2786 lines
70 KiB
C
2786 lines
70 KiB
C
/*
|
|
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
|
|
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
|
|
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
|
|
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
|
|
* Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/module.h>
|
|
#include <linux/splice.h>
|
|
#include <crypto/aead.h>
|
|
|
|
#include <net/strparser.h>
|
|
#include <net/tls.h>
|
|
|
|
#include "tls.h"
|
|
|
|
struct tls_decrypt_arg {
|
|
struct_group(inargs,
|
|
bool zc;
|
|
bool async;
|
|
u8 tail;
|
|
);
|
|
|
|
struct sk_buff *skb;
|
|
};
|
|
|
|
struct tls_decrypt_ctx {
|
|
u8 iv[MAX_IV_SIZE];
|
|
u8 aad[TLS_MAX_AAD_SIZE];
|
|
u8 tail;
|
|
struct scatterlist sg[];
|
|
};
|
|
|
|
noinline void tls_err_abort(struct sock *sk, int err)
|
|
{
|
|
WARN_ON_ONCE(err >= 0);
|
|
/* sk->sk_err should contain a positive error code. */
|
|
WRITE_ONCE(sk->sk_err, -err);
|
|
/* Paired with smp_rmb() in tcp_poll() */
|
|
smp_wmb();
|
|
sk_error_report(sk);
|
|
}
|
|
|
|
static int __skb_nsg(struct sk_buff *skb, int offset, int len,
|
|
unsigned int recursion_level)
|
|
{
|
|
int start = skb_headlen(skb);
|
|
int i, chunk = start - offset;
|
|
struct sk_buff *frag_iter;
|
|
int elt = 0;
|
|
|
|
if (unlikely(recursion_level >= 24))
|
|
return -EMSGSIZE;
|
|
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
elt++;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int end;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
chunk = end - offset;
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
elt++;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
start = end;
|
|
}
|
|
|
|
if (unlikely(skb_has_frag_list(skb))) {
|
|
skb_walk_frags(skb, frag_iter) {
|
|
int end, ret;
|
|
|
|
WARN_ON(start > offset + len);
|
|
|
|
end = start + frag_iter->len;
|
|
chunk = end - offset;
|
|
if (chunk > 0) {
|
|
if (chunk > len)
|
|
chunk = len;
|
|
ret = __skb_nsg(frag_iter, offset - start, chunk,
|
|
recursion_level + 1);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
elt += ret;
|
|
len -= chunk;
|
|
if (len == 0)
|
|
return elt;
|
|
offset += chunk;
|
|
}
|
|
start = end;
|
|
}
|
|
}
|
|
BUG_ON(len);
|
|
return elt;
|
|
}
|
|
|
|
/* Return the number of scatterlist elements required to completely map the
|
|
* skb, or -EMSGSIZE if the recursion depth is exceeded.
|
|
*/
|
|
static int skb_nsg(struct sk_buff *skb, int offset, int len)
|
|
{
|
|
return __skb_nsg(skb, offset, len, 0);
|
|
}
|
|
|
|
static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
|
|
struct tls_decrypt_arg *darg)
|
|
{
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
struct tls_msg *tlm = tls_msg(skb);
|
|
int sub = 0;
|
|
|
|
/* Determine zero-padding length */
|
|
if (prot->version == TLS_1_3_VERSION) {
|
|
int offset = rxm->full_len - TLS_TAG_SIZE - 1;
|
|
char content_type = darg->zc ? darg->tail : 0;
|
|
int err;
|
|
|
|
while (content_type == 0) {
|
|
if (offset < prot->prepend_size)
|
|
return -EBADMSG;
|
|
err = skb_copy_bits(skb, rxm->offset + offset,
|
|
&content_type, 1);
|
|
if (err)
|
|
return err;
|
|
if (content_type)
|
|
break;
|
|
sub++;
|
|
offset--;
|
|
}
|
|
tlm->control = content_type;
|
|
}
|
|
return sub;
|
|
}
|
|
|
|
