1542 lines
38 KiB
C
1542 lines
38 KiB
C
/*
|
|
* Performance events - AMD IBS
|
|
*
|
|
* Copyright (C) 2011 Advanced Micro Devices, Inc., Robert Richter
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/init.h>
|
|
#include <linux/export.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/sched/clock.h>
|
|
|
|
#include <asm/apic.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
static u32 ibs_caps;
|
|
|
|
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD)
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/hardirq.h>
|
|
|
|
#include <asm/nmi.h>
|
|
#include <asm/amd-ibs.h>
|
|
|
|
#define IBS_FETCH_CONFIG_MASK (IBS_FETCH_RAND_EN | IBS_FETCH_MAX_CNT)
|
|
#define IBS_OP_CONFIG_MASK IBS_OP_MAX_CNT
|
|
|
|
|
|
/*
|
|
* IBS states:
|
|
*
|
|
* ENABLED; tracks the pmu::add(), pmu::del() state, when set the counter is taken
|
|
* and any further add()s must fail.
|
|
*
|
|
* STARTED/STOPPING/STOPPED; deal with pmu::start(), pmu::stop() state but are
|
|
* complicated by the fact that the IBS hardware can send late NMIs (ie. after
|
|
* we've cleared the EN bit).
|
|
*
|
|
* In order to consume these late NMIs we have the STOPPED state, any NMI that
|
|
* happens after we've cleared the EN state will clear this bit and report the
|
|
* NMI handled (this is fundamentally racy in the face or multiple NMI sources,
|
|
* someone else can consume our BIT and our NMI will go unhandled).
|
|
*
|
|
* And since we cannot set/clear this separate bit together with the EN bit,
|
|
* there are races; if we cleared STARTED early, an NMI could land in
|
|
* between clearing STARTED and clearing the EN bit (in fact multiple NMIs
|
|
* could happen if the period is small enough), and consume our STOPPED bit
|
|
* and trigger streams of unhandled NMIs.
|
|
*
|
|
* If, however, we clear STARTED late, an NMI can hit between clearing the
|
|
* EN bit and clearing STARTED, still see STARTED set and process the event.
|
|
* If this event will have the VALID bit clear, we bail properly, but this
|
|
* is not a given. With VALID set we can end up calling pmu::stop() again
|
|
* (the throttle logic) and trigger the WARNs in there.
|
|
*
|
|
* So what we do is set STOPPING before clearing EN to avoid the pmu::stop()
|
|
* nesting, and clear STARTED late, so that we have a well defined state over
|
|
* the clearing of the EN bit.
|
|
*
|
|
* XXX: we could probably be using !atomic bitops for all this.
|
|
*/
|
|
|
|
enum ibs_states {
|
|
IBS_ENABLED = 0,
|
|
IBS_STARTED = 1,
|
|
IBS_STOPPING = 2,
|
|
IBS_STOPPED = 3,
|
|
|
|
IBS_MAX_STATES,
|
|
};
|
|
|
|
struct cpu_perf_ibs {
|
|
struct perf_event *event;
|
|
unsigned long state[BITS_TO_LONGS(IBS_MAX_STATES)];
|
|
};
|
|
|
|
struct perf_ibs {
|
|
struct pmu pmu;
|
|
unsigned int msr;
|
|
u64 config_mask;
|
|
u64 cnt_mask;
|
|
u64 enable_mask;
|
|
u64 valid_mask;
|
|
u64 max_period;
|
|
unsigned long offset_mask[1];
|
|
int offset_max;
|
|
unsigned int fetch_count_reset_broken : 1;
|
|
unsigned int fetch_ignore_if_zero_rip : 1;
|
|
struct cpu_perf_ibs __percpu *pcpu;
|
|
|
|
u64 (*get_count)(u64 config);
|
|
};
|
|
|
|
static int
|
|
perf_event_set_period(struct hw_perf_event *hwc, u64 min, u64 max, u64 *hw_period)
|
|
{
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int overflow = 0;
|
|
|
|
/*
|
|
* If we are way outside a reasonable range then just skip forward:
|
|
*/
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
}
|
|
|
|
if (unlikely(left < (s64)min)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
}
|
|
|
|
/*
|
|
* If the hw period that triggers the sw overflow is too short
|
|
* we might hit the irq handler. This biases the results.
|
|
* Thus we shorten the next-to-last period and set the last
|
|
* period to the max period.
|
|
*/
|
|
if (left > max) {
|
|
left -= max;
|
|
if (left > max)
|
|
left = max;
|
|
else if (left < min)
|
|
left = min;
|
|
}
|
|
|
|
*hw_period = (u64)left;
|
|
|
|
return overflow;
|
|
}
|
|
|
|
static int
|
|
perf_event_try_update(struct perf_event *event, u64 new_raw_count, int width)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int shift = 64 - width;
|
|
u64 prev_raw_count;
|
|
u64 delta;
|
|
|
|
/*
|
|
* Careful: an NMI might modify the previous event value.
|
|
*
|
|
* Our tactic to handle this is to first atomically read and
|
|
* exchange a new raw count - then add that new-prev delta
|
|
* count to the generic event atomically:
|
|
*/
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
return 0;
|
|
|
|
/*
|
|
* Now we have the new raw value and have updated the prev
|
|
* timestamp already. We can now calculate the elapsed delta
|
|
* (event-)time and add that to the generic event.
|
|
*
|
|
* Careful, not all hw sign-extends above the physical width
|
|
* of the count.
|
|
*/
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct perf_ibs perf_ibs_fetch;
|
|
static struct perf_ibs perf_ibs_op;
|
|
|
|
static struct perf_ibs *get_ibs_pmu(int type)
|
|
{
|
|
if (perf_ibs_fetch.pmu.type == type)
|
|
return &perf_ibs_fetch;
|
|
if (perf_ibs_op.pmu.type == type)
|
|
return &perf_ibs_op;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* core pmu config -> IBS config
|
|
*
|
|
* perf record -a -e cpu-cycles:p ... # use ibs op counting cycle count
|
|
* perf record -a -e r076:p ... # same as -e cpu-cycles:p
|
|
* perf record -a -e r0C1:p ... # use ibs op counting micro-ops
|
|
*
|
|
* IbsOpCntCtl (bit 19) of IBS Execution Control Register (IbsOpCtl,
|
|
* MSRC001_1033) is used to select either cycle or micro-ops counting
|
|
* mode.
