1037 lines
25 KiB
C
1037 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
|
|
* Synopsys DesignWare eDMA core driver
|
|
*
|
|
* Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/dma/edma.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "dw-edma-core.h"
|
|
#include "dw-edma-v0-core.h"
|
|
#include "../dmaengine.h"
|
|
#include "../virt-dma.h"
|
|
|
|
static inline
|
|
struct device *dchan2dev(struct dma_chan *dchan)
|
|
{
|
|
return &dchan->dev->device;
|
|
}
|
|
|
|
static inline
|
|
struct device *chan2dev(struct dw_edma_chan *chan)
|
|
{
|
|
return &chan->vc.chan.dev->device;
|
|
}
|
|
|
|
static inline
|
|
struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
|
|
{
|
|
return container_of(vd, struct dw_edma_desc, vd);
|
|
}
|
|
|
|
static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
|
|
{
|
|
struct dw_edma_burst *burst;
|
|
|
|
burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
|
|
if (unlikely(!burst))
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&burst->list);
|
|
if (chunk->burst) {
|
|
/* Create and add new element into the linked list */
|
|
chunk->bursts_alloc++;
|
|
list_add_tail(&burst->list, &chunk->burst->list);
|
|
} else {
|
|
/* List head */
|
|
chunk->bursts_alloc = 0;
|
|
chunk->burst = burst;
|
|
}
|
|
|
|
return burst;
|
|
}
|
|
|
|
static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
|
|
{
|
|
struct dw_edma_chip *chip = desc->chan->dw->chip;
|
|
struct dw_edma_chan *chan = desc->chan;
|
|
struct dw_edma_chunk *chunk;
|
|
|
|
chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
|
|
if (unlikely(!chunk))
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&chunk->list);
|
|
chunk->chan = chan;
|
|
/* Toggling change bit (CB) in each chunk, this is a mechanism to
|
|
* inform the eDMA HW block that this is a new linked list ready
|
|
* to be consumed.
|
|
* - Odd chunks originate CB equal to 0
|
|
* - Even chunks originate CB equal to 1
|
|
*/
|
|
chunk->cb = !(desc->chunks_alloc % 2);
|
|
if (chan->dir == EDMA_DIR_WRITE) {
|
|
chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
|
|
chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
|
|
} else {
|
|
chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
|
|
chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
|
|
}
|
|
|
|
if (desc->chunk) {
|
|
/* Create and add new element into the linked list */
|
|
if (!dw_edma_alloc_burst(chunk)) {
|
|
kfree(chunk);
|
|
return NULL;
|
|
}
|
|
desc->chunks_alloc++;
|
|
list_add_tail(&chunk->list, &desc->chunk->list);
|
|
} else {
|
|
/* List head */
|
|
chunk->burst = NULL;
|
|
desc->chunks_alloc = 0;
|
|
desc->chunk = chunk;
|
|
}
|
|
|
|
return chunk;
|
|
}
|
|
|
|
static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_desc *desc;
|
|
|
|
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
|
|
if (unlikely(!desc))
|
|
return NULL;
|
|
|
|
desc->chan = chan;
|
|
if (!dw_edma_alloc_chunk(desc)) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
|
|
{
|
|
struct dw_edma_burst *child, *_next;
|
|
|
|
/* Remove all the list elements */
|
|
list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
chunk->bursts_alloc--;
|
|
}
|
|
|
|
/* Remove the list head */
|
|
kfree(child);
|
|
chunk->burst = NULL;
|
|
}
|
|
|
|
static void dw_edma_free_chunk(struct dw_edma_desc *desc)
|
|
{
|
|
struct dw_edma_chunk *child, *_next;
|
|
|
|
if (!desc->chunk)
|
|
return;
|
|
|
|
/* Remove all the list elements */
|
|
list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
|
|
dw_edma_free_burst(child);
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
desc->chunks_alloc--;
|
|
}
|
|
|
|
/* Remove the list head */
|
|
kfree(child);
|
|
desc->chunk = NULL;
|
|
}
|
|
|
|
static void dw_edma_free_desc(struct dw_edma_desc *desc)
|
|
{
|
|
dw_edma_free_chunk(desc);
|
|
kfree(desc);
|
|
}
|
|
|
|
static void vchan_free_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
