linuxdebug/tools/testing/selftests/kvm/aarch64/vgic_init.c

719 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* vgic init sequence tests
*
* Copyright (C) 2020, Red Hat, Inc.
*/
#define _GNU_SOURCE
#include <linux/kernel.h>
#include <sys/syscall.h>
#include <asm/kvm.h>
#include <asm/kvm_para.h>
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "vgic.h"
#define NR_VCPUS 4
#define REG_OFFSET(vcpu, offset) (((uint64_t)vcpu << 32) | offset)
#define GICR_TYPER 0x8
#define VGIC_DEV_IS_V2(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V2)
#define VGIC_DEV_IS_V3(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V3)
struct vm_gic {
struct kvm_vm *vm;
int gic_fd;
uint32_t gic_dev_type;
};
static uint64_t max_phys_size;
/*
* Helpers to access a redistributor register and verify the ioctl() failed or
* succeeded as expected, and provided the correct value on success.
*/
static void v3_redist_reg_get_errno(int gicv3_fd, int vcpu, int offset,
int want, const char *msg)
{
uint32_t ignored_val;
int ret = __kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
REG_OFFSET(vcpu, offset), &ignored_val);
TEST_ASSERT(ret && errno == want, "%s; want errno = %d", msg, want);
}
static void v3_redist_reg_get(int gicv3_fd, int vcpu, int offset, uint32_t want,
const char *msg)
{
uint32_t val;
kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
REG_OFFSET(vcpu, offset), &val);
TEST_ASSERT(val == want, "%s; want '0x%x', got '0x%x'", msg, want, val);
}
/* dummy guest code */
static void guest_code(void)
{
GUEST_SYNC(0);
GUEST_SYNC(1);
GUEST_SYNC(2);
GUEST_DONE();
}
/* we don't want to assert on run execution, hence that helper */
static int run_vcpu(struct kvm_vcpu *vcpu)
{
ucall_init(vcpu->vm, NULL);
return __vcpu_run(vcpu) ? -errno : 0;
}
static struct vm_gic vm_gic_create_with_vcpus(uint32_t gic_dev_type,
uint32_t nr_vcpus,
struct kvm_vcpu *vcpus[])
{
struct vm_gic v;
v.gic_dev_type = gic_dev_type;
v.vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus);
v.gic_fd = kvm_create_device(v.vm, gic_dev_type);
return v;
}
static void vm_gic_destroy(struct vm_gic *v)
{
close(v->gic_fd);
kvm_vm_free(v->vm);
}
struct vgic_region_attr {
uint64_t attr;
uint64_t size;
uint64_t alignment;
};
struct vgic_region_attr gic_v3_dist_region = {
.attr = KVM_VGIC_V3_ADDR_TYPE_DIST,
.size = 0x10000,
.alignment = 0x10000,
};
struct vgic_region_attr gic_v3_redist_region = {
.attr = KVM_VGIC_V3_ADDR_TYPE_REDIST,
.size = NR_VCPUS * 0x20000,
.alignment = 0x10000,
};
struct vgic_region_attr gic_v2_dist_region = {
.attr = KVM_VGIC_V2_ADDR_TYPE_DIST,
.size = 0x1000,
.alignment = 0x1000,
};
struct vgic_region_attr gic_v2_cpu_region = {
.attr = KVM_VGIC_V2_ADDR_TYPE_CPU,
.size = 0x2000,
.alignment = 0x1000,
};
/**
* Helper routine that performs KVM device tests in general. Eventually the
* ARM_VGIC (GICv2 or GICv3) device gets created with an overlapping
* DIST/REDIST (or DIST/CPUIF for GICv2). Assumption is 4 vcpus are going to be
* used hence the overlap. In the case of GICv3, A RDIST region is set at @0x0
* and a DIST region is set @0x70000. The GICv2 case sets a CPUIF @0x0 and a
* DIST region @0x1000.