static void tls_decrypt_done(struct crypto_async_request *req, int err)
|
|
{
|
|
struct aead_request *aead_req = (struct aead_request *)req;
|
|
struct scatterlist *sgout = aead_req->dst;
|
|
struct scatterlist *sgin = aead_req->src;
|
|
struct tls_sw_context_rx *ctx;
|
|
struct tls_context *tls_ctx;
|
|
struct scatterlist *sg;
|
|
unsigned int pages;
|
|
struct sock *sk;
|
|
|
|
sk = (struct sock *)req->data;
|
|
tls_ctx = tls_get_ctx(sk);
|
|
ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
/* Propagate if there was an err */
|
|
if (err) {
|
|
if (err == -EBADMSG)
|
|
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
|
|
ctx->async_wait.err = err;
|
|
tls_err_abort(sk, err);
|
|
}
|
|
|
|
/* Free the destination pages if skb was not decrypted inplace */
|
|
if (sgout != sgin) {
|
|
/* Skip the first S/G entry as it points to AAD */
|
|
for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
|
|
if (!sg)
|
|
break;
|
|
put_page(sg_page(sg));
|
|
}
|
|
}
|
|
|
|
kfree(aead_req);
|
|
|
|
spin_lock_bh(&ctx->decrypt_compl_lock);
|
|
if (!atomic_dec_return(&ctx->decrypt_pending))
|
|
complete(&ctx->async_wait.completion);
|
|
spin_unlock_bh(&ctx->decrypt_compl_lock);
|
|
}
|
|
|
|
static int tls_do_decryption(struct sock *sk,
|
|
struct scatterlist *sgin,
|
|
struct scatterlist *sgout,
|
|
char *iv_recv,
|
|
size_t data_len,
|
|
struct aead_request *aead_req,
|
|
struct tls_decrypt_arg *darg)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
int ret;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_recv);
|
|
aead_request_set_ad(aead_req, prot->aad_size);
|
|
aead_request_set_crypt(aead_req, sgin, sgout,
|
|
data_len + prot->tag_size,
|
|
(u8 *)iv_recv);
|
|
|
|
if (darg->async) {
|
|
aead_request_set_callback(aead_req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tls_decrypt_done, sk);
|
|
atomic_inc(&ctx->decrypt_pending);
|
|
} else {
|
|
aead_request_set_callback(aead_req,
|
|
CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &ctx->async_wait);
|
|
}
|
|
|
|
ret = crypto_aead_decrypt(aead_req);
|
|
if (ret == -EINPROGRESS) {
|
|
if (darg->async)
|
|
return 0;
|
|
|
|
ret = crypto_wait_req(ret, &ctx->async_wait);
|
|
}
|
|
darg->async = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void tls_trim_both_msgs(struct sock *sk, int target_size)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
|
|
sk_msg_trim(sk, &rec->msg_plaintext, target_size);
|
|
if (target_size > 0)
|
|
target_size += prot->overhead_size;
|
|
sk_msg_trim(sk, &rec->msg_encrypted, target_size);
|
|
}
|
|
|
|
static int tls_alloc_encrypted_msg(struct sock *sk, int len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
|
|
return sk_msg_alloc(sk, msg_en, len, 0);
|
|
}
|
|
|
|
static int tls_clone_plaintext_msg(struct sock *sk, int required)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_pl = &rec->msg_plaintext;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
int skip, len;
|
|
|
|
/* We add page references worth len bytes from encrypted sg
|
|
* at the end of plaintext sg. It is guaranteed that msg_en
|
|
* has enough required room (ensured by caller).
|
|
*/
|
|
len = required - msg_pl->sg.size;
|
|
|
|
/* Skip initial bytes in msg_en's data to be able to use
|
|
* same offset of both plain and encrypted data.