|
|
*/
|
|
static int core_pmu_ibs_config(struct perf_event *event, u64 *config)
|
|
{
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
switch (event->attr.config) {
|
|
case PERF_COUNT_HW_CPU_CYCLES:
|
|
*config = 0;
|
|
return 0;
|
|
}
|
|
break;
|
|
case PERF_TYPE_RAW:
|
|
switch (event->attr.config) {
|
|
case 0x0076:
|
|
*config = 0;
|
|
return 0;
|
|
case 0x00C1:
|
|
*config = IBS_OP_CNT_CTL;
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* The rip of IBS samples has skid 0. Thus, IBS supports precise
|
|
* levels 1 and 2 and the PERF_EFLAGS_EXACT is set. In rare cases the
|
|
* rip is invalid when IBS was not able to record the rip correctly.
|
|
* We clear PERF_EFLAGS_EXACT and take the rip from pt_regs then.
|
|
*/
|
|
int forward_event_to_ibs(struct perf_event *event)
|
|
{
|
|
u64 config = 0;
|
|
|
|
if (!event->attr.precise_ip || event->attr.precise_ip > 2)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!core_pmu_ibs_config(event, &config)) {
|
|
event->attr.type = perf_ibs_op.pmu.type;
|
|
event->attr.config = config;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int perf_ibs_init(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct perf_ibs *perf_ibs;
|
|
u64 max_cnt, config;
|
|
|
|
perf_ibs = get_ibs_pmu(event->attr.type);
|
|
if (!perf_ibs)
|
|
return -ENOENT;
|
|
|
|
config = event->attr.config;
|
|
|
|
if (event->pmu != &perf_ibs->pmu)
|
|
return -ENOENT;
|
|
|
|
if (config & ~perf_ibs->config_mask)
|
|
return -EINVAL;
|
|
|
|
if (hwc->sample_period) {
|
|
if (config & perf_ibs->cnt_mask)
|
|
/* raw max_cnt may not be set */
|
|
return -EINVAL;
|
|
if (!event->attr.sample_freq && hwc->sample_period & 0x0f)
|
|
/*
|
|
* lower 4 bits can not be set in ibs max cnt,
|
|
* but allowing it in case we adjust the
|
|
* sample period to set a frequency.
|
|
*/
|
|
return -EINVAL;
|
|
hwc->sample_period &= ~0x0FULL;
|
|
if (!hwc->sample_period)
|
|
hwc->sample_period = 0x10;
|
|
} else {
|
|
max_cnt = config & perf_ibs->cnt_mask;
|
|
config &= ~perf_ibs->cnt_mask;
|
|
event->attr.sample_period = max_cnt << 4;
|
|
hwc->sample_period = event->attr.sample_period;
|
|
}
|
|
|
|
if (!hwc->sample_period)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If we modify hwc->sample_period, we also need to update
|
|
* hwc->last_period and hwc->period_left.
|
|
*/
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
|
|
hwc->config_base = perf_ibs->msr;
|
|
hwc->config = config;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int perf_ibs_set_period(struct perf_ibs *perf_ibs,
|
|
struct hw_perf_event *hwc, u64 *period)
|
|
{
|
|
int overflow;
|
|
|
|
/* ignore lower 4 bits in min count: */
|
|
overflow = perf_event_set_period(hwc, 1<<4, perf_ibs->max_period, period);
|
|
local64_set(&hwc->prev_count, 0);
|
|
|
|
return overflow;
|
|
}
|
|
|
|
static u64 get_ibs_fetch_count(u64 config)
|
|
{
|
|
union ibs_fetch_ctl fetch_ctl = (union ibs_fetch_ctl)config;
|
|
|
|
return fetch_ctl.fetch_cnt << 4;
|
|
}
|
|
|
|
static u64 get_ibs_op_count(u64 config)
|
|
{
|
|
union ibs_op_ctl op_ctl = (union ibs_op_ctl)config;
|
|
u64 count = 0;
|
|
|
|
/*
|
|
* If the internal 27-bit counter rolled over, the count is MaxCnt
|
|
* and the lower 7 bits of CurCnt are randomized.
|
|
* Otherwise CurCnt has the full 27-bit current counter value.
|
|
*/
|
|
if (op_ctl.op_val) {
|
|
count = op_ctl.opmaxcnt << 4;
|
|
if (ibs_caps & IBS_CAPS_OPCNTEXT)
|
|
count += op_ctl.opmaxcnt_ext << 20;
|
|
} else if (ibs_caps & IBS_CAPS_RDWROPCNT) {
|
|
count = op_ctl.opcurcnt;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void
|
|
perf_ibs_event_update(struct perf_ibs *perf_ibs, struct perf_event *event,
|
|
u64 *config)
|
|
{
|
|
u64 count = perf_ibs->get_count(*config);
|
|
|
|
/*
|
|
* Set width to 64 since we do not overflow on max width but
|
|
* instead on max count. In perf_ibs_set_period() we clear
|
|
* prev count manually on overflow.
|
|
*/
|
|
while (!perf_event_try_update(event, count, 64)) {
|
|
rdmsrl(event->hw.config_base, *config);
|
|
count = perf_ibs->get_count(*config);
|
|
}
|
|
}
|
|
|
|
static inline void perf_ibs_enable_event(struct perf_ibs *perf_ibs,
|
|
struct hw_perf_event *hwc, u64 config)
|
|
{
|
|
u64 tmp = hwc->config | config;
|
|
|
|
if (perf_ibs->fetch_count_reset_broken)
|
|
wrmsrl(hwc->config_base, tmp & ~perf_ibs->enable_mask);
|
|
|
|
wrmsrl(hwc->config_base, tmp | perf_ibs->enable_mask);
|
|
}
|
|
|
|
/*
|
|
* Erratum #420 Instruction-Based Sampling Engine May Generate
|
|
* Interrupt that Cannot Be Cleared:
|
|
*
|
|
* Must clear counter mask first, then clear the enable bit. See
|
|
* Revision Guide for AMD Family 10h Processors, Publication #41322.
|
|
*/
|
|
static inline void perf_ibs_disable_event(struct perf_ibs *perf_ibs,
|
|
struct hw_perf_event *hwc, u64 config)
|
|
{
|
|
config &= ~perf_ibs->cnt_mask;
|
|
if (boot_cpu_data.x86 == 0x10)
|
|
wrmsrl(hwc->config_base, config);
|
|
config &= ~perf_ibs->enable_mask;
|
|
wrmsrl(hwc->config_base, config);
|
|
}
|
|
|
|
/*
|
|
* We cannot restore the ibs pmu state, so we always needs to update
|
|
* the event while stopping it and then reset the state when starting
|
|
* again. Thus, ignoring PERF_EF_RELOAD and PERF_EF_UPDATE flags in
|
|
* perf_ibs_start()/perf_ibs_stop() and instead always do it.
