
|
|
*/
|
|
static void ice_ptp_set_caps(struct ice_pf *pf)
|
|
{
|
|
struct ptp_clock_info *info = &pf->ptp.info;
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
|
|
snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
|
|
dev_driver_string(dev), dev_name(dev));
|
|
info->owner = THIS_MODULE;
|
|
info->max_adj = 100000000;
|
|
info->adjtime = ice_ptp_adjtime;
|
|
info->adjfine = ice_ptp_adjfine;
|
|
info->gettimex64 = ice_ptp_gettimex64;
|
|
info->settime64 = ice_ptp_settime64;
|
|
|
|
if (ice_is_e810(&pf->hw))
|
|
ice_ptp_set_funcs_e810(pf, info);
|
|
else
|
|
ice_ptp_set_funcs_e822(pf, info);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_create_clock - Create PTP clock device for userspace
|
|
* @pf: Board private structure
|
|
*
|
|
* This function creates a new PTP clock device. It only creates one if we
|
|
* don't already have one. Will return error if it can't create one, but success
|
|
* if we already have a device. Should be used by ice_ptp_init to create clock
|
|
* initially, and prevent global resets from creating new clock devices.
|
|
*/
|
|
static long ice_ptp_create_clock(struct ice_pf *pf)
|
|
{
|
|
struct ptp_clock_info *info;
|
|
struct ptp_clock *clock;
|
|
struct device *dev;
|
|
|
|
/* No need to create a clock device if we already have one */
|
|
if (pf->ptp.clock)
|
|
return 0;
|
|
|
|
ice_ptp_set_caps(pf);
|
|
|
|
info = &pf->ptp.info;
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
/* Attempt to register the clock before enabling the hardware. */
|
|
clock = ptp_clock_register(info, dev);
|
|
if (IS_ERR(clock))
|
|
return PTR_ERR(clock);
|
|
|
|
pf->ptp.clock = clock;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_request_ts - Request an available Tx timestamp index
|
|
* @tx: the PTP Tx timestamp tracker to request from
|
|
* @skb: the SKB to associate with this timestamp request
|
|
*/
|
|
s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
|
|
{
|
|
u8 idx;
|
|
|
|
/* Check if this tracker is initialized */
|
|
if (!tx->init || tx->calibrating)
|
|
return -1;
|
|
|
|
spin_lock(&tx->lock);
|
|
/* Find and set the first available index */
|
|
idx = find_first_zero_bit(tx->in_use, tx->len);
|
|
if (idx < tx->len) {
|
|
/* We got a valid index that no other thread could have set. Store
|
|
* a reference to the skb and the start time to allow discarding old
|
|
* requests.
|
|
*/
|
|
set_bit(idx, tx->in_use);
|
|
tx->tstamps[idx].start = jiffies;
|
|
tx->tstamps[idx].skb = skb_get(skb);
|
|
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
ice_trace(tx_tstamp_request, skb, idx);
|
|
}
|
|
|
|
spin_unlock(&tx->lock);
|
|
|
|
/* return the appropriate PHY timestamp register index, -1 if no
|
|
* indexes were available.
|
|
*/
|
|
if (idx >= tx->len)
|
|
return -1;
|
|
else
|
|
return idx + tx->quad_offset;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_process_ts - Process the PTP Tx timestamps
|
|
* @pf: Board private structure
|
|
*
|
|
* Returns true if timestamps are processed.
|
|
*/
|
|
bool ice_ptp_process_ts(struct ice_pf *pf)
|
|
{
|
|
return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
|
|
}
|
|
|
|
static void ice_ptp_periodic_work(struct kthread_work *work)
|
|
{
|
|
struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
|
|
struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
|
|
int err;
|
|
|
|
if (!test_bit(ICE_FLAG_PTP, pf->flags))
|
|
return;
|
|
|
|
err = ice_ptp_update_cached_phctime(pf);
|
|
|
|
ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx);
|
|
|
|
/* Run twice a second or reschedule if phc update failed */
|
|
kthread_queue_delayed_work(ptp->kworker, &ptp->work,
|
|
msecs_to_jiffies(err ? 10 : 500));
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_reset - Initialize PTP hardware clock support after reset
|
|
* @pf: Board private structure
|
|
*/
|
|
void ice_ptp_reset(struct ice_pf *pf)
|
|
{
|
|
struct ice_ptp *ptp = &pf->ptp;
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct timespec64 ts;
|
|
int err, itr = 1;
|
|
u64 time_diff;
|
|
|
|
if (test_bit(ICE_PFR_REQ, pf->state))
|
|
goto pfr;
|
|
|
|
if (!hw->func_caps.ts_func_info.src_tmr_owned)
|
|
goto reset_ts;
|
|
|
|
err = ice_ptp_init_phc(hw);
|
|
if (err)
|
|
goto err;
|
|
|
|
/* Acquire the global hardware lock */
|
|
if (!ice_ptp_lock(hw)) {
|
|
err = -EBUSY;
|
|
goto err;
|
|
}
|
|
|
|
/* Write the increment time value to PHY and LAN */
|
|
err = ice_ptp_write_incval(hw, ice_base_incval(pf));
|
|
if (err) {
|
|
ice_ptp_unlock(hw);
|
|
goto err;
|
|
}
|
|
|
|
/* Write the initial Time value to PHY and LAN using the cached PHC
|
|
* time before the reset and time difference between stopping and
|
|
* starting the clock.
