1360 lines
33 KiB
C
1360 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Arm Statistical Profiling Extensions (SPE) support
|
|
* Copyright (c) 2017-2018, Arm Ltd.
|
|
*/
|
|
|
|
#include <byteswap.h>
|
|
#include <endian.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/types.h>
|
|
#include <linux/zalloc.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#include "auxtrace.h"
|
|
#include "color.h"
|
|
#include "debug.h"
|
|
#include "evlist.h"
|
|
#include "evsel.h"
|
|
#include "machine.h"
|
|
#include "session.h"
|
|
#include "symbol.h"
|
|
#include "thread.h"
|
|
#include "thread-stack.h"
|
|
#include "tsc.h"
|
|
#include "tool.h"
|
|
#include "util/synthetic-events.h"
|
|
|
|
#include "arm-spe.h"
|
|
#include "arm-spe-decoder/arm-spe-decoder.h"
|
|
#include "arm-spe-decoder/arm-spe-pkt-decoder.h"
|
|
|
|
#include "../../arch/arm64/include/asm/cputype.h"
|
|
#define MAX_TIMESTAMP (~0ULL)
|
|
|
|
struct arm_spe {
|
|
struct auxtrace auxtrace;
|
|
struct auxtrace_queues queues;
|
|
struct auxtrace_heap heap;
|
|
struct itrace_synth_opts synth_opts;
|
|
u32 auxtrace_type;
|
|
struct perf_session *session;
|
|
struct machine *machine;
|
|
u32 pmu_type;
|
|
u64 midr;
|
|
|
|
struct perf_tsc_conversion tc;
|
|
|
|
u8 timeless_decoding;
|
|
u8 data_queued;
|
|
|
|
u64 sample_type;
|
|
u8 sample_flc;
|
|
u8 sample_llc;
|
|
u8 sample_tlb;
|
|
u8 sample_branch;
|
|
u8 sample_remote_access;
|
|
u8 sample_memory;
|
|
u8 sample_instructions;
|
|
u64 instructions_sample_period;
|
|
|
|
u64 l1d_miss_id;
|
|
u64 l1d_access_id;
|
|
u64 llc_miss_id;
|
|
u64 llc_access_id;
|
|
u64 tlb_miss_id;
|
|
u64 tlb_access_id;
|
|
u64 branch_miss_id;
|
|
u64 remote_access_id;
|
|
u64 memory_id;
|
|
u64 instructions_id;
|
|
|
|
u64 kernel_start;
|
|
|
|
unsigned long num_events;
|
|
u8 use_ctx_pkt_for_pid;
|
|
};
|
|
|
|
struct arm_spe_queue {
|
|
struct arm_spe *spe;
|
|
unsigned int queue_nr;
|
|
struct auxtrace_buffer *buffer;
|
|
struct auxtrace_buffer *old_buffer;
|
|
union perf_event *event_buf;
|
|
bool on_heap;
|
|
bool done;
|
|
pid_t pid;
|
|
pid_t tid;
|
|
int cpu;
|
|
struct arm_spe_decoder *decoder;
|
|
u64 time;
|
|
u64 timestamp;
|
|
struct thread *thread;
|
|
u64 period_instructions;
|
|
};
|
|
|
|
static void arm_spe_dump(struct arm_spe *spe __maybe_unused,
|
|
unsigned char *buf, size_t len)
|
|
{
|
|
struct arm_spe_pkt packet;
|
|
size_t pos = 0;
|
|
int ret, pkt_len, i;
|
|
char desc[ARM_SPE_PKT_DESC_MAX];
|
|
const char *color = PERF_COLOR_BLUE;
|
|
|
|
color_fprintf(stdout, color,
|
|
". ... ARM SPE data: size %#zx bytes\n",
|
|
len);
|
|
|
|
while (len) {
|
|
ret = arm_spe_get_packet(buf, len, &packet);
|
|
if (ret > 0)
|
|
pkt_len = ret;
|
|
else
|
|
pkt_len = 1;
|
|
printf(".");
|
|
color_fprintf(stdout, color, " %08x: ", pos);
|
|
for (i = 0; i < pkt_len; i++)
|
|
color_fprintf(stdout, color, " %02x", buf[i]);
|
|
for (; i < 16; i++)
|
|
color_fprintf(stdout, color, " ");
|
|
if (ret > 0) {
|
|
ret = arm_spe_pkt_desc(&packet, desc,
|
|
ARM_SPE_PKT_DESC_MAX);
|
|
if (!ret)
|
|
color_fprintf(stdout, color, " %s\n", desc);
|
|
} else {
|
|
color_fprintf(stdout, color, " Bad packet!\n");
|
|
}
|
|
pos += pkt_len;
|
|
buf += pkt_len;
|
|
len -= pkt_len;
|
|
}
|
|
}
|
|
|
|
static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf,
|
|
size_t len)
|
|
{
|
|
printf(".\n");
|
|
arm_spe_dump(spe, buf, len);
|
|
}
|
|
|
|
static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data)
|
|
{
|
|
struct arm_spe_queue *speq = data;
|
|
struct auxtrace_buffer *buffer = speq->buffer;
|
|
struct auxtrace_buffer *old_buffer = speq->old_buffer;
|
|
struct auxtrace_queue *queue;
|
|
|
|
queue = &speq->spe->queues.queue_array[speq->queue_nr];
|
|
|
|
buffer = auxtrace_buffer__next(queue, buffer);
|
|
/* If no more data, drop the previous auxtrace_buffer and return */
|
|
if (!buffer) {
|
|
if (old_buffer)
|
|
auxtrace_buffer__drop_data(old_buffer);
|
|
b->len = 0;
|
|
return 0;
|
|
}
|
|
|
|
speq->buffer = buffer;
|
|
|
|
/* If the aux_buffer doesn't have data associated, try to load it */
|
|
if (!buffer->data) {
|
|
/* get the file desc associated with the perf data file */
|
|
int fd = perf_data__fd(speq->spe->session->data);
|
|
|
|
buffer->data = auxtrace_buffer__get_data(buffer, fd);
|
|
if (!buffer->data)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