dw_edma_free_desc(vd2dw_edma_desc(vdesc));
|
|
}
|
|
|
|
static int dw_edma_start_transfer(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_chunk *child;
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (!vd)
|
|
return 0;
|
|
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (!desc)
|
|
return 0;
|
|
|
|
child = list_first_entry_or_null(&desc->chunk->list,
|
|
struct dw_edma_chunk, list);
|
|
if (!child)
|
|
return 0;
|
|
|
|
dw_edma_v0_core_start(child, !desc->xfer_sz);
|
|
desc->xfer_sz += child->ll_region.sz;
|
|
dw_edma_free_burst(child);
|
|
list_del(&child->list);
|
|
kfree(child);
|
|
desc->chunks_alloc--;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dw_edma_device_config(struct dma_chan *dchan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
memcpy(&chan->config, config, sizeof(*config));
|
|
chan->configured = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dw_edma_device_pause(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured)
|
|
err = -EPERM;
|
|
else if (chan->status != EDMA_ST_BUSY)
|
|
err = -EPERM;
|
|
else if (chan->request != EDMA_REQ_NONE)
|
|
err = -EPERM;
|
|
else
|
|
chan->request = EDMA_REQ_PAUSE;
|
|
|
|
return err;
|
|
}
|
|
|
|
static int dw_edma_device_resume(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured) {
|
|
err = -EPERM;
|
|
} else if (chan->status != EDMA_ST_PAUSE) {
|
|
err = -EPERM;
|
|
} else if (chan->request != EDMA_REQ_NONE) {
|
|
err = -EPERM;
|
|
} else {
|
|
chan->status = EDMA_ST_BUSY;
|
|
dw_edma_start_transfer(chan);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int dw_edma_device_terminate_all(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
int err = 0;
|
|
|
|
if (!chan->configured) {
|
|
/* Do nothing */
|
|
} else if (chan->status == EDMA_ST_PAUSE) {
|
|
chan->status = EDMA_ST_IDLE;
|
|
chan->configured = false;
|
|
} else if (chan->status == EDMA_ST_IDLE) {
|
|
chan->configured = false;
|
|
} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
|
|
/*
|
|
* The channel is in a false BUSY state, probably didn't
|
|
* receive or lost an interrupt
|
|
*/
|
|
chan->status = EDMA_ST_IDLE;
|
|
chan->configured = false;
|
|
} else if (chan->request > EDMA_REQ_PAUSE) {
|
|
err = -EPERM;
|
|
} else {
|
|
chan->request = EDMA_REQ_STOP;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void dw_edma_device_issue_pending(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
unsigned long flags;
|
|
|
|
if (!chan->configured)
|
|
return;
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
if (vchan_issue_pending(&chan->vc) && chan->request == EDMA_REQ_NONE &&
|
|
chan->status == EDMA_ST_IDLE) {
|
|
chan->status = EDMA_ST_BUSY;
|
|
dw_edma_start_transfer(chan);
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
}
|
|
|
|
static enum dma_status
|
|
dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
enum dma_status ret;
|
|
u32 residue = 0;
|
|
|
|
ret = dma_cookie_status(dchan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
|
|
ret = DMA_PAUSED;
|
|
|
|
if (!txstate)
|
|
goto ret_residue;
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_find_desc(&chan->vc, cookie);
|
|
if (vd) {
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (desc)
|
|
residue = desc->alloc_sz - desc->xfer_sz;
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
|
|
ret_residue:
|
|
dma_set_residue(txstate, residue);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_transfer(struct dw_edma_transfer *xfer)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
|
|
enum dma_transfer_direction dir = xfer->direction;
|
|
phys_addr_t src_addr, dst_addr;
|
|
struct scatterlist *sg = NULL;
|
|
struct dw_edma_chunk *chunk;
|
|
struct dw_edma_burst *burst;
|
|
struct dw_edma_desc *desc;
|
|
u32 cnt = 0;
|
|
int i;
|
|
|
|
if (!chan->configured)
|
|
return NULL;
|
|
|
|
/*
|
|
* Local Root Port/End-point Remote End-point