|
|
*/
|
|
if (ptp->cached_phc_time) {
|
|
time_diff = ktime_get_real_ns() - ptp->reset_time;
|
|
ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
|
|
} else {
|
|
ts = ktime_to_timespec64(ktime_get_real());
|
|
}
|
|
err = ice_ptp_write_init(pf, &ts);
|
|
if (err) {
|
|
ice_ptp_unlock(hw);
|
|
goto err;
|
|
}
|
|
|
|
/* Release the global hardware lock */
|
|
ice_ptp_unlock(hw);
|
|
|
|
if (!ice_is_e810(hw)) {
|
|
/* Enable quad interrupts */
|
|
err = ice_ptp_tx_ena_intr(pf, true, itr);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
|
|
reset_ts:
|
|
/* Restart the PHY timestamping block */
|
|
ice_ptp_reset_phy_timestamping(pf);
|
|
|
|
pfr:
|
|
/* Init Tx structures */
|
|
if (ice_is_e810(&pf->hw)) {
|
|
err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
|
|
} else {
|
|
kthread_init_delayed_work(&ptp->port.ov_work,
|
|
ice_ptp_wait_for_offset_valid);
|
|
err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
|
|
ptp->port.port_num);
|
|
}
|
|
if (err)
|
|
goto err;
|
|
|
|
set_bit(ICE_FLAG_PTP, pf->flags);
|
|
|
|
/* Start periodic work going */
|
|
kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
|
|
|
|
dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
|
|
return;
|
|
|
|
err:
|
|
dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_prepare_for_reset - Prepare PTP for reset
|
|
* @pf: Board private structure
|
|
*/
|
|
void ice_ptp_prepare_for_reset(struct ice_pf *pf)
|
|
{
|
|
struct ice_ptp *ptp = &pf->ptp;
|
|
u8 src_tmr;
|
|
|
|
clear_bit(ICE_FLAG_PTP, pf->flags);
|
|
|
|
/* Disable timestamping for both Tx and Rx */
|
|
ice_ptp_cfg_timestamp(pf, false);
|
|
|
|
kthread_cancel_delayed_work_sync(&ptp->work);
|
|
|
|
if (test_bit(ICE_PFR_REQ, pf->state))
|
|
return;
|
|
|
|
ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
|
|
|
|
/* Disable periodic outputs */
|
|
ice_ptp_disable_all_clkout(pf);
|
|
|
|
src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
|
|
|
|
/* Disable source clock */
|
|
wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
|
|
|
|
/* Acquire PHC and system timer to restore after reset */
|
|
ptp->reset_time = ktime_get_real_ns();
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
|
|
* @pf: Board private structure
|
|
*
|
|
* Setup and initialize a PTP clock device that represents the device hardware
|
|
* clock. Save the clock index for other functions connected to the same
|
|
* hardware resource.
|
|
*/
|
|
static int ice_ptp_init_owner(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct timespec64 ts;
|
|
int err, itr = 1;
|
|
|
|
err = ice_ptp_init_phc(hw);
|
|
if (err) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
/* Acquire the global hardware lock */
|
|
if (!ice_ptp_lock(hw)) {
|
|
err = -EBUSY;
|
|
goto err_exit;
|
|
}
|
|
|
|
/* Write the increment time value to PHY and LAN */
|
|
err = ice_ptp_write_incval(hw, ice_base_incval(pf));
|
|
if (err) {
|
|
ice_ptp_unlock(hw);
|
|
goto err_exit;
|
|
}
|
|
|
|
ts = ktime_to_timespec64(ktime_get_real());
|
|
/* Write the initial Time value to PHY and LAN */
|
|
err = ice_ptp_write_init(pf, &ts);
|
|
if (err) {
|
|
ice_ptp_unlock(hw);
|
|
goto err_exit;
|
|
}
|
|
|
|
/* Release the global hardware lock */
|
|
ice_ptp_unlock(hw);
|
|
|
|
if (!ice_is_e810(hw)) {
|
|
/* Enable quad interrupts */
|
|
err = ice_ptp_tx_ena_intr(pf, true, itr);
|
|
if (err)
|
|
goto err_exit;
|
|
}
|
|
|
|
/* Ensure we have a clock device */
|
|
err = ice_ptp_create_clock(pf);
|
|
if (err)
|
|
goto err_clk;
|
|
|
|
/* Store the PTP clock index for other PFs */
|
|
ice_set_ptp_clock_index(pf);
|
|
|
|
return 0;
|
|
|
|
err_clk:
|
|
pf->ptp.clock = NULL;
|
|
err_exit:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_work - Initialize PTP work threads
|
|
* @pf: Board private structure
|
|
* @ptp: PF PTP structure
|
|
*/
|
|
static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
|
|
{
|
|
struct kthread_worker *kworker;
|
|
|
|
/* Initialize work functions */
|
|
kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
|
|
|
|
/* Allocate a kworker for handling work required for the ports
|
|
* connected to the PTP hardware clock.