b->len = buffer->size;
|
|
b->buf = buffer->data;
|
|
|
|
if (b->len) {
|
|
if (old_buffer)
|
|
auxtrace_buffer__drop_data(old_buffer);
|
|
speq->old_buffer = buffer;
|
|
} else {
|
|
auxtrace_buffer__drop_data(buffer);
|
|
return arm_spe_get_trace(b, data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe,
|
|
unsigned int queue_nr)
|
|
{
|
|
struct arm_spe_params params = { .get_trace = 0, };
|
|
struct arm_spe_queue *speq;
|
|
|
|
speq = zalloc(sizeof(*speq));
|
|
if (!speq)
|
|
return NULL;
|
|
|
|
speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
|
|
if (!speq->event_buf)
|
|
goto out_free;
|
|
|
|
speq->spe = spe;
|
|
speq->queue_nr = queue_nr;
|
|
speq->pid = -1;
|
|
speq->tid = -1;
|
|
speq->cpu = -1;
|
|
speq->period_instructions = 0;
|
|
|
|
/* params set */
|
|
params.get_trace = arm_spe_get_trace;
|
|
params.data = speq;
|
|
|
|
/* create new decoder */
|
|
speq->decoder = arm_spe_decoder_new(¶ms);
|
|
if (!speq->decoder)
|
|
goto out_free;
|
|
|
|
return speq;
|
|
|
|
out_free:
|
|
zfree(&speq->event_buf);
|
|
free(speq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip)
|
|
{
|
|
return ip >= spe->kernel_start ?
|
|
PERF_RECORD_MISC_KERNEL :
|
|
PERF_RECORD_MISC_USER;
|
|
}
|
|
|
|
static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe,
|
|
struct auxtrace_queue *queue)
|
|
{
|
|
struct arm_spe_queue *speq = queue->priv;
|
|
pid_t tid;
|
|
|
|
tid = machine__get_current_tid(spe->machine, speq->cpu);
|
|
if (tid != -1) {
|
|
speq->tid = tid;
|
|
thread__zput(speq->thread);
|
|
} else
|
|
speq->tid = queue->tid;
|
|
|
|
if ((!speq->thread) && (speq->tid != -1)) {
|
|
speq->thread = machine__find_thread(spe->machine, -1,
|
|
speq->tid);
|
|
}
|
|
|
|
if (speq->thread) {
|
|
speq->pid = speq->thread->pid_;
|
|
if (queue->cpu == -1)
|
|
speq->cpu = speq->thread->cpu;
|
|
}
|
|
}
|
|
|
|
static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid)
|
|
{
|
|
struct arm_spe *spe = speq->spe;
|
|
int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void arm_spe_prep_sample(struct arm_spe *spe,
|
|
struct arm_spe_queue *speq,
|
|
union perf_event *event,
|
|
struct perf_sample *sample)
|
|
{
|
|
struct arm_spe_record *record = &speq->decoder->record;
|
|
|
|
if (!spe->timeless_decoding)
|
|
sample->time = tsc_to_perf_time(record->timestamp, &spe->tc);
|
|
|
|
sample->ip = record->from_ip;
|
|
sample->cpumode = arm_spe_cpumode(spe, sample->ip);
|
|
sample->pid = speq->pid;
|
|
sample->tid = speq->tid;
|
|
sample->period = 1;
|
|
sample->cpu = speq->cpu;
|
|
|
|
event->sample.header.type = PERF_RECORD_SAMPLE;
|
|
event->sample.header.misc = sample->cpumode;
|
|
event->sample.header.size = sizeof(struct perf_event_header);
|
|
}
|
|
|
|
static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type)
|
|
{
|
|
event->header.size = perf_event__sample_event_size(sample, type, 0);
|
|
return perf_event__synthesize_sample(event, type, 0, sample);
|
|
}
|
|
|
|
static inline int
|
|
arm_spe_deliver_synth_event(struct arm_spe *spe,
|
|
struct arm_spe_queue *speq __maybe_unused,
|
|
union perf_event *event,
|
|
struct perf_sample *sample)
|
|
{
|
|
int ret;
|
|
|
|
if (spe->synth_opts.inject) {
|
|
ret = arm_spe__inject_event(event, sample, spe->sample_type);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = perf_session__deliver_synth_event(spe->session, event, sample);
|
|
if (ret)
|
|
pr_err("ARM SPE: failed to deliver event, error %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq,
|
|
u64 spe_events_id, u64 data_src)
|
|
{
|
|
struct arm_spe *spe = speq->spe;
|
|
struct arm_spe_record *record = &speq->decoder->record;
|
|
union perf_event *event = speq->event_buf;
|
|
struct perf_sample sample = { .ip = 0, };
|
|
|
|
arm_spe_prep_sample(spe, speq, event, &sample);
|
|
|
|
sample.id = spe_events_id;
|
|
sample.stream_id = spe_events_id;
|
|
sample.addr = record->virt_addr;
|
|
sample.phys_addr = record->phys_addr;
|
|
sample.data_src = data_src;
|
|
sample.weight = record->latency;
|
|
|
|
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
|
|
}
|
|
|
|
static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq,
|
|
u64 spe_events_id)
|
|
{
|
|
struct arm_spe *spe = speq->spe;
|
|
struct arm_spe_record *record = &speq->decoder->record;
|
|
union perf_event *event = speq->event_buf;
|
|