*/
static void subtest_dist_rdist(struct vm_gic *v)
{
int ret;
uint64_t addr;
struct vgic_region_attr rdist; /* CPU interface in GICv2*/
struct vgic_region_attr dist;
rdist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_redist_region
: gic_v2_cpu_region;
dist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_dist_region
: gic_v2_dist_region;
/* Check existing group/attributes */
kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr);
kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr);
/* check non existing attribute */
ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, -1);
TEST_ASSERT(ret && errno == ENXIO, "attribute not supported");
/* misaligned DIST and REDIST address settings */
addr = dist.alignment / 0x10;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
dist.attr, &addr);
TEST_ASSERT(ret && errno == EINVAL, "GIC dist base not aligned");
addr = rdist.alignment / 0x10;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
rdist.attr, &addr);
TEST_ASSERT(ret && errno == EINVAL, "GIC redist/cpu base not aligned");
/* out of range address */
addr = max_phys_size;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
dist.attr, &addr);
TEST_ASSERT(ret && errno == E2BIG, "dist address beyond IPA limit");
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
rdist.attr, &addr);
TEST_ASSERT(ret && errno == E2BIG, "redist address beyond IPA limit");
/* Space for half a rdist (a rdist is: 2 * rdist.alignment). */
addr = max_phys_size - dist.alignment;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
rdist.attr, &addr);
TEST_ASSERT(ret && errno == E2BIG,
"half of the redist is beyond IPA limit");
/* set REDIST base address @0x0*/
addr = 0x00000;
kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
rdist.attr, &addr);
/* Attempt to create a second legacy redistributor region */
addr = 0xE0000;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
rdist.attr, &addr);
TEST_ASSERT(ret && errno == EEXIST, "GIC redist base set again");
ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST);
if (!ret) {
/* Attempt to mix legacy and new redistributor regions */
addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 0, 0);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL,
"attempt to mix GICv3 REDIST and REDIST_REGION");
}
/*
* Set overlapping DIST / REDIST, cannot be detected here. Will be detected
* on first vcpu run instead.
*/
addr = rdist.size - rdist.alignment;
kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
dist.attr, &addr);
}
/* Test the new REDIST region API */
static void subtest_v3_redist_regions(struct vm_gic *v)
{
uint64_t addr, expected_addr;
int ret;
ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST);
TEST_ASSERT(!ret, "Multiple redist regions advertised");
addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 2, 0);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with flags != 0");
addr = REDIST_REGION_ATTR_ADDR(0, 0x100000, 0, 0);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with count== 0");
addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL,
"attempt to register the first rdist region with index != 0");
addr = REDIST_REGION_ATTR_ADDR(2, 0x201000, 0, 1);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "rdist region with misaligned address");
addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "register an rdist region with already used index");
addr = REDIST_REGION_ATTR_ADDR(1, 0x210000, 0, 2);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL,
"register an rdist region overlapping with another one");
addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 2);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "register redist region with index not +1");
addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1);
kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
addr = REDIST_REGION_ATTR_ADDR(1, max_phys_size, 0, 2);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == E2BIG,
"register redist region with base address beyond IPA range");
/* The last redist is above the pa range. */
addr = REDIST_REGION_ATTR_ADDR(2, max_phys_size - 0x30000, 0, 2);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == E2BIG,
"register redist region with top address beyond IPA range");
addr = 0x260000;
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);
TEST_ASSERT(ret && errno == EINVAL,
"Mix KVM_VGIC_V3_ADDR_TYPE_REDIST and REDIST_REGION");
/*
* Now there are 2 redist regions:
* region 0 @ 0x200000 2 redists
* region 1 @ 0x240000 1 redist
* Attempt to read their characteristics
*/
addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 0);
expected_addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #0");
addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 1);
expected_addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1);
ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #1");
addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 2);
ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == ENOENT, "read characteristics of non existing region");