|
|
*/
|
|
static void perf_ibs_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
|
|
struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
|
|
u64 period, config = 0;
|
|
|
|
if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
|
|
return;
|
|
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
hwc->state = 0;
|
|
|
|
perf_ibs_set_period(perf_ibs, hwc, &period);
|
|
if (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_OPCNTEXT)) {
|
|
config |= period & IBS_OP_MAX_CNT_EXT_MASK;
|
|
period &= ~IBS_OP_MAX_CNT_EXT_MASK;
|
|
}
|
|
config |= period >> 4;
|
|
|
|
/*
|
|
* Set STARTED before enabling the hardware, such that a subsequent NMI
|
|
* must observe it.
|
|
*/
|
|
set_bit(IBS_STARTED, pcpu->state);
|
|
clear_bit(IBS_STOPPING, pcpu->state);
|
|
perf_ibs_enable_event(perf_ibs, hwc, config);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static void perf_ibs_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
|
|
struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
|
|
u64 config;
|
|
int stopping;
|
|
|
|
if (test_and_set_bit(IBS_STOPPING, pcpu->state))
|
|
return;
|
|
|
|
stopping = test_bit(IBS_STARTED, pcpu->state);
|
|
|
|
if (!stopping && (hwc->state & PERF_HES_UPTODATE))
|
|
return;
|
|
|
|
rdmsrl(hwc->config_base, config);
|
|
|
|
if (stopping) {
|
|
/*
|
|
* Set STOPPED before disabling the hardware, such that it
|
|
* must be visible to NMIs the moment we clear the EN bit,
|
|
* at which point we can generate an !VALID sample which
|
|
* we need to consume.
|
|
*/
|
|
set_bit(IBS_STOPPED, pcpu->state);
|
|
perf_ibs_disable_event(perf_ibs, hwc, config);
|
|
/*
|
|
* Clear STARTED after disabling the hardware; if it were
|
|
* cleared before an NMI hitting after the clear but before
|
|
* clearing the EN bit might think it a spurious NMI and not
|
|
* handle it.
|
|
*
|
|
* Clearing it after, however, creates the problem of the NMI
|
|
* handler seeing STARTED but not having a valid sample.
|
|
*/
|
|
clear_bit(IBS_STARTED, pcpu->state);
|
|
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if (hwc->state & PERF_HES_UPTODATE)
|
|
return;
|
|
|
|
/*
|
|
* Clear valid bit to not count rollovers on update, rollovers
|
|
* are only updated in the irq handler.
|
|
*/
|
|
config &= ~perf_ibs->valid_mask;
|
|
|
|
perf_ibs_event_update(perf_ibs, event, &config);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
|
|
static int perf_ibs_add(struct perf_event *event, int flags)
|
|
{
|
|
struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
|
|
struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
|
|
|
|
if (test_and_set_bit(IBS_ENABLED, pcpu->state))
|
|
return -ENOSPC;
|
|
|
|
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
|
|
pcpu->event = event;
|
|
|
|
if (flags & PERF_EF_START)
|
|
perf_ibs_start(event, PERF_EF_RELOAD);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void perf_ibs_del(struct perf_event *event, int flags)
|
|
{
|
|
struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu);
|
|
struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
|
|
|
|
if (!test_and_clear_bit(IBS_ENABLED, pcpu->state))
|
|
return;
|
|
|
|
perf_ibs_stop(event, PERF_EF_UPDATE);
|
|
|
|
pcpu->event = NULL;
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static void perf_ibs_read(struct perf_event *event) { }
|
|
|
|
/*
|
|
* We need to initialize with empty group if all attributes in the
|
|
* group are dynamic.
|
|
*/
|
|
static struct attribute *attrs_empty[] = {
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group empty_format_group = {
|
|
.name = "format",
|
|
.attrs = attrs_empty,
|
|
};
|
|
|
|
static struct attribute_group empty_caps_group = {
|
|
.name = "caps",
|
|
.attrs = attrs_empty,
|
|
};
|
|
|
|
static const struct attribute_group *empty_attr_groups[] = {
|
|
&empty_format_group,
|
|
&empty_caps_group,
|
|
NULL,
|
|
};
|
|
|
|
PMU_FORMAT_ATTR(rand_en, "config:57");
|
|
PMU_FORMAT_ATTR(cnt_ctl, "config:19");
|
|
PMU_EVENT_ATTR_STRING(l3missonly, fetch_l3missonly, "config:59");
|
|
PMU_EVENT_ATTR_STRING(l3missonly, op_l3missonly, "config:16");
|
|
PMU_EVENT_ATTR_STRING(zen4_ibs_extensions, zen4_ibs_extensions, "1");
|
|
|
|
static umode_t
|
|
zen4_ibs_extensions_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return ibs_caps & IBS_CAPS_ZEN4 ? attr->mode : 0;
|
|
}
|
|
|
|
static struct attribute *rand_en_attrs[] = {
|
|
&format_attr_rand_en.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *fetch_l3missonly_attrs[] = {
|
|
&fetch_l3missonly.attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *zen4_ibs_extensions_attrs[] = {
|
|
&zen4_ibs_extensions.attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group group_rand_en = {
|
|
.name = "format",
|
|
.attrs = rand_en_attrs,
|
|
};
|
|
|
|
static struct attribute_group group_fetch_l3missonly = {
|
|
.name = "format",
|
|
.attrs = fetch_l3missonly_attrs,
|
|
.is_visible = zen4_ibs_extensions_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_zen4_ibs_extensions = {
|
|
.name = "caps",
|
|
.attrs = zen4_ibs_extensions_attrs,
|
|
.is_visible = zen4_ibs_extensions_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *fetch_attr_groups[] = {
|
|
&group_rand_en,
|
|
&empty_caps_group,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group *fetch_attr_update[] = {
|
|
&group_fetch_l3missonly,
|
|
&group_zen4_ibs_extensions,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t
|
|
cnt_ctl_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return ibs_caps & IBS_CAPS_OPCNT ? attr->mode : 0;
|
|
}
|
|
|
|
static struct attribute *cnt_ctl_attrs[] = {
|
|
&format_attr_cnt_ctl.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute *op_l3missonly_attrs[] = {
|
|
&op_l3missonly.attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group group_cnt_ctl = {
|
|
.name = "format",
|
|
.attrs = cnt_ctl_attrs,
|
|
.is_visible = cnt_ctl_is_visible,
|
|
};
|
|
|
|
static struct attribute_group group_op_l3missonly = {
|
|
.name = "format",
|
|