struct perf_sample sample = { .ip = 0, };
|
|
|
|
arm_spe_prep_sample(spe, speq, event, &sample);
|
|
|
|
sample.id = spe_events_id;
|
|
sample.stream_id = spe_events_id;
|
|
sample.addr = record->to_ip;
|
|
sample.weight = record->latency;
|
|
|
|
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
|
|
}
|
|
|
|
static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq,
|
|
u64 spe_events_id, u64 data_src)
|
|
{
|
|
struct arm_spe *spe = speq->spe;
|
|
struct arm_spe_record *record = &speq->decoder->record;
|
|
union perf_event *event = speq->event_buf;
|
|
struct perf_sample sample = { .ip = 0, };
|
|
|
|
/*
|
|
* Handles perf instruction sampling period.
|
|
*/
|
|
speq->period_instructions++;
|
|
if (speq->period_instructions < spe->instructions_sample_period)
|
|
return 0;
|
|
speq->period_instructions = 0;
|
|
|
|
arm_spe_prep_sample(spe, speq, event, &sample);
|
|
|
|
sample.id = spe_events_id;
|
|
sample.stream_id = spe_events_id;
|
|
sample.addr = record->virt_addr;
|
|
sample.phys_addr = record->phys_addr;
|
|
sample.data_src = data_src;
|
|
sample.period = spe->instructions_sample_period;
|
|
sample.weight = record->latency;
|
|
|
|
return arm_spe_deliver_synth_event(spe, speq, event, &sample);
|
|
}
|
|
|
|
static const struct midr_range neoverse_spe[] = {
|
|
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1),
|
|
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N2),
|
|
MIDR_ALL_VERSIONS(MIDR_NEOVERSE_V1),
|
|
{},
|
|
};
|
|
|
|
static void arm_spe__synth_data_source_neoverse(const struct arm_spe_record *record,
|
|
union perf_mem_data_src *data_src)
|
|
{
|
|
/*
|
|
* Even though four levels of cache hierarchy are possible, no known
|
|
* production Neoverse systems currently include more than three levels
|
|
* so for the time being we assume three exist. If a production system
|
|
* is built with four the this function would have to be changed to
|
|
* detect the number of levels for reporting.
|
|
*/
|
|
|
|
/*
|
|
* We have no data on the hit level or data source for stores in the
|
|
* Neoverse SPE records.
|
|
*/
|
|
if (record->op & ARM_SPE_ST) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_NA;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_NA;
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_NA;
|
|
return;
|
|
}
|
|
|
|
switch (record->source) {
|
|
case ARM_SPE_NV_L1D:
|
|
data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L1;
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
|
|
break;
|
|
case ARM_SPE_NV_L2:
|
|
data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
|
|
break;
|
|
case ARM_SPE_NV_PEER_CORE:
|
|
data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
|
|
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
|
|
break;
|
|
/*
|
|
* We don't know if this is L1, L2 but we do know it was a cache-2-cache
|
|
* transfer, so set SNOOPX_PEER
|
|
*/
|
|
case ARM_SPE_NV_LOCAL_CLUSTER:
|
|
case ARM_SPE_NV_PEER_CLUSTER:
|
|
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
|
|
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
|
|
break;
|
|
/*
|
|
* System cache is assumed to be L3
|
|
*/
|
|
case ARM_SPE_NV_SYS_CACHE:
|
|
data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_HIT;
|
|
break;
|
|
/*
|
|
* We don't know what level it hit in, except it came from the other
|
|
* socket
|
|
*/
|
|
case ARM_SPE_NV_REMOTE:
|
|
data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_ANY_CACHE;
|
|
data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
|
|
data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
|
|
break;
|
|
case ARM_SPE_NV_DRAM:
|
|
data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT;
|
|
data_src->mem_lvl_num = PERF_MEM_LVLNUM_RAM;
|
|
data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void arm_spe__synth_data_source_generic(const struct arm_spe_record *record,
|
|
union perf_mem_data_src *data_src)
|
|
{
|
|
if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L3;
|
|
|
|
if (record->type & ARM_SPE_LLC_MISS)
|
|
data_src->mem_lvl |= PERF_MEM_LVL_MISS;
|
|
else
|
|
data_src->mem_lvl |= PERF_MEM_LVL_HIT;
|
|
} else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) {
|
|
data_src->mem_lvl = PERF_MEM_LVL_L1;
|
|
|
|
if (record->type & ARM_SPE_L1D_MISS)
|
|
data_src->mem_lvl |= PERF_MEM_LVL_MISS;
|
|
else
|
|
data_src->mem_lvl |= PERF_MEM_LVL_HIT;