|
|
* +-----------------------+ PCIe bus +----------------------+
|
|
* | | +-+ | |
|
|
* | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM |
|
|
* | | | | | |
|
|
* | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV |
|
|
* | | +-+ | |
|
|
* +-----------------------+ +----------------------+
|
|
*
|
|
* 1. Normal logic:
|
|
* If eDMA is embedded into the DW PCIe RP/EP and controlled from the
|
|
* CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
|
|
* for the device read operations (DEV_TO_MEM) and the Tx channel
|
|
* (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
|
|
*
|
|
* 2. Inverted logic:
|
|
* If eDMA is embedded into a Remote PCIe EP and is controlled by the
|
|
* MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
|
|
* channel (EDMA_DIR_WRITE) will be used for the device read operations
|
|
* (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
|
|
* operations (MEM_TO_DEV).
|
|
*
|
|
* It is the client driver responsibility to choose a proper channel
|
|
* for the DMA transfers.
|
|
*/
|
|
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
|
|
if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
|
|
(chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
|
|
return NULL;
|
|
} else {
|
|
if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
|
|
(chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
|
|
return NULL;
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
|
|
return NULL;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
if (xfer->xfer.sg.len < 1)
|
|
return NULL;
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
if (!xfer->xfer.il->numf)
|
|
return NULL;
|
|
if (xfer->xfer.il->numf > 0 && xfer->xfer.il->frame_size > 0)
|
|
return NULL;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
desc = dw_edma_alloc_desc(chan);
|
|
if (unlikely(!desc))
|
|
goto err_alloc;
|
|
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
if (unlikely(!chunk))
|
|
goto err_alloc;
|
|
|
|
if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
src_addr = xfer->xfer.il->src_start;
|
|
dst_addr = xfer->xfer.il->dst_start;
|
|
} else {
|
|
src_addr = chan->config.src_addr;
|
|
dst_addr = chan->config.dst_addr;
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
cnt = xfer->xfer.cyclic.cnt;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
cnt = xfer->xfer.sg.len;
|
|
sg = xfer->xfer.sg.sgl;
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
if (xfer->xfer.il->numf > 0)
|
|
cnt = xfer->xfer.il->numf;
|
|
else
|
|
cnt = xfer->xfer.il->frame_size;
|
|
}
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
|
|
break;
|
|
|
|
if (chunk->bursts_alloc == chan->ll_max) {
|
|
chunk = dw_edma_alloc_chunk(desc);
|
|
if (unlikely(!chunk))
|
|
goto err_alloc;
|
|
}
|
|
|
|
burst = dw_edma_alloc_burst(chunk);
|
|
if (unlikely(!burst))
|
|
goto err_alloc;
|
|
|
|
if (xfer->type == EDMA_XFER_CYCLIC)
|
|
burst->sz = xfer->xfer.cyclic.len;
|
|
else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
|
|
burst->sz = sg_dma_len(sg);
|
|
else if (xfer->type == EDMA_XFER_INTERLEAVED)
|
|
burst->sz = xfer->xfer.il->sgl[i].size;
|
|
|
|
chunk->ll_region.sz += burst->sz;
|
|
desc->alloc_sz += burst->sz;
|
|
|
|
if (dir == DMA_DEV_TO_MEM) {
|
|
burst->sar = src_addr;
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
burst->dar = xfer->xfer.cyclic.paddr;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
src_addr += sg_dma_len(sg);
|
|
burst->dar = sg_dma_address(sg);
|
|
/* Unlike the typical assumption by other
|
|
* drivers/IPs the peripheral memory isn't
|
|
* a FIFO memory, in this case, it's a
|
|
* linear memory and that why the source
|
|
* and destination addresses are increased
|
|
* by the same portion (data length)
|
|
*/
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
burst->dar = dst_addr;
|
|
}
|
|
} else {
|
|
burst->dar = dst_addr;
|