.attrs = op_l3missonly_attrs,
|
|
.is_visible = zen4_ibs_extensions_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *op_attr_update[] = {
|
|
&group_cnt_ctl,
|
|
&group_op_l3missonly,
|
|
&group_zen4_ibs_extensions,
|
|
NULL,
|
|
};
|
|
|
|
static struct perf_ibs perf_ibs_fetch = {
|
|
.pmu = {
|
|
.task_ctx_nr = perf_invalid_context,
|
|
|
|
.event_init = perf_ibs_init,
|
|
.add = perf_ibs_add,
|
|
.del = perf_ibs_del,
|
|
.start = perf_ibs_start,
|
|
.stop = perf_ibs_stop,
|
|
.read = perf_ibs_read,
|
|
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
|
|
},
|
|
.msr = MSR_AMD64_IBSFETCHCTL,
|
|
.config_mask = IBS_FETCH_CONFIG_MASK,
|
|
.cnt_mask = IBS_FETCH_MAX_CNT,
|
|
.enable_mask = IBS_FETCH_ENABLE,
|
|
.valid_mask = IBS_FETCH_VAL,
|
|
.max_period = IBS_FETCH_MAX_CNT << 4,
|
|
.offset_mask = { MSR_AMD64_IBSFETCH_REG_MASK },
|
|
.offset_max = MSR_AMD64_IBSFETCH_REG_COUNT,
|
|
|
|
.get_count = get_ibs_fetch_count,
|
|
};
|
|
|
|
static struct perf_ibs perf_ibs_op = {
|
|
.pmu = {
|
|
.task_ctx_nr = perf_invalid_context,
|
|
|
|
.event_init = perf_ibs_init,
|
|
.add = perf_ibs_add,
|
|
.del = perf_ibs_del,
|
|
.start = perf_ibs_start,
|
|
.stop = perf_ibs_stop,
|
|
.read = perf_ibs_read,
|
|
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
|
|
},
|
|
.msr = MSR_AMD64_IBSOPCTL,
|
|
.config_mask = IBS_OP_CONFIG_MASK,
|
|
.cnt_mask = IBS_OP_MAX_CNT | IBS_OP_CUR_CNT |
|
|
IBS_OP_CUR_CNT_RAND,
|
|
.enable_mask = IBS_OP_ENABLE,
|
|
.valid_mask = IBS_OP_VAL,
|
|
.max_period = IBS_OP_MAX_CNT << 4,
|
|
.offset_mask = { MSR_AMD64_IBSOP_REG_MASK },
|
|
.offset_max = MSR_AMD64_IBSOP_REG_COUNT,
|
|
|
|
.get_count = get_ibs_op_count,
|
|
};
|
|
|
|
static void perf_ibs_get_mem_op(union ibs_op_data3 *op_data3,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union perf_mem_data_src *data_src = &data->data_src;
|
|
|
|
data_src->mem_op = PERF_MEM_OP_NA;
|
|
|
|
if (op_data3->ld_op)
|
|
data_src->mem_op = PERF_MEM_OP_LOAD;
|
|
else if (op_data3->st_op)
|
|
data_src->mem_op = PERF_MEM_OP_STORE;
|
|
}
|
|
|
|
/*
|
|
* Processors having CPUID_Fn8000001B_EAX[11] aka IBS_CAPS_ZEN4 has
|
|
* more fine granular DataSrc encodings. Others have coarse.
|
|
*/
|
|
static u8 perf_ibs_data_src(union ibs_op_data2 *op_data2)
|
|
{
|
|
if (ibs_caps & IBS_CAPS_ZEN4)
|
|
return (op_data2->data_src_hi << 3) | op_data2->data_src_lo;
|
|
|
|
return op_data2->data_src_lo;
|
|
}
|
|
|
|
static void perf_ibs_get_mem_lvl(union ibs_op_data2 *op_data2,
|
|
union ibs_op_data3 *op_data3,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union perf_mem_data_src *data_src = &data->data_src;
|
|
u8 ibs_data_src = perf_ibs_data_src(op_data2);
|
|
|
|
data_src->mem_lvl = 0;
|
|
|
|
/*
|
|
* DcMiss, L2Miss, DataSrc, DcMissLat etc. are all invalid for Uncached
|
|
* memory accesses. So, check DcUcMemAcc bit early.
|
|
*/
|
|
if (op_data3->dc_uc_mem_acc && ibs_data_src != IBS_DATA_SRC_EXT_IO) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_UNC | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
|
|
/* L1 Hit */
|
|
if (op_data3->dc_miss == 0) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
|
|
/* L2 Hit */
|
|
if (op_data3->l2_miss == 0) {
|
|
/* Erratum #1293 */
|
|
if (boot_cpu_data.x86 != 0x19 || boot_cpu_data.x86_model > 0xF ||
|
|
!(op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* OP_DATA2 is valid only for load ops. Skip all checks which
|
|
* uses OP_DATA2[DataSrc].
|
|
*/
|
|
if (data_src->mem_op != PERF_MEM_OP_LOAD)
|
|
goto check_mab;
|
|
|
|
/* L3 Hit */
|
|
if (ibs_caps & IBS_CAPS_ZEN4) {
|
|
if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
} else {
|
|
if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_REM_CCE1 |
|
|
PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* A peer cache in a near CCX */
|
|
if (ibs_caps & IBS_CAPS_ZEN4 &&
|
|
ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
|
|
/* A peer cache in a far CCX */
|
|
if (ibs_caps & IBS_CAPS_ZEN4) {
|
|
if (ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
} else {
|
|
if (ibs_data_src == IBS_DATA_SRC_REM_CACHE) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_REM_CCE2 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* DRAM */
|
|
if (ibs_data_src == IBS_DATA_SRC_EXT_DRAM) {
|
|
if (op_data2->rmt_node == 0)
|
|
data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT;
|
|
else
|
|
data_src->mem_lvl = PERF_MEM_LVL_REM_RAM1 | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
|
|
/* PMEM */
|
|
if (ibs_caps & IBS_CAPS_ZEN4 && ibs_data_src == IBS_DATA_SRC_EXT_PMEM) {
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_PMEM;
|
|
if (op_data2->rmt_node) {
|
|
data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
|
|
/* IBS doesn't provide Remote socket detail */
|
|
data_src->mem_hops = PERF_MEM_HOPS_1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Extension Memory */
|
|
if (ibs_caps & IBS_CAPS_ZEN4 &&
|
|
ibs_data_src == IBS_DATA_SRC_EXT_EXT_MEM) {
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_CXL;
|
|
if (op_data2->rmt_node) {
|
|
data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
|
|
/* IBS doesn't provide Remote socket detail */
|
|
data_src->mem_hops = PERF_MEM_HOPS_1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* IO */
|
|
if (ibs_data_src == IBS_DATA_SRC_EXT_IO) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_IO;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_IO;
|
|
if (op_data2->rmt_node) {
|
|
data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
|
|
/* IBS doesn't provide Remote socket detail */
|
|
data_src->mem_hops = PERF_MEM_HOPS_1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
check_mab:
|
|
/*
|
|
* MAB (Miss Address Buffer) Hit. MAB keeps track of outstanding
|
|
* DC misses. However, such data may come from any level in mem
|
|
* hierarchy. IBS provides detail about both MAB as well as actual
|
|
* DataSrc simultaneously. Prioritize DataSrc over MAB, i.e. set
|
|
* MAB only when IBS fails to provide DataSrc.