|
|
}
|
|
|
|
if (record->type & ARM_SPE_REMOTE_ACCESS)
|
|
data_src->mem_lvl |= PERF_MEM_LVL_REM_CCE1;
|
|
}
|
|
|
|
static u64 arm_spe__synth_data_source(const struct arm_spe_record *record, u64 midr)
|
|
{
|
|
union perf_mem_data_src data_src = { 0 };
|
|
bool is_neoverse = is_midr_in_range_list(midr, neoverse_spe);
|
|
|
|
if (record->op == ARM_SPE_LD)
|
|
data_src.mem_op = PERF_MEM_OP_LOAD;
|
|
else if (record->op == ARM_SPE_ST)
|
|
data_src.mem_op = PERF_MEM_OP_STORE;
|
|
else
|
|
return 0;
|
|
|
|
if (is_neoverse)
|
|
arm_spe__synth_data_source_neoverse(record, &data_src);
|
|
else
|
|
arm_spe__synth_data_source_generic(record, &data_src);
|
|
|
|
if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) {
|
|
data_src.mem_dtlb = PERF_MEM_TLB_WK;
|
|
|
|
if (record->type & ARM_SPE_TLB_MISS)
|
|
data_src.mem_dtlb |= PERF_MEM_TLB_MISS;
|
|
else
|
|
data_src.mem_dtlb |= PERF_MEM_TLB_HIT;
|
|
}
|
|
|
|
return data_src.val;
|
|
}
|
|
|
|
static int arm_spe_sample(struct arm_spe_queue *speq)
|
|
{
|
|
const struct arm_spe_record *record = &speq->decoder->record;
|
|
struct arm_spe *spe = speq->spe;
|
|
u64 data_src;
|
|
int err;
|
|
|
|
data_src = arm_spe__synth_data_source(record, spe->midr);
|
|
|
|
if (spe->sample_flc) {
|
|
if (record->type & ARM_SPE_L1D_MISS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (record->type & ARM_SPE_L1D_ACCESS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (spe->sample_llc) {
|
|
if (record->type & ARM_SPE_LLC_MISS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (record->type & ARM_SPE_LLC_ACCESS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->llc_access_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (spe->sample_tlb) {
|
|
if (record->type & ARM_SPE_TLB_MISS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (record->type & ARM_SPE_TLB_ACCESS) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) {
|
|
err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (spe->sample_remote_access &&
|
|
(record->type & ARM_SPE_REMOTE_ACCESS)) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->remote_access_id,
|
|
data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* When data_src is zero it means the record is not a memory operation,
|
|
* skip to synthesize memory sample for this case.
|
|
*/
|
|
if (spe->sample_memory && data_src) {
|
|
err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (spe->sample_instructions) {
|
|
err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp)
|
|
{
|
|
struct arm_spe *spe = speq->spe;
|
|
struct arm_spe_record *record;
|
|
int ret;
|
|
|
|
if (!spe->kernel_start)
|
|
spe->kernel_start = machine__kernel_start(spe->machine);
|
|
|
|
while (1) {
|
|
/*
|
|
* The usual logic is firstly to decode the packets, and then
|
|
* based the record to synthesize sample; but here the flow is
|
|
* reversed: it calls arm_spe_sample() for synthesizing samples
|
|
* prior to arm_spe_decode().
|
|
*
|
|
* Two reasons for this code logic:
|
|
* 1. Firstly, when setup queue in arm_spe__setup_queue(), it
|
|
* has decoded trace data and generated a record, but the record
|
|
* is left to generate sample until run to here, so it's correct
|
|
* to synthesize sample for the left record.
|
|
* 2. After decoding trace data, it needs to compare the record
|
|
* timestamp with the coming perf event, if the record timestamp
|
|
* is later than the perf event, it needs bail out and pushs the
|
|
* record into auxtrace heap, thus the record can be deferred to
|
|
* synthesize sample until run to here at the next time; so this
|
|
* can correlate samples between Arm SPE trace data and other
|
|
* perf events with correct time ordering.
|
|
*/
|
|
|
|
/*
|
|
* Update pid/tid info.
|
|
*/
|
|
record = &speq->decoder->record;
|
|
if (!spe->timeless_decoding && record->context_id != (u64)-1) {
|
|
ret = arm_spe_set_tid(speq, record->context_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spe->use_ctx_pkt_for_pid = true;
|
|
}
|
|
|
|
ret = arm_spe_sample(speq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = arm_spe_decode(speq->decoder);
|
|
if (!ret) {
|
|
pr_debug("No data or all data has been processed.\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Error is detected when decode SPE trace data, continue to
|
|
* the next trace data and find out more records.