|
if (xfer->type == EDMA_XFER_CYCLIC) {
|
|
burst->sar = xfer->xfer.cyclic.paddr;
|
|
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
dst_addr += sg_dma_len(sg);
|
|
burst->sar = sg_dma_address(sg);
|
|
/* Unlike the typical assumption by other
|
|
* drivers/IPs the peripheral memory isn't
|
|
* a FIFO memory, in this case, it's a
|
|
* linear memory and that why the source
|
|
* and destination addresses are increased
|
|
* by the same portion (data length)
|
|
*/
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
|
|
burst->sar = src_addr;
|
|
}
|
|
}
|
|
|
|
if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
|
|
sg = sg_next(sg);
|
|
} else if (xfer->type == EDMA_XFER_INTERLEAVED &&
|
|
xfer->xfer.il->frame_size > 0) {
|
|
struct dma_interleaved_template *il = xfer->xfer.il;
|
|
struct data_chunk *dc = &il->sgl[i];
|
|
|
|
if (il->src_sgl) {
|
|
src_addr += burst->sz;
|
|
src_addr += dmaengine_get_src_icg(il, dc);
|
|
}
|
|
|
|
if (il->dst_sgl) {
|
|
dst_addr += burst->sz;
|
|
dst_addr += dmaengine_get_dst_icg(il, dc);
|
|
}
|
|
}
|
|
}
|
|
|
|
return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
|
|
|
|
err_alloc:
|
|
if (desc)
|
|
dw_edma_free_desc(desc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
|
|
unsigned int len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = direction;
|
|
xfer.xfer.sg.sgl = sgl;
|
|
xfer.xfer.sg.len = len;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_SCATTER_GATHER;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
|
|
size_t len, size_t count,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = direction;
|
|
xfer.xfer.cyclic.paddr = paddr;
|
|
xfer.xfer.cyclic.len = len;
|
|
xfer.xfer.cyclic.cnt = count;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_CYCLIC;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
|
|
struct dma_interleaved_template *ilt,
|
|
unsigned long flags)
|
|
{
|
|
struct dw_edma_transfer xfer;
|
|
|
|
xfer.dchan = dchan;
|
|
xfer.direction = ilt->dir;
|
|
xfer.xfer.il = ilt;
|
|
xfer.flags = flags;
|
|
xfer.type = EDMA_XFER_INTERLEAVED;
|
|
|
|
return dw_edma_device_transfer(&xfer);
|
|
}
|
|
|
|
static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
|
|
{
|
|
struct dw_edma_desc *desc;
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
|
|
dw_edma_v0_core_clear_done_int(chan);
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (vd) {
|
|
switch (chan->request) {
|
|
case EDMA_REQ_NONE:
|
|
desc = vd2dw_edma_desc(vd);
|
|
if (!desc->chunks_alloc) {
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
}
|
|
|
|
/* Continue transferring if there are remaining chunks or issued requests.
|
|
*/
|
|
chan->status = dw_edma_start_transfer(chan) ? EDMA_ST_BUSY : EDMA_ST_IDLE;
|
|
break;
|
|
|
|
case EDMA_REQ_STOP:
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
break;
|
|
|
|
case EDMA_REQ_PAUSE:
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_PAUSE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
}
|
|
|
|
static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
|
|
{
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
|
|
dw_edma_v0_core_clear_abort_int(chan);
|
|
|
|
spin_lock_irqsave(&chan->vc.lock, flags);
|
|
vd = vchan_next_desc(&chan->vc);
|
|
if (vd) {
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
}
|
|
spin_unlock_irqrestore(&chan->vc.lock, flags);
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
}
|
|
|
|
static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
|
|
{
|
|
struct dw_edma_irq *dw_irq = data;
|
|
struct dw_edma *dw = dw_irq->dw;
|
|
unsigned long total, pos, val;
|
|
unsigned long off;
|
|
u32 mask;
|
|
|
|
if (write) {
|
|
total = dw->wr_ch_cnt;
|
|
off = 0;
|
|
mask = dw_irq->wr_mask;
|
|
} else {
|
|
total = dw->rd_ch_cnt;
|
|
off = dw->wr_ch_cnt;
|
|
mask = dw_irq->rd_mask;
|
|
}
|
|
|
|
val = dw_edma_v0_core_status_done_int(dw, write ?