|
|
*/
|
|
skip = prot->prepend_size + msg_pl->sg.size;
|
|
|
|
return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
|
|
}
|
|
|
|
static struct tls_rec *tls_get_rec(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct tls_rec *rec;
|
|
int mem_size;
|
|
|
|
mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
|
|
|
|
rec = kzalloc(mem_size, sk->sk_allocation);
|
|
if (!rec)
|
|
return NULL;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
sk_msg_init(msg_pl);
|
|
sk_msg_init(msg_en);
|
|
|
|
sg_init_table(rec->sg_aead_in, 2);
|
|
sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
|
|
sg_unmark_end(&rec->sg_aead_in[1]);
|
|
|
|
sg_init_table(rec->sg_aead_out, 2);
|
|
sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
|
|
sg_unmark_end(&rec->sg_aead_out[1]);
|
|
|
|
return rec;
|
|
}
|
|
|
|
static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
|
|
{
|
|
sk_msg_free(sk, &rec->msg_encrypted);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
static void tls_free_open_rec(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
|
|
if (rec) {
|
|
tls_free_rec(sk, rec);
|
|
ctx->open_rec = NULL;
|
|
}
|
|
}
|
|
|
|
int tls_tx_records(struct sock *sk, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec, *tmp;
|
|
struct sk_msg *msg_en;
|
|
int tx_flags, rc = 0;
|
|
|
|
if (tls_is_partially_sent_record(tls_ctx)) {
|
|
rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
|
|
if (flags == -1)
|
|
tx_flags = rec->tx_flags;
|
|
else
|
|
tx_flags = flags;
|
|
|
|
rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
|
|
if (rc)
|
|
goto tx_err;
|
|
|
|
/* Full record has been transmitted.
|
|
* Remove the head of tx_list
|
|
*/
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
/* Tx all ready records */
|
|
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
|
|
if (READ_ONCE(rec->tx_ready)) {
|
|
if (flags == -1)
|
|
tx_flags = rec->tx_flags;
|
|
else
|
|
tx_flags = flags;
|
|
|
|
msg_en = &rec->msg_encrypted;
|
|
rc = tls_push_sg(sk, tls_ctx,
|
|
&msg_en->sg.data[msg_en->sg.curr],
|
|
0, tx_flags);
|
|
if (rc)
|
|
goto tx_err;
|
|
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
tx_err:
|
|
if (rc < 0 && rc != -EAGAIN)
|
|
tls_err_abort(sk, -EBADMSG);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void tls_encrypt_done(struct crypto_async_request *req, int err)
|
|
{
|
|
struct aead_request *aead_req = (struct aead_request *)req;
|
|
struct sock *sk = req->data;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct scatterlist *sge;
|
|
struct sk_msg *msg_en;
|
|
struct tls_rec *rec;
|
|
bool ready = false;
|
|
int pending;
|
|
|
|
rec = container_of(aead_req, struct tls_rec, aead_req);
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
sge = sk_msg_elem(msg_en, msg_en->sg.curr);
|
|
sge->offset -= prot->prepend_size;
|
|
sge->length += prot->prepend_size;
|
|
|
|
/* Check if error is previously set on socket */
|
|
if (err || sk->sk_err) {
|
|
rec = NULL;
|
|
|
|
/* If err is already set on socket, return the same code */
|
|
if (sk->sk_err) {
|
|
ctx->async_wait.err = -sk->sk_err;
|
|
} else {
|
|
ctx->async_wait.err = err;
|
|
tls_err_abort(sk, err);
|
|
}
|
|
}
|
|
|
|
if (rec) {
|
|
struct tls_rec *first_rec;
|
|
|
|
/* Mark the record as ready for transmission */
|
|
smp_store_mb(rec->tx_ready, true);