|
|
*/
|
|
if (ret < 0)
|
|
continue;
|
|
|
|
record = &speq->decoder->record;
|
|
|
|
/* Update timestamp for the last record */
|
|
if (record->timestamp > speq->timestamp)
|
|
speq->timestamp = record->timestamp;
|
|
|
|
/*
|
|
* If the timestamp of the queue is later than timestamp of the
|
|
* coming perf event, bail out so can allow the perf event to
|
|
* be processed ahead.
|
|
*/
|
|
if (!spe->timeless_decoding && speq->timestamp >= *timestamp) {
|
|
*timestamp = speq->timestamp;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe__setup_queue(struct arm_spe *spe,
|
|
struct auxtrace_queue *queue,
|
|
unsigned int queue_nr)
|
|
{
|
|
struct arm_spe_queue *speq = queue->priv;
|
|
struct arm_spe_record *record;
|
|
|
|
if (list_empty(&queue->head) || speq)
|
|
return 0;
|
|
|
|
speq = arm_spe__alloc_queue(spe, queue_nr);
|
|
|
|
if (!speq)
|
|
return -ENOMEM;
|
|
|
|
queue->priv = speq;
|
|
|
|
if (queue->cpu != -1)
|
|
speq->cpu = queue->cpu;
|
|
|
|
if (!speq->on_heap) {
|
|
int ret;
|
|
|
|
if (spe->timeless_decoding)
|
|
return 0;
|
|
|
|
retry:
|
|
ret = arm_spe_decode(speq->decoder);
|
|
|
|
if (!ret)
|
|
return 0;
|
|
|
|
if (ret < 0)
|
|
goto retry;
|
|
|
|
record = &speq->decoder->record;
|
|
|
|
speq->timestamp = record->timestamp;
|
|
ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp);
|
|
if (ret)
|
|
return ret;
|
|
speq->on_heap = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe__setup_queues(struct arm_spe *spe)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < spe->queues.nr_queues; i++) {
|
|
ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe__update_queues(struct arm_spe *spe)
|
|
{
|
|
if (spe->queues.new_data) {
|
|
spe->queues.new_data = false;
|
|
return arm_spe__setup_queues(spe);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool arm_spe__is_timeless_decoding(struct arm_spe *spe)
|
|
{
|
|
struct evsel *evsel;
|
|
struct evlist *evlist = spe->session->evlist;
|
|
bool timeless_decoding = true;
|
|
|
|
/*
|
|
* Circle through the list of event and complain if we find one
|
|
* with the time bit set.
|
|
*/
|
|
evlist__for_each_entry(evlist, evsel) {
|
|
if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
|
|
timeless_decoding = false;
|
|
}
|
|
|
|
return timeless_decoding;
|
|
}
|
|
|
|
static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp)
|
|
{
|
|
unsigned int queue_nr;
|
|
u64 ts;
|
|
int ret;
|
|
|
|
while (1) {
|
|
struct auxtrace_queue *queue;
|
|
struct arm_spe_queue *speq;
|
|
|
|
if (!spe->heap.heap_cnt)
|
|
return 0;
|
|
|
|
if (spe->heap.heap_array[0].ordinal >= timestamp)
|
|
return 0;
|
|
|
|
queue_nr = spe->heap.heap_array[0].queue_nr;
|
|
queue = &spe->queues.queue_array[queue_nr];
|
|
speq = queue->priv;
|
|
|
|
auxtrace_heap__pop(&spe->heap);
|
|
|
|
if (spe->heap.heap_cnt) {
|
|
ts = spe->heap.heap_array[0].ordinal + 1;
|
|
if (ts > timestamp)
|
|
ts = timestamp;
|
|
} else {
|
|
ts = timestamp;
|
|
}
|
|
|
|
/*
|
|
* A previous context-switch event has set pid/tid in the machine's context, so
|
|
* here we need to update the pid/tid in the thread and SPE queue.