|
|
EDMA_DIR_WRITE :
|
|
EDMA_DIR_READ);
|
|
val &= mask;
|
|
for_each_set_bit(pos, &val, total) {
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
dw_edma_done_interrupt(chan);
|
|
}
|
|
|
|
val = dw_edma_v0_core_status_abort_int(dw, write ?
|
|
EDMA_DIR_WRITE :
|
|
EDMA_DIR_READ);
|
|
val &= mask;
|
|
for_each_set_bit(pos, &val, total) {
|
|
struct dw_edma_chan *chan = &dw->chan[pos + off];
|
|
|
|
dw_edma_abort_interrupt(chan);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
|
|
{
|
|
return dw_edma_interrupt(irq, data, true);
|
|
}
|
|
|
|
static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
|
|
{
|
|
return dw_edma_interrupt(irq, data, false);
|
|
}
|
|
|
|
static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
|
|
{
|
|
dw_edma_interrupt(irq, data, true);
|
|
dw_edma_interrupt(irq, data, false);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
|
|
|
|
if (chan->status != EDMA_ST_IDLE)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dw_edma_free_chan_resources(struct dma_chan *dchan)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
|
|
int ret;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = dw_edma_device_terminate_all(dchan);
|
|
if (!ret)
|
|
break;
|
|
|
|
if (time_after_eq(jiffies, timeout))
|
|
return;
|
|
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static int dw_edma_channel_setup(struct dw_edma *dw, bool write,
|
|
u32 wr_alloc, u32 rd_alloc)
|
|
{
|
|
struct dw_edma_chip *chip = dw->chip;
|
|
struct dw_edma_region *dt_region;
|
|
struct device *dev = chip->dev;
|
|
struct dw_edma_chan *chan;
|
|
struct dw_edma_irq *irq;
|
|
struct dma_device *dma;
|
|
u32 alloc, off_alloc;
|
|
u32 i, j, cnt;
|
|
int err = 0;
|
|
u32 pos;
|
|
|
|
if (write) {
|
|
i = 0;
|
|
cnt = dw->wr_ch_cnt;
|
|
dma = &dw->wr_edma;
|
|
alloc = wr_alloc;
|
|
off_alloc = 0;
|
|
} else {
|
|
i = dw->wr_ch_cnt;
|
|
cnt = dw->rd_ch_cnt;
|
|
dma = &dw->rd_edma;
|
|
alloc = rd_alloc;
|
|
off_alloc = wr_alloc;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
|
|
chan = &dw->chan[i];
|
|
|
|
dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
|
|
if (!dt_region)
|
|
return -ENOMEM;
|
|
|
|
chan->vc.chan.private = dt_region;
|
|
|
|
chan->dw = dw;
|
|
chan->id = j;
|
|
chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
|
|
chan->configured = false;
|
|
chan->request = EDMA_REQ_NONE;
|
|
chan->status = EDMA_ST_IDLE;
|
|
|
|
if (write)
|
|
chan->ll_max = (chip->ll_region_wr[j].sz / EDMA_LL_SZ);
|
|
else
|
|
chan->ll_max = (chip->ll_region_rd[j].sz / EDMA_LL_SZ);
|
|
chan->ll_max -= 1;
|
|
|
|
dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
|
|
write ? "write" : "read", j, chan->ll_max);
|
|
|
|
if (dw->nr_irqs == 1)
|
|
pos = 0;
|
|
else
|
|
pos = off_alloc + (j % alloc);
|
|
|
|
irq = &dw->irq[pos];
|
|
|
|
if (write)
|
|
irq->wr_mask |= BIT(j);
|
|
else
|
|
irq->rd_mask |= BIT(j);
|
|
|
|
irq->dw = dw;
|
|
memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
|
|
|
|
dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
|
|
write ? "write" : "read", j,
|
|
chan->msi.address_hi, chan->msi.address_lo,
|
|
chan->msi.data);
|
|
|
|
chan->vc.desc_free = vchan_free_desc;
|
|
vchan_init(&chan->vc, dma);
|
|
|
|
if (write) {