addr = 0x260000;
kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_DIST, &addr);
addr = REDIST_REGION_ATTR_ADDR(1, 0x260000, 0, 2);
ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "register redist region colliding with dist");
}
/*
* VGIC KVM device is created and initialized before the secondary CPUs
* get created
*/
static void test_vgic_then_vcpus(uint32_t gic_dev_type)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
struct vm_gic v;
int ret, i;
v = vm_gic_create_with_vcpus(gic_dev_type, 1, vcpus);
subtest_dist_rdist(&v);
/* Add the rest of the VCPUs */
for (i = 1; i < NR_VCPUS; ++i)
vcpus[i] = vm_vcpu_add(v.vm, i, guest_code);
ret = run_vcpu(vcpus[3]);
TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run");
vm_gic_destroy(&v);
}
/* All the VCPUs are created before the VGIC KVM device gets initialized */
static void test_vcpus_then_vgic(uint32_t gic_dev_type)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
struct vm_gic v;
int ret;
v = vm_gic_create_with_vcpus(gic_dev_type, NR_VCPUS, vcpus);
subtest_dist_rdist(&v);
ret = run_vcpu(vcpus[3]);
TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run");
vm_gic_destroy(&v);
}
static void test_v3_new_redist_regions(void)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
void *dummy = NULL;
struct vm_gic v;
uint64_t addr;
int ret;
v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
subtest_v3_redist_regions(&v);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
ret = run_vcpu(vcpus[3]);
TEST_ASSERT(ret == -ENXIO, "running without sufficient number of rdists");
vm_gic_destroy(&v);
/* step2 */
v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
subtest_v3_redist_regions(&v);
addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
ret = run_vcpu(vcpus[3]);
TEST_ASSERT(ret == -EBUSY, "running without vgic explicit init");
vm_gic_destroy(&v);
/* step 3 */
v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
subtest_v3_redist_regions(&v);
ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, dummy);
TEST_ASSERT(ret && errno == EFAULT,
"register a third region allowing to cover the 4 vcpus");
addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
ret = run_vcpu(vcpus[3]);
TEST_ASSERT(!ret, "vcpu run");
vm_gic_destroy(&v);
}
static void test_v3_typer_accesses(void)
{
struct vm_gic v;
uint64_t addr;
int ret, i;
v.vm = vm_create(NR_VCPUS);
(void)vm_vcpu_add(v.vm, 0, guest_code);
v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3);
(void)vm_vcpu_add(v.vm, 3, guest_code);
v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EINVAL,
"attempting to read GICR_TYPER of non created vcpu");
(void)vm_vcpu_add(v.vm, 1, guest_code);
v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EBUSY,
"read GICR_TYPER before GIC initialized");
(void)vm_vcpu_add(v.vm, 2, guest_code);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
for (i = 0; i < NR_VCPUS ; i++) {
v3_redist_reg_get(v.gic_fd, i, GICR_TYPER, i * 0x100,
"read GICR_TYPER before rdist region setting");
}
addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
/* The 2 first rdists should be put there (vcpu 0 and 3) */
v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x0, "read typer of rdist #0");
v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #1");
addr = REDIST_REGION_ATTR_ADDR(10, 0x100000, 0, 1);
ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
TEST_ASSERT(ret && errno == EINVAL, "collision with previous rdist region");
v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100,
"no redist region attached to vcpu #1 yet, last cannot be returned");
v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200,
"no redist region attached to vcpu #2, last cannot be returned");
addr = REDIST_REGION_ATTR_ADDR(10, 0x20000, 0, 1);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1");
v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210,
"read typer of rdist #1, last properly returned");
vm_gic_destroy(&v);
}
static struct vm_gic vm_gic_v3_create_with_vcpuids(int nr_vcpus,
uint32_t vcpuids[])
{
struct vm_gic v;
int i;
v.vm = vm_create(nr_vcpus);
for (i = 0; i < nr_vcpus; i++)
vm_vcpu_add(v.vm, vcpuids[i], guest_code);
v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3);
return v;
}
/**
* Test GICR_TYPER last bit with new redist regions
* rdist regions #1 and #2 are contiguous
* rdist region #0 @0x100000 2 rdist capacity
* rdists: 0, 3 (Last)
* rdist region #1 @0x240000 2 rdist capacity
* rdists: 5, 4 (Last)
* rdist region #2 @0x200000 2 rdist capacity
* rdists: 1, 2
*/
static void test_v3_last_bit_redist_regions(void)
{
uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 };
struct vm_gic v;
uint64_t addr;
v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
addr = REDIST_REGION_ATTR_ADDR(2, 0x100000, 0, 0);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
addr = REDIST_REGION_ATTR_ADDR(2, 0x240000, 0, 1);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 2);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr);