|
|
*/
|
|
if (op_data3->dc_miss_no_mab_alloc) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_LFB | PERF_MEM_LVL_HIT;
|
|
return;
|
|
}
|
|
|
|
data_src->mem_lvl = PERF_MEM_LVL_NA;
|
|
}
|
|
|
|
static bool perf_ibs_cache_hit_st_valid(void)
|
|
{
|
|
/* 0: Uninitialized, 1: Valid, -1: Invalid */
|
|
static int cache_hit_st_valid;
|
|
|
|
if (unlikely(!cache_hit_st_valid)) {
|
|
if (boot_cpu_data.x86 == 0x19 &&
|
|
(boot_cpu_data.x86_model <= 0xF ||
|
|
(boot_cpu_data.x86_model >= 0x20 &&
|
|
boot_cpu_data.x86_model <= 0x5F))) {
|
|
cache_hit_st_valid = -1;
|
|
} else {
|
|
cache_hit_st_valid = 1;
|
|
}
|
|
}
|
|
|
|
return cache_hit_st_valid == 1;
|
|
}
|
|
|
|
static void perf_ibs_get_mem_snoop(union ibs_op_data2 *op_data2,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union perf_mem_data_src *data_src = &data->data_src;
|
|
u8 ibs_data_src;
|
|
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_NA;
|
|
|
|
if (!perf_ibs_cache_hit_st_valid() ||
|
|
data_src->mem_op != PERF_MEM_OP_LOAD ||
|
|
data_src->mem_lvl & PERF_MEM_LVL_L1 ||
|
|
data_src->mem_lvl & PERF_MEM_LVL_L2 ||
|
|
op_data2->cache_hit_st)
|
|
return;
|
|
|
|
ibs_data_src = perf_ibs_data_src(op_data2);
|
|
|
|
if (ibs_caps & IBS_CAPS_ZEN4) {
|
|
if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE ||
|
|
ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE ||
|
|
ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE)
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_HITM;
|
|
} else if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) {
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_HITM;
|
|
}
|
|
}
|
|
|
|
static void perf_ibs_get_tlb_lvl(union ibs_op_data3 *op_data3,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union perf_mem_data_src *data_src = &data->data_src;
|
|
|
|
data_src->mem_dtlb = PERF_MEM_TLB_NA;
|
|
|
|
if (!op_data3->dc_lin_addr_valid)
|
|
return;
|
|
|
|
if (!op_data3->dc_l1tlb_miss) {
|
|
data_src->mem_dtlb = PERF_MEM_TLB_L1 | PERF_MEM_TLB_HIT;
|
|
return;
|
|
}
|
|
|
|
if (!op_data3->dc_l2tlb_miss) {
|
|
data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_HIT;
|
|
return;
|
|
}
|
|
|
|
data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_MISS;
|
|
}
|
|
|
|
static void perf_ibs_get_mem_lock(union ibs_op_data3 *op_data3,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union perf_mem_data_src *data_src = &data->data_src;
|
|
|
|
data_src->mem_lock = PERF_MEM_LOCK_NA;
|
|
|
|
if (op_data3->dc_locked_op)
|
|
data_src->mem_lock = PERF_MEM_LOCK_LOCKED;
|
|
}
|
|
|
|
#define ibs_op_msr_idx(msr) (msr - MSR_AMD64_IBSOPCTL)
|
|
|
|
static void perf_ibs_get_data_src(struct perf_ibs_data *ibs_data,
|
|
struct perf_sample_data *data,
|
|
union ibs_op_data2 *op_data2,
|
|
union ibs_op_data3 *op_data3)
|
|
{
|
|
perf_ibs_get_mem_lvl(op_data2, op_data3, data);
|
|
perf_ibs_get_mem_snoop(op_data2, data);
|
|
perf_ibs_get_tlb_lvl(op_data3, data);
|
|
perf_ibs_get_mem_lock(op_data3, data);
|
|
}
|
|
|
|
static __u64 perf_ibs_get_op_data2(struct perf_ibs_data *ibs_data,
|
|
union ibs_op_data3 *op_data3)
|
|
{
|
|
__u64 val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA2)];
|
|
|
|
/* Erratum #1293 */
|
|
if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model <= 0xF &&
|
|
(op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) {
|
|
/*
|
|
* OP_DATA2 has only two fields on Zen3: DataSrc and RmtNode.
|
|
* DataSrc=0 is 'No valid status' and RmtNode is invalid when
|
|
* DataSrc=0.