|
|
dt_region->paddr = chip->dt_region_wr[j].paddr;
|
|
dt_region->vaddr = chip->dt_region_wr[j].vaddr;
|
|
dt_region->sz = chip->dt_region_wr[j].sz;
|
|
} else {
|
|
dt_region->paddr = chip->dt_region_rd[j].paddr;
|
|
dt_region->vaddr = chip->dt_region_rd[j].vaddr;
|
|
dt_region->sz = chip->dt_region_rd[j].sz;
|
|
}
|
|
|
|
dw_edma_v0_core_device_config(chan);
|
|
}
|
|
|
|
/* Set DMA channel capabilities */
|
|
dma_cap_zero(dma->cap_mask);
|
|
dma_cap_set(DMA_SLAVE, dma->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
|
|
dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
|
|
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
dma->chancnt = cnt;
|
|
|
|
/* Set DMA channel callbacks */
|
|
dma->dev = chip->dev;
|
|
dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
|
|
dma->device_free_chan_resources = dw_edma_free_chan_resources;
|
|
dma->device_config = dw_edma_device_config;
|
|
dma->device_pause = dw_edma_device_pause;
|
|
dma->device_resume = dw_edma_device_resume;
|
|
dma->device_terminate_all = dw_edma_device_terminate_all;
|
|
dma->device_issue_pending = dw_edma_device_issue_pending;
|
|
dma->device_tx_status = dw_edma_device_tx_status;
|
|
dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
|
|
dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
|
|
dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
|
|
|
|
dma_set_max_seg_size(dma->dev, U32_MAX);
|
|
|
|
/* Register DMA device */
|
|
err = dma_async_device_register(dma);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
|
|
{
|
|
if (*nr_irqs && *alloc < cnt) {
|
|
(*alloc)++;
|
|
(*nr_irqs)--;
|
|
}
|
|
}
|
|
|
|
static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
|
|
{
|
|
while (*mask * alloc < cnt)
|
|
(*mask)++;
|
|
}
|
|
|
|
static int dw_edma_irq_request(struct dw_edma *dw,
|
|
u32 *wr_alloc, u32 *rd_alloc)
|
|
{
|
|
struct dw_edma_chip *chip = dw->chip;
|
|
struct device *dev = dw->chip->dev;
|
|
u32 wr_mask = 1;
|
|
u32 rd_mask = 1;
|
|
int i, err = 0;
|
|
u32 ch_cnt;
|
|
int irq;
|
|
|
|
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
|
|
|
|
if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
|
|
return -EINVAL;
|
|
|
|
dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
|
|
if (!dw->irq)
|
|
return -ENOMEM;
|
|
|
|
if (chip->nr_irqs == 1) {
|
|
/* Common IRQ shared among all channels */
|
|
irq = chip->ops->irq_vector(dev, 0);
|
|
err = request_irq(irq, dw_edma_interrupt_common,
|
|
IRQF_SHARED, dw->name, &dw->irq[0]);
|
|
if (err) {
|
|
dw->nr_irqs = 0;
|
|
return err;
|
|
}
|
|
|
|
if (irq_get_msi_desc(irq))
|
|
get_cached_msi_msg(irq, &dw->irq[0].msi);
|
|
|
|
dw->nr_irqs = 1;
|
|
} else {
|
|
/* Distribute IRQs equally among all channels */
|
|
int tmp = chip->nr_irqs;
|
|
|
|
while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
|
|
dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
|
|
dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
|
|
}
|
|
|
|
dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
|
|
dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
|
|
|
|
for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
|
|
irq = chip->ops->irq_vector(dev, i);
|
|
err = request_irq(irq,
|
|
i < *wr_alloc ?