|
|
|
|
/* If received record is at head of tx_list, schedule tx */
|
|
first_rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
if (rec == first_rec)
|
|
ready = true;
|
|
}
|
|
|
|
spin_lock_bh(&ctx->encrypt_compl_lock);
|
|
pending = atomic_dec_return(&ctx->encrypt_pending);
|
|
|
|
if (!pending && ctx->async_notify)
|
|
complete(&ctx->async_wait.completion);
|
|
spin_unlock_bh(&ctx->encrypt_compl_lock);
|
|
|
|
if (!ready)
|
|
return;
|
|
|
|
/* Schedule the transmission */
|
|
if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
|
|
schedule_delayed_work(&ctx->tx_work.work, 1);
|
|
}
|
|
|
|
static int tls_do_encryption(struct sock *sk,
|
|
struct tls_context *tls_ctx,
|
|
struct tls_sw_context_tx *ctx,
|
|
struct aead_request *aead_req,
|
|
size_t data_len, u32 start)
|
|
{
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_en = &rec->msg_encrypted;
|
|
struct scatterlist *sge = sk_msg_elem(msg_en, start);
|
|
int rc, iv_offset = 0;
|
|
|
|
/* For CCM based ciphers, first byte of IV is a constant */
|
|
switch (prot->cipher_type) {
|
|
case TLS_CIPHER_AES_CCM_128:
|
|
rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
|
|
iv_offset = 1;
|
|
break;
|
|
case TLS_CIPHER_SM4_CCM:
|
|
rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
|
|
iv_offset = 1;
|
|
break;
|
|
}
|
|
|
|
memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
|
|
prot->iv_size + prot->salt_size);
|
|
|
|
tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
|
|
tls_ctx->tx.rec_seq);
|
|
|
|
sge->offset += prot->prepend_size;
|
|
sge->length -= prot->prepend_size;
|
|
|
|
msg_en->sg.curr = start;
|
|
|
|
aead_request_set_tfm(aead_req, ctx->aead_send);
|
|
aead_request_set_ad(aead_req, prot->aad_size);
|
|
aead_request_set_crypt(aead_req, rec->sg_aead_in,
|
|
rec->sg_aead_out,
|
|
data_len, rec->iv_data);
|
|
|
|
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tls_encrypt_done, sk);
|
|
|
|
/* Add the record in tx_list */
|
|
list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
|
|
atomic_inc(&ctx->encrypt_pending);
|
|
|
|
rc = crypto_aead_encrypt(aead_req);
|
|
if (!rc || rc != -EINPROGRESS) {
|
|
atomic_dec(&ctx->encrypt_pending);
|
|
sge->offset -= prot->prepend_size;
|
|
sge->length += prot->prepend_size;
|
|
}
|
|
|
|
if (!rc) {
|
|
WRITE_ONCE(rec->tx_ready, true);
|
|
} else if (rc != -EINPROGRESS) {
|
|
list_del(&rec->list);
|
|
return rc;
|
|
}
|
|
|
|
/* Unhook the record from context if encryption is not failure */
|
|
ctx->open_rec = NULL;
|
|
tls_advance_record_sn(sk, prot, &tls_ctx->tx);
|
|
return rc;
|
|
}
|
|
|
|
static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
|
|
struct tls_rec **to, struct sk_msg *msg_opl,
|
|
struct sk_msg *msg_oen, u32 split_point,
|
|
u32 tx_overhead_size, u32 *orig_end)
|
|
{
|
|
u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
|
|
struct scatterlist *sge, *osge, *nsge;
|
|
u32 orig_size = msg_opl->sg.size;
|
|
struct scatterlist tmp = { };
|
|
struct sk_msg *msg_npl;
|
|
struct tls_rec *new;
|
|
int ret;
|
|
|
|
new = tls_get_rec(sk);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
|
|
tx_overhead_size, 0);
|
|
if (ret < 0) {
|
|
tls_free_rec(sk, new);
|
|
return ret;
|
|
}
|
|
|
|
*orig_end = msg_opl->sg.end;
|
|
i = msg_opl->sg.start;
|
|
sge = sk_msg_elem(msg_opl, i);
|
|