|
|
*/
|
|
if (!spe->use_ctx_pkt_for_pid)
|
|
arm_spe_set_pid_tid_cpu(spe, queue);
|
|
|
|
ret = arm_spe_run_decoder(speq, &ts);
|
|
if (ret < 0) {
|
|
auxtrace_heap__add(&spe->heap, queue_nr, ts);
|
|
return ret;
|
|
}
|
|
|
|
if (!ret) {
|
|
ret = auxtrace_heap__add(&spe->heap, queue_nr, ts);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
speq->on_heap = false;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid,
|
|
u64 time_)
|
|
{
|
|
struct auxtrace_queues *queues = &spe->queues;
|
|
unsigned int i;
|
|
u64 ts = 0;
|
|
|
|
for (i = 0; i < queues->nr_queues; i++) {
|
|
struct auxtrace_queue *queue = &spe->queues.queue_array[i];
|
|
struct arm_spe_queue *speq = queue->priv;
|
|
|
|
if (speq && (tid == -1 || speq->tid == tid)) {
|
|
speq->time = time_;
|
|
arm_spe_set_pid_tid_cpu(spe, queue);
|
|
arm_spe_run_decoder(speq, &ts);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event,
|
|
struct perf_sample *sample)
|
|
{
|
|
pid_t pid, tid;
|
|
int cpu;
|
|
|
|
if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT))
|
|
return 0;
|
|
|
|
pid = event->context_switch.next_prev_pid;
|
|
tid = event->context_switch.next_prev_tid;
|
|
cpu = sample->cpu;
|
|
|
|
if (tid == -1)
|
|
pr_warning("context_switch event has no tid\n");
|
|
|
|
return machine__set_current_tid(spe->machine, cpu, pid, tid);
|
|
}
|
|
|
|
static int arm_spe_process_event(struct perf_session *session,
|
|
union perf_event *event,
|
|
struct perf_sample *sample,
|
|
struct perf_tool *tool)
|
|
{
|
|
int err = 0;
|
|
u64 timestamp;
|
|
struct arm_spe *spe = container_of(session->auxtrace,
|
|
struct arm_spe, auxtrace);
|
|
|
|
if (dump_trace)
|
|
return 0;
|
|
|
|
if (!tool->ordered_events) {
|
|
pr_err("SPE trace requires ordered events\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sample->time && (sample->time != (u64) -1))
|
|
timestamp = perf_time_to_tsc(sample->time, &spe->tc);
|
|
else
|
|
timestamp = 0;
|
|
|
|
if (timestamp || spe->timeless_decoding) {
|
|
err = arm_spe__update_queues(spe);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (spe->timeless_decoding) {
|
|
if (event->header.type == PERF_RECORD_EXIT) {
|
|
err = arm_spe_process_timeless_queues(spe,
|
|
event->fork.tid,
|
|
sample->time);
|
|
}
|
|
} else if (timestamp) {
|
|
err = arm_spe_process_queues(spe, timestamp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!spe->use_ctx_pkt_for_pid &&
|
|
(event->header.type == PERF_RECORD_SWITCH_CPU_WIDE ||
|
|
event->header.type == PERF_RECORD_SWITCH))
|
|
err = arm_spe_context_switch(spe, event, sample);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int arm_spe_process_auxtrace_event(struct perf_session *session,
|
|
union perf_event *event,
|
|
struct perf_tool *tool __maybe_unused)
|
|
{
|
|
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
|
|
auxtrace);
|
|
|
|
if (!spe->data_queued) {
|
|
struct auxtrace_buffer *buffer;
|
|
off_t data_offset;
|
|
int fd = perf_data__fd(session->data);
|
|
int err;
|
|
|
|
if (perf_data__is_pipe(session->data)) {
|
|
data_offset = 0;
|
|
} else {
|
|
data_offset = lseek(fd, 0, SEEK_CUR);
|
|
if (data_offset == -1)
|
|
return -errno;
|
|
}
|
|
|
|
err = auxtrace_queues__add_event(&spe->queues, session, event,
|
|
data_offset, &buffer);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Dump here now we have copied a piped trace out of the pipe */
|
|
if (dump_trace) {
|
|
if (auxtrace_buffer__get_data(buffer, fd)) {
|
|
arm_spe_dump_event(spe, buffer->data,
|
|
buffer->size);
|
|
auxtrace_buffer__put_data(buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arm_spe_flush(struct perf_session *session __maybe_unused,
|
|
struct perf_tool *tool __maybe_unused)
|
|
{
|
|
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
|
|
auxtrace);
|
|
int ret;
|
|
|
|
if (dump_trace)
|
|
return 0;
|
|
|
|
if (!tool->ordered_events)
|
|
return -EINVAL;
|
|
|
|
ret = arm_spe__update_queues(spe);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (spe->timeless_decoding)
|
|
return arm_spe_process_timeless_queues(spe, -1,
|
|
MAX_TIMESTAMP - 1);
|
|
|
|
ret = arm_spe_process_queues(spe, MAX_TIMESTAMP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!spe->use_ctx_pkt_for_pid)
|
|
ui__warning("Arm SPE CONTEXT packets not found in the traces.\n"
|
|
"Matching of TIDs to SPE events could be inaccurate.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void arm_spe_free_queue(void *priv)
|
|
{
|
|
struct arm_spe_queue *speq = priv;
|
|
|
|
if (!speq)
|
|
return;
|
|
thread__zput(speq->thread);
|
|
arm_spe_decoder_free(speq->decoder);
|
|
zfree(&speq->event_buf);
|
|
free(speq);
|
|
}
|
|
|
|
static void arm_spe_free_events(struct perf_session *session)
|
|
{
|
|
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
|
|
auxtrace);
|
|