v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0");
v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1");
v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "read typer of rdist #2");
v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #3");
v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #5");
v3_redist_reg_get(v.gic_fd, 4, GICR_TYPER, 0x410, "read typer of rdist #4");
vm_gic_destroy(&v);
}
/* Test last bit with legacy region */
static void test_v3_last_bit_single_rdist(void)
{
uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 };
struct vm_gic v;
uint64_t addr;
v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
addr = 0x10000;
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);
v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0");
v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x300, "read typer of rdist #1");
v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #2");
v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #3");
v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #3");
vm_gic_destroy(&v);
}
/* Uses the legacy REDIST region API. */
static void test_v3_redist_ipa_range_check_at_vcpu_run(void)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
struct vm_gic v;
int ret, i;
uint64_t addr;
v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, 1, vcpus);
/* Set space for 3 redists, we have 1 vcpu, so this succeeds. */
addr = max_phys_size - (3 * 2 * 0x10000);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr);
addr = 0x00000;
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_DIST, &addr);
/* Add the rest of the VCPUs */
for (i = 1; i < NR_VCPUS; ++i)
vcpus[i] = vm_vcpu_add(v.vm, i, guest_code);
kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
/* Attempt to run a vcpu without enough redist space. */
ret = run_vcpu(vcpus[2]);
TEST_ASSERT(ret && errno == EINVAL,
"redist base+size above PA range detected on 1st vcpu run");
vm_gic_destroy(&v);
}
static void test_v3_its_region(void)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
struct vm_gic v;
uint64_t addr;
int its_fd, ret;
v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus);
its_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_ITS);
addr = 0x401000;
ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_ITS_ADDR_TYPE, &addr);
TEST_ASSERT(ret && errno == EINVAL,
"ITS region with misaligned address");
addr = max_phys_size;
ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_ITS_ADDR_TYPE, &addr);
TEST_ASSERT(ret && errno == E2BIG,
"register ITS region with base address beyond IPA range");
addr = max_phys_size - 0x10000;
ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_ITS_ADDR_TYPE, &addr);
TEST_ASSERT(ret && errno == E2BIG,
"Half of ITS region is beyond IPA range");
/* This one succeeds setting the ITS base */
addr = 0x400000;
kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_ITS_ADDR_TYPE, &addr);
addr = 0x300000;
ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_ITS_ADDR_TYPE, &addr);
TEST_ASSERT(ret && errno == EEXIST, "ITS base set again");
close(its_fd);
vm_gic_destroy(&v);
}
/*
* Returns 0 if it's possible to create GIC device of a given type (V2 or V3).
*/
int test_kvm_device(uint32_t gic_dev_type)
{
struct kvm_vcpu *vcpus[NR_VCPUS];
struct vm_gic v;
uint32_t other;
int ret;
v.vm = vm_create_with_vcpus(NR_VCPUS, guest_code, vcpus);
/* try to create a non existing KVM device */
ret = __kvm_test_create_device(v.vm, 0);
TEST_ASSERT(ret && errno == ENODEV, "unsupported device");
/* trial mode */
ret = __kvm_test_create_device(v.vm, gic_dev_type);
if (ret)
return ret;
v.gic_fd = kvm_create_device(v.vm, gic_dev_type);
ret = __kvm_create_device(v.vm, gic_dev_type);
TEST_ASSERT(ret < 0 && errno == EEXIST, "create GIC device twice");
/* try to create the other gic_dev_type */
other = VGIC_DEV_IS_V2(gic_dev_type) ? KVM_DEV_TYPE_ARM_VGIC_V3
: KVM_DEV_TYPE_ARM_VGIC_V2;
if (!__kvm_test_create_device(v.vm, other)) {
ret = __kvm_create_device(v.vm, other);
TEST_ASSERT(ret < 0 && (errno == EINVAL || errno == EEXIST),
"create GIC device while other version exists");
}
vm_gic_destroy(&v);
return 0;
}
void run_tests(uint32_t gic_dev_type)
{
test_vcpus_then_vgic(gic_dev_type);
test_vgic_then_vcpus(gic_dev_type);
if (VGIC_DEV_IS_V3(gic_dev_type)) {
test_v3_new_redist_regions();
test_v3_typer_accesses();
test_v3_last_bit_redist_regions();
test_v3_last_bit_single_rdist();
test_v3_redist_ipa_range_check_at_vcpu_run();
test_v3_its_region();
}
}
int main(int ac, char **av)
{
int ret;
int pa_bits;
int cnt_impl = 0;
pa_bits = vm_guest_mode_params[VM_MODE_DEFAULT].pa_bits;
max_phys_size = 1ULL << pa_bits;
ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (!ret) {
pr_info("Running GIC_v3 tests.\n");
run_tests(KVM_DEV_TYPE_ARM_VGIC_V3);
cnt_impl++;
}
ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (!ret) {
pr_info("Running GIC_v2 tests.\n");
run_tests(KVM_DEV_TYPE_ARM_VGIC_V2);
cnt_impl++;
}
if (!cnt_impl) {
print_skip("No GICv2 nor GICv3 support");
exit(KSFT_SKIP);
}
return 0;
}