while (apply && sge->length) {
|
|
if (sge->length > apply) {
|
|
u32 len = sge->length - apply;
|
|
|
|
get_page(sg_page(sge));
|
|
sg_set_page(&tmp, sg_page(sge), len,
|
|
sge->offset + apply);
|
|
sge->length = apply;
|
|
bytes += apply;
|
|
apply = 0;
|
|
} else {
|
|
apply -= sge->length;
|
|
bytes += sge->length;
|
|
}
|
|
|
|
sk_msg_iter_var_next(i);
|
|
if (i == msg_opl->sg.end)
|
|
break;
|
|
sge = sk_msg_elem(msg_opl, i);
|
|
}
|
|
|
|
msg_opl->sg.end = i;
|
|
msg_opl->sg.curr = i;
|
|
msg_opl->sg.copybreak = 0;
|
|
msg_opl->apply_bytes = 0;
|
|
msg_opl->sg.size = bytes;
|
|
|
|
msg_npl = &new->msg_plaintext;
|
|
msg_npl->apply_bytes = apply;
|
|
msg_npl->sg.size = orig_size - bytes;
|
|
|
|
j = msg_npl->sg.start;
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
if (tmp.length) {
|
|
memcpy(nsge, &tmp, sizeof(*nsge));
|
|
sk_msg_iter_var_next(j);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
}
|
|
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
while (osge->length) {
|
|
memcpy(nsge, osge, sizeof(*nsge));
|
|
sg_unmark_end(nsge);
|
|
sk_msg_iter_var_next(i);
|
|
sk_msg_iter_var_next(j);
|
|
if (i == *orig_end)
|
|
break;
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
}
|
|
|
|
msg_npl->sg.end = j;
|
|
msg_npl->sg.curr = j;
|
|
msg_npl->sg.copybreak = 0;
|
|
|
|
*to = new;
|
|
return 0;
|
|
}
|
|
|
|
static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
|
|
struct tls_rec *from, u32 orig_end)
|
|
{
|
|
struct sk_msg *msg_npl = &from->msg_plaintext;
|
|
struct sk_msg *msg_opl = &to->msg_plaintext;
|
|
struct scatterlist *osge, *nsge;
|
|
u32 i, j;
|
|
|
|
i = msg_opl->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
j = msg_npl->sg.start;
|
|
|
|
osge = sk_msg_elem(msg_opl, i);
|
|
nsge = sk_msg_elem(msg_npl, j);
|
|
|
|
if (sg_page(osge) == sg_page(nsge) &&
|
|
osge->offset + osge->length == nsge->offset) {
|
|
osge->length += nsge->length;
|
|
put_page(sg_page(nsge));
|
|
}
|
|
|
|
msg_opl->sg.end = orig_end;
|
|
msg_opl->sg.curr = orig_end;
|
|
msg_opl->sg.copybreak = 0;
|
|
msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
|
|
msg_opl->sg.size += msg_npl->sg.size;
|
|
|
|
sk_msg_free(sk, &to->msg_encrypted);
|
|
sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
|
|
|
|
kfree(from);
|
|
}
|
|
|
|
static int tls_push_record(struct sock *sk, int flags,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
|
|
u32 i, split_point, orig_end;
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct aead_request *req;
|
|
bool split;
|
|
int rc;
|
|
|
|
if (!rec)
|
|
return 0;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
split_point = msg_pl->apply_bytes;
|
|
split = split_point && split_point < msg_pl->sg.size;
|
|
if (unlikely((!split &&
|
|
msg_pl->sg.size +
|
|
prot->overhead_size > msg_en->sg.size) ||
|
|
(split &&
|
|
split_point +
|
|
prot->overhead_size > msg_en->sg.size))) {
|
|
split = true;
|
|
split_point = msg_en->sg.size;
|
|
}
|
|
if (split) {
|
|
rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
|
|
split_point, prot->overhead_size,
|
|
&orig_end);
|
|
if (rc < 0)
|
|
return rc;
|
|
/* This can happen if above tls_split_open_record allocates
|
|
* a single large encryption buffer instead of two smaller
|
|
* ones. In this case adjust pointers and continue without
|
|
* split.