|
|
dw_edma_interrupt_write :
|
|
dw_edma_interrupt_read,
|
|
IRQF_SHARED, dw->name,
|
|
&dw->irq[i]);
|
|
if (err) {
|
|
dw->nr_irqs = i;
|
|
return err;
|
|
}
|
|
|
|
if (irq_get_msi_desc(irq))
|
|
get_cached_msi_msg(irq, &dw->irq[i].msi);
|
|
}
|
|
|
|
dw->nr_irqs = i;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int dw_edma_probe(struct dw_edma_chip *chip)
|
|
{
|
|
struct device *dev;
|
|
struct dw_edma *dw;
|
|
u32 wr_alloc = 0;
|
|
u32 rd_alloc = 0;
|
|
int i, err;
|
|
|
|
if (!chip)
|
|
return -EINVAL;
|
|
|
|
dev = chip->dev;
|
|
if (!dev || !chip->ops)
|
|
return -EINVAL;
|
|
|
|
dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
|
|
if (!dw)
|
|
return -ENOMEM;
|
|
|
|
dw->chip = chip;
|
|
|
|
raw_spin_lock_init(&dw->lock);
|
|
|
|
dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE));
|
|
dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
|
|
|
|
dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
|
|
dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ));
|
|
dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
|
|
|
|
if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
|
|
return -EINVAL;
|
|
|
|
dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
|
|
dw->wr_ch_cnt, dw->rd_ch_cnt);
|
|
|
|
/* Allocate channels */
|
|
dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
|
|
sizeof(*dw->chan), GFP_KERNEL);
|
|
if (!dw->chan)
|
|
return -ENOMEM;
|
|
|
|
snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
|
|
|
|
/* Disable eDMA, only to establish the ideal initial conditions */
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
/* Request IRQs */
|
|
err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Setup write channels */
|
|
err = dw_edma_channel_setup(dw, true, wr_alloc, rd_alloc);
|
|
if (err)
|
|
goto err_irq_free;
|
|
|
|
/* Setup read channels */
|
|
err = dw_edma_channel_setup(dw, false, wr_alloc, rd_alloc);
|
|
if (err)
|
|
goto err_irq_free;
|
|
|
|
/* Turn debugfs on */
|
|
dw_edma_v0_core_debugfs_on(dw);
|
|
|
|
chip->dw = dw;
|
|
|
|
return 0;
|
|
|
|
err_irq_free:
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_edma_probe);
|
|
|
|
int dw_edma_remove(struct dw_edma_chip *chip)
|
|
{
|
|
struct dw_edma_chan *chan, *_chan;
|
|
struct device *dev = chip->dev;
|
|
struct dw_edma *dw = chip->dw;
|
|
int i;
|
|
|
|
/* Disable eDMA */
|
|
dw_edma_v0_core_off(dw);
|
|
|
|
/* Free irqs */
|
|
for (i = (dw->nr_irqs - 1); i >= 0; i--)
|
|
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
|
|
|
|
/* Deregister eDMA device */
|
|
dma_async_device_unregister(&dw->wr_edma);
|
|
list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
|
|
vc.chan.device_node) {
|
|
tasklet_kill(&chan->vc.task);
|
|
list_del(&chan->vc.chan.device_node);
|
|
}
|
|
|
|
dma_async_device_unregister(&dw->rd_edma);
|
|
list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
|
|
vc.chan.device_node) {
|
|
tasklet_kill(&chan->vc.task);
|
|
list_del(&chan->vc.chan.device_node);
|
|
}
|
|
|
|
/* Turn debugfs off */
|
|
dw_edma_v0_core_debugfs_off(dw);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_edma_remove);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
|
|
MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
|