linuxdebug/drivers/gpu/drm/i915/gt/selftest_context.c

452 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright © 2019 Intel Corporation
*/
#include "i915_selftest.h"
#include "intel_engine_heartbeat.h"
#include "intel_engine_pm.h"
#include "intel_gt.h"
#include "gem/selftests/mock_context.h"
#include "selftests/igt_flush_test.h"
#include "selftests/mock_drm.h"
static int request_sync(struct i915_request *rq)
{
struct intel_timeline *tl = i915_request_timeline(rq);
long timeout;
int err = 0;
intel_timeline_get(tl);
i915_request_get(rq);
/* Opencode i915_request_add() so we can keep the timeline locked. */
__i915_request_commit(rq);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
__i915_request_queue_bh(rq);
timeout = i915_request_wait(rq, 0, HZ / 10);
if (timeout < 0)
err = timeout;
else
i915_request_retire_upto(rq);
lockdep_unpin_lock(&tl->mutex, rq->cookie);
mutex_unlock(&tl->mutex);
i915_request_put(rq);
intel_timeline_put(tl);
return err;
}
static int context_sync(struct intel_context *ce)
{
struct intel_timeline *tl = ce->timeline;
int err = 0;
mutex_lock(&tl->mutex);
do {
struct i915_request *rq;
long timeout;
if (list_empty(&tl->requests))
break;
rq = list_last_entry(&tl->requests, typeof(*rq), link);
i915_request_get(rq);
timeout = i915_request_wait(rq, 0, HZ / 10);
if (timeout < 0)
err = timeout;
else
i915_request_retire_upto(rq);
i915_request_put(rq);
} while (!err);
mutex_unlock(&tl->mutex);
/* Wait for all barriers to complete (remote CPU) before we check */
i915_active_unlock_wait(&ce->active);
return err;
}
static int __live_context_size(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct i915_request *rq;
void *vaddr;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = intel_context_pin(ce);
if (err)
goto err;
vaddr = i915_gem_object_pin_map_unlocked(ce->state->obj,
i915_coherent_map_type(engine->i915,
ce->state->obj, false));
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
intel_context_unpin(ce);
goto err;
}
/*
* Note that execlists also applies a redzone which it checks on
* context unpin when debugging. We are using the same location
* and same poison value so that our checks overlap. Despite the
* redundancy, we want to keep this little selftest so that we
* get coverage of any and all submission backends, and we can
* always extend this test to ensure we trick the HW into a
* compromising position wrt to the various sections that need
* to be written into the context state.
*
* TLDR; this overlaps with the execlists redzone.
*/
vaddr += engine->context_size - I915_GTT_PAGE_SIZE;
memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
rq = intel_context_create_request(ce);
intel_context_unpin(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
err = request_sync(rq);
if (err)
goto err_unpin;
/* Force the context switch */
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
err = request_sync(rq);
if (err)
goto err_unpin;
if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE)) {
pr_err("%s context overwrote trailing red-zone!", engine->name);
err = -EINVAL;
}
err_unpin:
i915_gem_object_unpin_map(ce->state->obj);
err:
intel_context_put(ce);
return err;
}
static int live_context_size(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check that our context sizes are correct by seeing if the
* HW tries to write past the end of one.
*/
for_each_engine(engine, gt, id) {
struct file *saved;
if (!engine->context_size)
continue;
intel_engine_pm_get(engine);
/*
* Hide the old default state -- we lie about the context size
* and get confused when the default state is smaller than
* expected. For our do nothing request, inheriting the
* active state is sufficient, we are only checking that we
* don't use more than we planned.
*/
saved = fetch_and_zero(&engine->default_state);
/* Overlaps with the execlists redzone */
engine->context_size += I915_GTT_PAGE_SIZE;
err = __live_context_size(engine);
engine->context_size -= I915_GTT_PAGE_SIZE;
engine->default_state = saved;
intel_engine_pm_put(engine);
if (err)
break;
}
return err;
}
static int __live_active_context(struct intel_engine_cs *engine)
{
unsigned long saved_heartbeat;
struct intel_context *ce;
int pass;
int err;
/*
* We keep active contexts alive until after a subsequent context
* switch as the final write from the context-save will be after
* we retire the final request. We track when we unpin the context,
* under the presumption that the final pin is from the last request,
* and instead of immediately unpinning the context, we add a task
* to unpin the context from the next idle-barrier.
*
* This test makes sure that the context is kept alive until a
* subsequent idle-barrier (emitted when the engine wakeref hits 0
* with no more outstanding requests).