|
|
*/
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void perf_ibs_parse_ld_st_data(__u64 sample_type,
|
|
struct perf_ibs_data *ibs_data,
|
|
struct perf_sample_data *data)
|
|
{
|
|
union ibs_op_data3 op_data3;
|
|
union ibs_op_data2 op_data2;
|
|
union ibs_op_data op_data;
|
|
|
|
data->data_src.val = PERF_MEM_NA;
|
|
op_data3.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA3)];
|
|
|
|
perf_ibs_get_mem_op(&op_data3, data);
|
|
if (data->data_src.mem_op != PERF_MEM_OP_LOAD &&
|
|
data->data_src.mem_op != PERF_MEM_OP_STORE)
|
|
return;
|
|
|
|
op_data2.val = perf_ibs_get_op_data2(ibs_data, &op_data3);
|
|
|
|
if (sample_type & PERF_SAMPLE_DATA_SRC) {
|
|
perf_ibs_get_data_src(ibs_data, data, &op_data2, &op_data3);
|
|
data->sample_flags |= PERF_SAMPLE_DATA_SRC;
|
|
}
|
|
|
|
if (sample_type & PERF_SAMPLE_WEIGHT_TYPE && op_data3.dc_miss &&
|
|
data->data_src.mem_op == PERF_MEM_OP_LOAD) {
|
|
op_data.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA)];
|
|
|
|
if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
|
|
data->weight.var1_dw = op_data3.dc_miss_lat;
|
|
data->weight.var2_w = op_data.tag_to_ret_ctr;
|
|
} else if (sample_type & PERF_SAMPLE_WEIGHT) {
|
|
data->weight.full = op_data3.dc_miss_lat;
|
|
}
|
|
data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
|
|
}
|
|
|
|
if (sample_type & PERF_SAMPLE_ADDR && op_data3.dc_lin_addr_valid) {
|
|
data->addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCLINAD)];
|
|
data->sample_flags |= PERF_SAMPLE_ADDR;
|
|
}
|
|
|
|
if (sample_type & PERF_SAMPLE_PHYS_ADDR && op_data3.dc_phy_addr_valid) {
|
|
data->phys_addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCPHYSAD)];
|
|
data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
|
|
}
|
|
}
|
|
|
|
static int perf_ibs_get_offset_max(struct perf_ibs *perf_ibs, u64 sample_type,
|
|
int check_rip)
|
|
{
|
|
if (sample_type & PERF_SAMPLE_RAW ||
|
|
(perf_ibs == &perf_ibs_op &&
|
|
(sample_type & PERF_SAMPLE_DATA_SRC ||
|
|
sample_type & PERF_SAMPLE_WEIGHT_TYPE ||
|
|
sample_type & PERF_SAMPLE_ADDR ||
|
|
sample_type & PERF_SAMPLE_PHYS_ADDR)))
|
|
return perf_ibs->offset_max;
|
|
else if (check_rip)
|
|
return 3;
|
|
return 1;
|
|
}
|
|
|
|
static int perf_ibs_handle_irq(struct perf_ibs *perf_ibs, struct pt_regs *iregs)
|
|
{
|
|
struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu);
|
|
struct perf_event *event = pcpu->event;
|
|
struct hw_perf_event *hwc;
|
|
struct perf_sample_data data;
|
|
struct perf_raw_record raw;
|
|
struct pt_regs regs;
|
|
struct perf_ibs_data ibs_data;
|
|
int offset, size, check_rip, offset_max, throttle = 0;
|
|
unsigned int msr;
|
|
u64 *buf, *config, period, new_config = 0;
|
|
|
|
if (!test_bit(IBS_STARTED, pcpu->state)) {
|
|
fail:
|
|
/*
|
|
* Catch spurious interrupts after stopping IBS: After
|
|
* disabling IBS there could be still incoming NMIs
|
|
* with samples that even have the valid bit cleared.
|
|
* Mark all this NMIs as handled.
|
|
*/
|
|
if (test_and_clear_bit(IBS_STOPPED, pcpu->state))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!event))
|
|
goto fail;
|
|
|
|
hwc = &event->hw;
|
|
msr = hwc->config_base;
|
|
buf = ibs_data.regs;
|
|
rdmsrl(msr, *buf);
|
|
if (!(*buf++ & perf_ibs->valid_mask))
|
|
goto fail;
|
|
|
|
config = &ibs_data.regs[0];
|
|
perf_ibs_event_update(perf_ibs, event, config);
|
|
perf_sample_data_init(&data, 0, hwc->last_period);
|
|
if (!perf_ibs_set_period(perf_ibs, hwc, &period))
|
|
goto out; /* no sw counter overflow */
|
|
|
|
ibs_data.caps = ibs_caps;
|
|
size = 1;
|
|
offset = 1;
|
|
check_rip = (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_RIPINVALIDCHK));
|
|
|
|
offset_max = perf_ibs_get_offset_max(perf_ibs, event->attr.sample_type, check_rip);
|
|
|
|
do {
|
|
rdmsrl(msr + offset, *buf++);
|
|
size++;
|
|
offset = find_next_bit(perf_ibs->offset_mask,
|
|
perf_ibs->offset_max,
|
|
offset + 1);
|
|
} while (offset < offset_max);
|
|
/*
|
|
* Read IbsBrTarget, IbsOpData4, and IbsExtdCtl separately
|
|
* depending on their availability.
|
|
* Can't add to offset_max as they are staggered
|
|
*/
|
|
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
|
|
if (perf_ibs == &perf_ibs_op) {
|
|
if (ibs_caps & IBS_CAPS_BRNTRGT) {
|
|
rdmsrl(MSR_AMD64_IBSBRTARGET, *buf++);
|
|
size++;
|
|
}
|
|
if (ibs_caps & IBS_CAPS_OPDATA4) {
|
|
rdmsrl(MSR_AMD64_IBSOPDATA4, *buf++);
|
|
size++;
|
|
}
|
|
}
|
|
if (perf_ibs == &perf_ibs_fetch && (ibs_caps & IBS_CAPS_FETCHCTLEXTD)) {
|
|
rdmsrl(MSR_AMD64_ICIBSEXTDCTL, *buf++);
|
|
size++;
|
|
}
|
|
}
|
|
ibs_data.size = sizeof(u64) * size;
|
|
|
|
regs = *iregs;
|
|
if (check_rip && (ibs_data.regs[2] & IBS_RIP_INVALID)) {
|
|
regs.flags &= ~PERF_EFLAGS_EXACT;
|
|
} else {
|
|
/* Workaround for erratum #1197 */
|
|
if (perf_ibs->fetch_ignore_if_zero_rip && !(ibs_data.regs[1]))
|
|
goto out;
|
|
|
|
set_linear_ip(®s, ibs_data.regs[1]);
|
|
regs.flags |= PERF_EFLAGS_EXACT;
|
|
}
|
|
|
|
if (event->attr.sample_type & PERF_SAMPLE_RAW) {
|
|
raw = (struct perf_raw_record){
|
|
.frag = {
|
|
.size = sizeof(u32) + ibs_data.size,
|
|
.data = ibs_data.data,
|
|
},
|
|
};
|
|
data.raw = &raw;
|
|
data.sample_flags |= PERF_SAMPLE_RAW;
|
|
}
|
|
|
|
if (perf_ibs == &perf_ibs_op)
|
|
perf_ibs_parse_ld_st_data(event->attr.sample_type, &ibs_data, &data);
|
|
|
|
/*
|
|
* rip recorded by IbsOpRip will not be consistent with rsp and rbp
|
|
* recorded as part of interrupt regs. Thus we need to use rip from
|
|
* interrupt regs while unwinding call stack.