struct auxtrace_queues *queues = &spe->queues;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < queues->nr_queues; i++) {
|
|
arm_spe_free_queue(queues->queue_array[i].priv);
|
|
queues->queue_array[i].priv = NULL;
|
|
}
|
|
auxtrace_queues__free(queues);
|
|
}
|
|
|
|
static void arm_spe_free(struct perf_session *session)
|
|
{
|
|
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
|
|
auxtrace);
|
|
|
|
auxtrace_heap__free(&spe->heap);
|
|
arm_spe_free_events(session);
|
|
session->auxtrace = NULL;
|
|
free(spe);
|
|
}
|
|
|
|
static bool arm_spe_evsel_is_auxtrace(struct perf_session *session,
|
|
struct evsel *evsel)
|
|
{
|
|
struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace);
|
|
|
|
return evsel->core.attr.type == spe->pmu_type;
|
|
}
|
|
|
|
static const char * const arm_spe_info_fmts[] = {
|
|
[ARM_SPE_PMU_TYPE] = " PMU Type %"PRId64"\n",
|
|
};
|
|
|
|
static void arm_spe_print_info(__u64 *arr)
|
|
{
|
|
if (!dump_trace)
|
|
return;
|
|
|
|
fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]);
|
|
}
|
|
|
|
struct arm_spe_synth {
|
|
struct perf_tool dummy_tool;
|
|
struct perf_session *session;
|
|
};
|
|
|
|
static int arm_spe_event_synth(struct perf_tool *tool,
|
|
union perf_event *event,
|
|
struct perf_sample *sample __maybe_unused,
|
|
struct machine *machine __maybe_unused)
|
|
{
|
|
struct arm_spe_synth *arm_spe_synth =
|
|
container_of(tool, struct arm_spe_synth, dummy_tool);
|
|
|
|
return perf_session__deliver_synth_event(arm_spe_synth->session,
|
|
event, NULL);
|
|
}
|
|
|
|
static int arm_spe_synth_event(struct perf_session *session,
|
|
struct perf_event_attr *attr, u64 id)
|
|
{
|
|
struct arm_spe_synth arm_spe_synth;
|
|
|
|
memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth));
|
|
arm_spe_synth.session = session;
|
|
|
|
return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1,
|
|
&id, arm_spe_event_synth);
|
|
}
|
|
|
|
static void arm_spe_set_event_name(struct evlist *evlist, u64 id,
|
|
const char *name)
|
|
{
|
|
struct evsel *evsel;
|
|
|
|
evlist__for_each_entry(evlist, evsel) {
|
|
if (evsel->core.id && evsel->core.id[0] == id) {
|
|
if (evsel->name)
|
|
zfree(&evsel->name);
|
|
evsel->name = strdup(name);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session)
|
|
{
|
|
struct evlist *evlist = session->evlist;
|
|
struct evsel *evsel;
|
|
struct perf_event_attr attr;
|
|
bool found = false;
|
|
u64 id;
|
|
int err;
|
|
|
|
evlist__for_each_entry(evlist, evsel) {
|
|
if (evsel->core.attr.type == spe->pmu_type) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
pr_debug("No selected events with SPE trace data\n");
|
|
return 0;
|
|
}
|
|
|
|
memset(&attr, 0, sizeof(struct perf_event_attr));
|
|
attr.size = sizeof(struct perf_event_attr);
|
|
attr.type = PERF_TYPE_HARDWARE;
|
|
attr.sample_type = evsel->core.attr.sample_type &
|
|
(PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR);
|
|
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
|
|
PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC |
|
|
PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR;
|
|
if (spe->timeless_decoding)
|
|
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
|
|
else
|
|
attr.sample_type |= PERF_SAMPLE_TIME;
|
|
|
|
spe->sample_type = attr.sample_type;
|
|
|
|
attr.exclude_user = evsel->core.attr.exclude_user;
|
|
attr.exclude_kernel = evsel->core.attr.exclude_kernel;
|
|
attr.exclude_hv = evsel->core.attr.exclude_hv;
|
|
attr.exclude_host = evsel->core.attr.exclude_host;
|
|
attr.exclude_guest = evsel->core.attr.exclude_guest;
|
|
attr.sample_id_all = evsel->core.attr.sample_id_all;
|
|
attr.read_format = evsel->core.attr.read_format;
|
|
|
|
/* create new id val to be a fixed offset from evsel id */
|
|
id = evsel->core.id[0] + 1000000000;
|
|
|
|
if (!id)
|
|
id = 1;
|
|
|
|
if (spe->synth_opts.flc) {
|
|
spe->sample_flc = true;
|
|
|
|
/* Level 1 data cache miss */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->l1d_miss_id = id;
|
|
arm_spe_set_event_name(evlist, id, "l1d-miss");
|
|
id += 1;
|
|
|
|
/* Level 1 data cache access */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->l1d_access_id = id;
|
|
arm_spe_set_event_name(evlist, id, "l1d-access");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.llc) {
|
|
spe->sample_llc = true;
|
|
|
|
/* Last level cache miss */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->llc_miss_id = id;
|
|
arm_spe_set_event_name(evlist, id, "llc-miss");
|
|
id += 1;
|
|
|
|
/* Last level cache access */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->llc_access_id = id;
|
|
arm_spe_set_event_name(evlist, id, "llc-access");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.tlb) {
|
|
spe->sample_tlb = true;
|
|
|
|