|
|
*/
|
|
kworker = kthread_create_worker(0, "ice-ptp-%s",
|
|
dev_name(ice_pf_to_dev(pf)));
|
|
if (IS_ERR(kworker))
|
|
return PTR_ERR(kworker);
|
|
|
|
ptp->kworker = kworker;
|
|
|
|
/* Start periodic work going */
|
|
kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init_port - Initialize PTP port structure
|
|
* @pf: Board private structure
|
|
* @ptp_port: PTP port structure
|
|
*/
|
|
static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
|
|
{
|
|
mutex_init(&ptp_port->ps_lock);
|
|
|
|
if (ice_is_e810(&pf->hw))
|
|
return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
|
|
|
|
kthread_init_delayed_work(&ptp_port->ov_work,
|
|
ice_ptp_wait_for_offset_valid);
|
|
return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_init - Initialize PTP hardware clock support
|
|
* @pf: Board private structure
|
|
*
|
|
* Set up the device for interacting with the PTP hardware clock for all
|
|
* functions, both the function that owns the clock hardware, and the
|
|
* functions connected to the clock hardware.
|
|
*
|
|
* The clock owner will allocate and register a ptp_clock with the
|
|
* PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
|
|
* items used for asynchronous work such as Tx timestamps and periodic work.
|
|
*/
|
|
void ice_ptp_init(struct ice_pf *pf)
|
|
{
|
|
struct ice_ptp *ptp = &pf->ptp;
|
|
struct ice_hw *hw = &pf->hw;
|
|
int err;
|
|
|
|
/* If this function owns the clock hardware, it must allocate and
|
|
* configure the PTP clock device to represent it.
|
|
*/
|
|
if (hw->func_caps.ts_func_info.src_tmr_owned) {
|
|
err = ice_ptp_init_owner(pf);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
|
|
ptp->port.port_num = hw->pf_id;
|
|
err = ice_ptp_init_port(pf, &ptp->port);
|
|
if (err)
|
|
goto err;
|
|
|
|
/* Start the PHY timestamping block */
|
|
ice_ptp_reset_phy_timestamping(pf);
|
|
|
|
set_bit(ICE_FLAG_PTP, pf->flags);
|
|
err = ice_ptp_init_work(pf, ptp);
|
|
if (err)
|
|
goto err;
|
|
|
|
dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
|
|
return;
|
|
|
|
err:
|
|
/* If we registered a PTP clock, release it */
|
|
if (pf->ptp.clock) {
|
|
ptp_clock_unregister(ptp->clock);
|
|
pf->ptp.clock = NULL;
|
|
}
|
|
clear_bit(ICE_FLAG_PTP, pf->flags);
|
|
dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
|
|
}
|
|
|
|
/**
|
|
* ice_ptp_release - Disable the driver/HW support and unregister the clock
|
|
* @pf: Board private structure
|
|
*
|
|
* This function handles the cleanup work required from the initialization by
|
|
* clearing out the important information and unregistering the clock
|
|
*/
|
|
void ice_ptp_release(struct ice_pf *pf)
|
|
{
|
|
if (!test_bit(ICE_FLAG_PTP, pf->flags))
|
|
return;
|
|
|
|
/* Disable timestamping for both Tx and Rx */
|
|
ice_ptp_cfg_timestamp(pf, false);
|
|
|
|
ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
|
|
|
|
clear_bit(ICE_FLAG_PTP, pf->flags);
|
|
|
|
kthread_cancel_delayed_work_sync(&pf->ptp.work);
|
|
|
|
ice_ptp_port_phy_stop(&pf->ptp.port);
|
|
mutex_destroy(&pf->ptp.port.ps_lock);
|
|
if (pf->ptp.kworker) {
|
|
kthread_destroy_worker(pf->ptp.kworker);
|
|
pf->ptp.kworker = NULL;
|
|
}
|
|
|
|
if (!pf->ptp.clock)
|
|
return;
|
|
|
|
/* Disable periodic outputs */
|
|
ice_ptp_disable_all_clkout(pf);
|
|
|
|
ice_clear_ptp_clock_index(pf);
|
|
ptp_clock_unregister(pf->ptp.clock);
|
|
pf->ptp.clock = NULL;
|
|
|
|
dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
|
|
}
|