|
|
*/
|
|
if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
|
|
data.callchain = perf_callchain(event, iregs);
|
|
data.sample_flags |= PERF_SAMPLE_CALLCHAIN;
|
|
}
|
|
|
|
throttle = perf_event_overflow(event, &data, ®s);
|
|
out:
|
|
if (throttle) {
|
|
perf_ibs_stop(event, 0);
|
|
} else {
|
|
if (perf_ibs == &perf_ibs_op) {
|
|
if (ibs_caps & IBS_CAPS_OPCNTEXT) {
|
|
new_config = period & IBS_OP_MAX_CNT_EXT_MASK;
|
|
period &= ~IBS_OP_MAX_CNT_EXT_MASK;
|
|
}
|
|
if ((ibs_caps & IBS_CAPS_RDWROPCNT) && (*config & IBS_OP_CNT_CTL))
|
|
new_config |= *config & IBS_OP_CUR_CNT_RAND;
|
|
}
|
|
new_config |= period >> 4;
|
|
|
|
perf_ibs_enable_event(perf_ibs, hwc, new_config);
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
perf_ibs_nmi_handler(unsigned int cmd, struct pt_regs *regs)
|
|
{
|
|
u64 stamp = sched_clock();
|
|
int handled = 0;
|
|
|
|
handled += perf_ibs_handle_irq(&perf_ibs_fetch, regs);
|
|
handled += perf_ibs_handle_irq(&perf_ibs_op, regs);
|
|
|
|
if (handled)
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
perf_sample_event_took(sched_clock() - stamp);
|
|
|
|
return handled;
|
|
}
|
|
NOKPROBE_SYMBOL(perf_ibs_nmi_handler);
|
|
|
|
static __init int perf_ibs_pmu_init(struct perf_ibs *perf_ibs, char *name)
|
|
{
|
|
struct cpu_perf_ibs __percpu *pcpu;
|
|
int ret;
|
|
|
|
pcpu = alloc_percpu(struct cpu_perf_ibs);
|
|
if (!pcpu)
|
|
return -ENOMEM;
|
|
|
|
perf_ibs->pcpu = pcpu;
|
|
|
|
ret = perf_pmu_register(&perf_ibs->pmu, name, -1);
|
|
if (ret) {
|
|
perf_ibs->pcpu = NULL;
|
|
free_percpu(pcpu);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __init int perf_ibs_fetch_init(void)
|
|
{
|
|
/*
|
|
* Some chips fail to reset the fetch count when it is written; instead
|
|
* they need a 0-1 transition of IbsFetchEn.
|
|
*/
|
|
if (boot_cpu_data.x86 >= 0x16 && boot_cpu_data.x86 <= 0x18)
|
|
perf_ibs_fetch.fetch_count_reset_broken = 1;
|
|
|
|
if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model < 0x10)
|
|
perf_ibs_fetch.fetch_ignore_if_zero_rip = 1;
|
|
|
|
if (ibs_caps & IBS_CAPS_ZEN4)
|
|
perf_ibs_fetch.config_mask |= IBS_FETCH_L3MISSONLY;
|
|
|
|
perf_ibs_fetch.pmu.attr_groups = fetch_attr_groups;
|
|
perf_ibs_fetch.pmu.attr_update = fetch_attr_update;
|
|
|
|
return perf_ibs_pmu_init(&perf_ibs_fetch, "ibs_fetch");
|
|
}
|
|
|
|
static __init int perf_ibs_op_init(void)
|
|
{
|
|
if (ibs_caps & IBS_CAPS_OPCNT)
|
|
perf_ibs_op.config_mask |= IBS_OP_CNT_CTL;
|
|
|
|
if (ibs_caps & IBS_CAPS_OPCNTEXT) {
|
|
perf_ibs_op.max_period |= IBS_OP_MAX_CNT_EXT_MASK;
|
|
perf_ibs_op.config_mask |= IBS_OP_MAX_CNT_EXT_MASK;
|
|
perf_ibs_op.cnt_mask |= IBS_OP_MAX_CNT_EXT_MASK;
|
|
}
|
|
|
|
if (ibs_caps & IBS_CAPS_ZEN4)
|
|
perf_ibs_op.config_mask |= IBS_OP_L3MISSONLY;
|
|
|
|
perf_ibs_op.pmu.attr_groups = empty_attr_groups;
|
|
perf_ibs_op.pmu.attr_update = op_attr_update;
|
|
|
|
return perf_ibs_pmu_init(&perf_ibs_op, "ibs_op");
|
|
}
|
|
|
|
static __init int perf_event_ibs_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = perf_ibs_fetch_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = perf_ibs_op_init();
|
|
if (ret)
|
|
goto err_op;
|
|
|
|
ret = register_nmi_handler(NMI_LOCAL, perf_ibs_nmi_handler, 0, "perf_ibs");
|
|
if (ret)
|
|
goto err_nmi;
|
|
|
|
pr_info("perf: AMD IBS detected (0x%08x)\n", ibs_caps);
|
|
return 0;
|
|
|
|
err_nmi:
|
|
perf_pmu_unregister(&perf_ibs_op.pmu);
|
|
free_percpu(perf_ibs_op.pcpu);
|
|
perf_ibs_op.pcpu = NULL;
|
|
err_op:
|
|
perf_pmu_unregister(&perf_ibs_fetch.pmu);
|
|
free_percpu(perf_ibs_fetch.pcpu);
|
|
perf_ibs_fetch.pcpu = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else /* defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) */
|
|
|
|
static __init int perf_event_ibs_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* IBS - apic initialization, for perf and oprofile */
|
|
|
|
static __init u32 __get_ibs_caps(void)
|
|
{
|
|
u32 caps;
|
|
unsigned int max_level;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_IBS))
|
|
return 0;
|
|
|
|
/* check IBS cpuid feature flags */
|
|
max_level = cpuid_eax(0x80000000);
|
|
if (max_level < IBS_CPUID_FEATURES)
|
|
return IBS_CAPS_DEFAULT;
|
|
|
|
caps = cpuid_eax(IBS_CPUID_FEATURES);
|
|
if (!(caps & IBS_CAPS_AVAIL))
|
|
/* cpuid flags not valid */
|
|
return IBS_CAPS_DEFAULT;
|
|
|
|
return caps;
|
|
}
|
|
|
|
u32 get_ibs_caps(void)
|
|
{
|
|
return ibs_caps;
|
|
}
|
|
|
|
EXPORT_SYMBOL(get_ibs_caps);
|
|
|
|
static inline int get_eilvt(int offset)
|
|
{
|
|
return !setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 1);
|
|
}
|
|
|
|
static inline int put_eilvt(int offset)
|
|
{
|
|
return !setup_APIC_eilvt(offset, 0, 0, 1);
|
|
}
|
|
|
|
/*
|
|
* Check and reserve APIC extended interrupt LVT offset for IBS if available.