/* TLB miss */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->tlb_miss_id = id;
|
|
arm_spe_set_event_name(evlist, id, "tlb-miss");
|
|
id += 1;
|
|
|
|
/* TLB access */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->tlb_access_id = id;
|
|
arm_spe_set_event_name(evlist, id, "tlb-access");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.branches) {
|
|
spe->sample_branch = true;
|
|
|
|
/* Branch miss */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->branch_miss_id = id;
|
|
arm_spe_set_event_name(evlist, id, "branch-miss");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.remote_access) {
|
|
spe->sample_remote_access = true;
|
|
|
|
/* Remote access */
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->remote_access_id = id;
|
|
arm_spe_set_event_name(evlist, id, "remote-access");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.mem) {
|
|
spe->sample_memory = true;
|
|
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->memory_id = id;
|
|
arm_spe_set_event_name(evlist, id, "memory");
|
|
id += 1;
|
|
}
|
|
|
|
if (spe->synth_opts.instructions) {
|
|
if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) {
|
|
pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n");
|
|
goto synth_instructions_out;
|
|
}
|
|
if (spe->synth_opts.period > 1)
|
|
pr_warning("Arm SPE has a hardware-based sample period.\n"
|
|
"Additional instruction events will be discarded by --itrace\n");
|
|
|
|
spe->sample_instructions = true;
|
|
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
|
|
attr.sample_period = spe->synth_opts.period;
|
|
spe->instructions_sample_period = attr.sample_period;
|
|
err = arm_spe_synth_event(session, &attr, id);
|
|
if (err)
|
|
return err;
|
|
spe->instructions_id = id;
|
|
arm_spe_set_event_name(evlist, id, "instructions");
|
|
}
|
|
synth_instructions_out:
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arm_spe_process_auxtrace_info(union perf_event *event,
|
|
struct perf_session *session)
|
|
{
|
|
struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
|
|
size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX;
|
|
struct perf_record_time_conv *tc = &session->time_conv;
|
|
const char *cpuid = perf_env__cpuid(session->evlist->env);
|
|
u64 midr = strtol(cpuid, NULL, 16);
|
|
struct arm_spe *spe;
|
|
int err;
|
|
|
|
if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
|
|
min_sz)
|
|
return -EINVAL;
|
|
|
|
spe = zalloc(sizeof(struct arm_spe));
|
|
if (!spe)
|
|
return -ENOMEM;
|
|
|
|
err = auxtrace_queues__init(&spe->queues);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
spe->session = session;
|
|
spe->machine = &session->machines.host; /* No kvm support */
|
|
spe->auxtrace_type = auxtrace_info->type;
|
|
spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE];
|
|
spe->midr = midr;
|
|
|
|
spe->timeless_decoding = arm_spe__is_timeless_decoding(spe);
|
|
|
|
/*
|
|
* The synthesized event PERF_RECORD_TIME_CONV has been handled ahead
|
|
* and the parameters for hardware clock are stored in the session
|
|
* context. Passes these parameters to the struct perf_tsc_conversion
|
|
* in "spe->tc", which is used for later conversion between clock
|
|
* counter and timestamp.
|
|
*
|
|
* For backward compatibility, copies the fields starting from
|
|
* "time_cycles" only if they are contained in the event.
|
|
*/
|
|
spe->tc.time_shift = tc->time_shift;
|
|
spe->tc.time_mult = tc->time_mult;
|
|
spe->tc.time_zero = tc->time_zero;
|
|
|
|
if (event_contains(*tc, time_cycles)) {
|
|
spe->tc.time_cycles = tc->time_cycles;
|
|
spe->tc.time_mask = tc->time_mask;
|
|
spe->tc.cap_user_time_zero = tc->cap_user_time_zero;
|
|
spe->tc.cap_user_time_short = tc->cap_user_time_short;
|
|
}
|
|
|
|
spe->auxtrace.process_event = arm_spe_process_event;
|
|
spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event;
|
|
spe->auxtrace.flush_events = arm_spe_flush;
|
|
spe->auxtrace.free_events = arm_spe_free_events;
|
|
spe->auxtrace.free = arm_spe_free;
|
|
spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace;
|
|
session->auxtrace = &spe->auxtrace;
|
|
|
|
arm_spe_print_info(&auxtrace_info->priv[0]);
|
|
|
|
if (dump_trace)
|
|
return 0;
|
|
|
|
if (session->itrace_synth_opts && session->itrace_synth_opts->set)
|
|
spe->synth_opts = *session->itrace_synth_opts;
|
|
else
|
|
itrace_synth_opts__set_default(&spe->synth_opts, false);
|
|
|
|
err = arm_spe_synth_events(spe, session);
|
|
if (err)
|
|
goto err_free_queues;
|
|
|
|
err = auxtrace_queues__process_index(&spe->queues, session);
|
|
if (err)
|
|
goto err_free_queues;
|
|
|
|
if (spe->queues.populated)
|
|
spe->data_queued = true;
|
|
|
|
return 0;
|
|
|
|
err_free_queues:
|
|
auxtrace_queues__free(&spe->queues);
|
|
session->auxtrace = NULL;
|
|
err_free:
|
|
free(spe);
|
|
return err;
|
|
}
|