*
* In GuC submission mode we don't use idle barriers and we instead
* get a message from the GuC to signal that it is safe to unpin the
* context from memory.
*/
if (intel_engine_uses_guc(engine))
return 0;
if (intel_engine_pm_is_awake(engine)) {
pr_err("%s is awake before starting %s!\n",
engine->name, __func__);
return -EINVAL;
}
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
saved_heartbeat = engine->props.heartbeat_interval_ms;
engine->props.heartbeat_interval_ms = 0;
for (pass = 0; pass <= 2; pass++) {
struct i915_request *rq;
intel_engine_pm_get(engine);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_engine;
}
err = request_sync(rq);
if (err)
goto out_engine;
/* Context will be kept active until after an idle-barrier. */
if (i915_active_is_idle(&ce->active)) {
pr_err("context is not active; expected idle-barrier (%s pass %d)\n",
engine->name, pass);
err = -EINVAL;
goto out_engine;
}
if (!intel_engine_pm_is_awake(engine)) {
pr_err("%s is asleep before idle-barrier\n",
engine->name);
err = -EINVAL;
goto out_engine;
}
out_engine:
intel_engine_pm_put(engine);
if (err)
goto err;
}
/* Now make sure our idle-barriers are flushed */
err = intel_engine_flush_barriers(engine);
if (err)
goto err;
/* Wait for the barrier and in the process wait for engine to park */
err = context_sync(engine->kernel_context);
if (err)
goto err;
if (!i915_active_is_idle(&ce->active)) {
pr_err("context is still active!");
err = -EINVAL;
}
intel_engine_pm_flush(engine);
if (intel_engine_pm_is_awake(engine)) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p,
"%s is still awake:%d after idle-barriers\n",
engine->name,
atomic_read(&engine->wakeref.count));
GEM_TRACE_DUMP();
err = -EINVAL;
goto err;
}
err:
engine->props.heartbeat_interval_ms = saved_heartbeat;
intel_context_put(ce);
return err;
}
static int live_active_context(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
for_each_engine(engine, gt, id) {
err = __live_active_context(engine);
if (err)
break;
err = igt_flush_test(gt->i915);
if (err)
break;
}
return err;
}
static int __remote_sync(struct intel_context *ce, struct intel_context *remote)
{
struct i915_request *rq;
int err;
err = intel_context_pin(remote);
if (err)
return err;
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto unpin;
}
err = intel_context_prepare_remote_request(remote, rq);
if (err) {
i915_request_add(rq);
goto unpin;
}
err = request_sync(rq);
unpin:
intel_context_unpin(remote);
return err;
}
static int __live_remote_context(struct intel_engine_cs *engine)
{
struct intel_context *local, *remote;
unsigned long saved_heartbeat;
int pass;
int err;
/*
* Check that our idle barriers do not interfere with normal
* activity tracking. In particular, check that operating
* on the context image remotely (intel_context_prepare_remote_request),
* which inserts foreign fences into intel_context.active, does not
* clobber the idle-barrier.
*
* In GuC submission mode we don't use idle barriers.
*/
if (intel_engine_uses_guc(engine))
return 0;
if (intel_engine_pm_is_awake(engine)) {
pr_err("%s is awake before starting %s!\n",
engine->name, __func__);
return -EINVAL;
}
remote = intel_context_create(engine);
if (IS_ERR(remote))
return PTR_ERR(remote);
local = intel_context_create(engine);
if (IS_ERR(local)) {
err = PTR_ERR(local);
goto err_remote;
}
saved_heartbeat = engine->props.heartbeat_interval_ms;
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
for (pass = 0; pass <= 2; pass++) {
err = __remote_sync(local, remote);
if (err)
break;
err = __remote_sync(engine->kernel_context, remote);
if (err)
break;
if (i915_active_is_idle(&remote->active)) {
pr_err("remote context is not active; expected idle-barrier (%s pass %d)\n",
engine->name, pass);
err = -EINVAL;
break;
}
}
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms = saved_heartbeat;
intel_context_put(local);
err_remote:
intel_context_put(remote);
return err;
}
static int live_remote_context(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
for_each_engine(engine, gt, id) {
err = __live_remote_context(engine);
if (err)
break;
err = igt_flush_test(gt->i915);
if (err)
break;
}
return err;
}
int intel_context_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_context_size),
SUBTEST(live_active_context),
SUBTEST(live_remote_context),
};
struct intel_gt *gt = to_gt(i915);
if (intel_gt_is_wedged(gt))
return 0;
return intel_gt_live_subtests(tests, gt);
}