|
|
*/
|
|
static inline int ibs_eilvt_valid(void)
|
|
{
|
|
int offset;
|
|
u64 val;
|
|
int valid = 0;
|
|
|
|
preempt_disable();
|
|
|
|
rdmsrl(MSR_AMD64_IBSCTL, val);
|
|
offset = val & IBSCTL_LVT_OFFSET_MASK;
|
|
|
|
if (!(val & IBSCTL_LVT_OFFSET_VALID)) {
|
|
pr_err(FW_BUG "cpu %d, invalid IBS interrupt offset %d (MSR%08X=0x%016llx)\n",
|
|
smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
|
|
goto out;
|
|
}
|
|
|
|
if (!get_eilvt(offset)) {
|
|
pr_err(FW_BUG "cpu %d, IBS interrupt offset %d not available (MSR%08X=0x%016llx)\n",
|
|
smp_processor_id(), offset, MSR_AMD64_IBSCTL, val);
|
|
goto out;
|
|
}
|
|
|
|
valid = 1;
|
|
out:
|
|
preempt_enable();
|
|
|
|
return valid;
|
|
}
|
|
|
|
static int setup_ibs_ctl(int ibs_eilvt_off)
|
|
{
|
|
struct pci_dev *cpu_cfg;
|
|
int nodes;
|
|
u32 value = 0;
|
|
|
|
nodes = 0;
|
|
cpu_cfg = NULL;
|
|
do {
|
|
cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD,
|
|
PCI_DEVICE_ID_AMD_10H_NB_MISC,
|
|
cpu_cfg);
|
|
if (!cpu_cfg)
|
|
break;
|
|
++nodes;
|
|
pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off
|
|
| IBSCTL_LVT_OFFSET_VALID);
|
|
pci_read_config_dword(cpu_cfg, IBSCTL, &value);
|
|
if (value != (ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID)) {
|
|
pci_dev_put(cpu_cfg);
|
|
pr_debug("Failed to setup IBS LVT offset, IBSCTL = 0x%08x\n",
|
|
value);
|
|
return -EINVAL;
|
|
}
|
|
} while (1);
|
|
|
|
if (!nodes) {
|
|
pr_debug("No CPU node configured for IBS\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This runs only on the current cpu. We try to find an LVT offset and
|
|
* setup the local APIC. For this we must disable preemption. On
|
|
* success we initialize all nodes with this offset. This updates then
|
|
* the offset in the IBS_CTL per-node msr. The per-core APIC setup of
|
|
* the IBS interrupt vector is handled by perf_ibs_cpu_notifier that
|
|
* is using the new offset.
|
|
*/
|
|
static void force_ibs_eilvt_setup(void)
|
|
{
|
|
int offset;
|
|
int ret;
|
|
|
|
preempt_disable();
|
|
/* find the next free available EILVT entry, skip offset 0 */
|
|
for (offset = 1; offset < APIC_EILVT_NR_MAX; offset++) {
|
|
if (get_eilvt(offset))
|
|
break;
|
|
}
|
|
preempt_enable();
|
|
|
|
if (offset == APIC_EILVT_NR_MAX) {
|
|
pr_debug("No EILVT entry available\n");
|
|
return;
|
|
}
|
|
|
|
ret = setup_ibs_ctl(offset);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!ibs_eilvt_valid())
|
|
goto out;
|
|
|
|
pr_info("LVT offset %d assigned\n", offset);
|
|
|
|
return;
|
|
out:
|
|
preempt_disable();
|
|
put_eilvt(offset);
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
|
|
static void ibs_eilvt_setup(void)
|
|
{
|
|
/*
|
|
* Force LVT offset assignment for family 10h: The offsets are
|
|
* not assigned by the BIOS for this family, so the OS is
|
|
* responsible for doing it. If the OS assignment fails, fall
|
|
* back to BIOS settings and try to setup this.
|
|
*/
|
|
if (boot_cpu_data.x86 == 0x10)
|
|
force_ibs_eilvt_setup();
|
|
}
|
|
|
|
static inline int get_ibs_lvt_offset(void)
|
|
{
|
|
u64 val;
|
|
|
|
rdmsrl(MSR_AMD64_IBSCTL, val);
|
|
if (!(val & IBSCTL_LVT_OFFSET_VALID))
|
|
return -EINVAL;
|
|
|
|
return val & IBSCTL_LVT_OFFSET_MASK;
|
|
}
|
|
|
|
static void setup_APIC_ibs(void)
|
|
{
|
|
int offset;
|
|
|
|
offset = get_ibs_lvt_offset();
|
|
if (offset < 0)
|
|
goto failed;
|
|
|
|
if (!setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 0))
|
|
return;
|
|
failed:
|
|
pr_warn("perf: IBS APIC setup failed on cpu #%d\n",
|
|
smp_processor_id());
|
|
}
|
|
|
|
static void clear_APIC_ibs(void)
|
|
{
|
|
int offset;
|
|
|
|
offset = get_ibs_lvt_offset();
|
|
if (offset >= 0)
|
|
setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_FIX, 1);
|
|
}
|
|
|
|
static int x86_pmu_amd_ibs_starting_cpu(unsigned int cpu)
|
|
{
|
|
setup_APIC_ibs();
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int perf_ibs_suspend(void)
|
|
{
|
|
clear_APIC_ibs();
|
|
return 0;
|
|
}
|
|
|
|
static void perf_ibs_resume(void)
|
|
{
|
|
ibs_eilvt_setup();
|
|
setup_APIC_ibs();
|
|
}
|
|
|
|
static struct syscore_ops perf_ibs_syscore_ops = {
|
|
.resume = perf_ibs_resume,
|
|
.suspend = perf_ibs_suspend,
|
|
};
|
|
|
|
static void perf_ibs_pm_init(void)
|
|
{
|
|
register_syscore_ops(&perf_ibs_syscore_ops);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void perf_ibs_pm_init(void) { }
|
|
|
|
#endif
|
|
|
|
static int x86_pmu_amd_ibs_dying_cpu(unsigned int cpu)
|
|
{
|
|
clear_APIC_ibs();
|
|
return 0;
|
|
}
|
|
|
|
static __init int amd_ibs_init(void)
|
|
{
|
|
u32 caps;
|
|
|
|
caps = __get_ibs_caps();
|
|
if (!caps)
|
|
return -ENODEV; /* ibs not supported by the cpu */
|
|
|
|
ibs_eilvt_setup();
|
|
|
|
if (!ibs_eilvt_valid())
|
|
return -EINVAL;
|
|
|
|
perf_ibs_pm_init();
|
|
|
|
ibs_caps = caps;
|
|
/* make ibs_caps visible to other cpus: */
|
|
smp_mb();
|
|
/*
|
|
* x86_pmu_amd_ibs_starting_cpu will be called from core on
|
|
* all online cpus.
|
|
*/
|
|
cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_IBS_STARTING,
|
|
"perf/x86/amd/ibs:starting",
|
|
x86_pmu_amd_ibs_starting_cpu,
|
|
x86_pmu_amd_ibs_dying_cpu);
|
|
|
|
return perf_event_ibs_init();
|
|
}
|
|
|
|
/* Since we need the pci subsystem to init ibs we can't do this earlier: */
|
|
device_initcall(amd_ibs_init);
|