|
|
*/
|
|
if (!msg_pl->sg.size) {
|
|
tls_merge_open_record(sk, rec, tmp, orig_end);
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
split = false;
|
|
}
|
|
sk_msg_trim(sk, msg_en, msg_pl->sg.size +
|
|
prot->overhead_size);
|
|
}
|
|
|
|
rec->tx_flags = flags;
|
|
req = &rec->aead_req;
|
|
|
|
i = msg_pl->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
|
|
rec->content_type = record_type;
|
|
if (prot->version == TLS_1_3_VERSION) {
|
|
/* Add content type to end of message. No padding added */
|
|
sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
|
|
sg_mark_end(&rec->sg_content_type);
|
|
sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
|
|
&rec->sg_content_type);
|
|
} else {
|
|
sg_mark_end(sk_msg_elem(msg_pl, i));
|
|
}
|
|
|
|
if (msg_pl->sg.end < msg_pl->sg.start) {
|
|
sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
|
|
MAX_SKB_FRAGS - msg_pl->sg.start + 1,
|
|
msg_pl->sg.data);
|
|
}
|
|
|
|
i = msg_pl->sg.start;
|
|
sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
|
|
|
|
i = msg_en->sg.end;
|
|
sk_msg_iter_var_prev(i);
|
|
sg_mark_end(sk_msg_elem(msg_en, i));
|
|
|
|
i = msg_en->sg.start;
|
|
sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
|
|
|
|
tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
|
|
tls_ctx->tx.rec_seq, record_type, prot);
|
|
|
|
tls_fill_prepend(tls_ctx,
|
|
page_address(sg_page(&msg_en->sg.data[i])) +
|
|
msg_en->sg.data[i].offset,
|
|
msg_pl->sg.size + prot->tail_size,
|
|
record_type);
|
|
|
|
tls_ctx->pending_open_record_frags = false;
|
|
|
|
rc = tls_do_encryption(sk, tls_ctx, ctx, req,
|
|
msg_pl->sg.size + prot->tail_size, i);
|
|
if (rc < 0) {
|
|
if (rc != -EINPROGRESS) {
|
|
tls_err_abort(sk, -EBADMSG);
|
|
if (split) {
|
|
tls_ctx->pending_open_record_frags = true;
|
|
tls_merge_open_record(sk, rec, tmp, orig_end);
|
|
}
|
|
}
|
|
ctx->async_capable = 1;
|
|
return rc;
|
|
} else if (split) {
|
|
msg_pl = &tmp->msg_plaintext;
|
|
msg_en = &tmp->msg_encrypted;
|
|
sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
|
|
tls_ctx->pending_open_record_frags = true;
|
|
ctx->open_rec = tmp;
|
|
}
|
|
|
|
return tls_tx_records(sk, flags);
|
|
}
|
|
|
|
static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
|
|
bool full_record, u8 record_type,
|
|
ssize_t *copied, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct sk_msg msg_redir = { };
|
|
struct sk_psock *psock;
|
|
struct sock *sk_redir;
|
|
struct tls_rec *rec;
|
|
bool enospc, policy, redir_ingress;
|
|
int err = 0, send;
|
|
u32 delta = 0;
|
|
|
|
policy = !(flags & MSG_SENDPAGE_NOPOLICY);
|
|
psock = sk_psock_get(sk);
|
|
if (!psock || !policy) {
|
|
err = tls_push_record(sk, flags, record_type);
|
|
if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
|
|
*copied -= sk_msg_free(sk, msg);
|
|
tls_free_open_rec(sk);
|
|
err = -sk->sk_err;
|
|
}
|
|
if (psock)
|
|
sk_psock_put(sk, psock);
|
|
return err;
|
|
}
|
|
more_data:
|
|
enospc = sk_msg_full(msg);
|
|
if (psock->eval == __SK_NONE) {
|
|
delta = msg->sg.size;
|
|
psock->eval = sk_psock_msg_verdict(sk, psock, msg);
|
|
delta -= msg->sg.size;
|
|
}
|
|
if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
|
|
!enospc && !full_record) {
|
|
err = -ENOSPC;
|
|
goto out_err;
|
|
}
|
|
msg->cork_bytes = 0;
|
|
send = msg->sg.size;
|
|
if (msg->apply_bytes && msg->apply_bytes < send)
|
|
send = msg->apply_bytes;
|
|
|
|
switch (psock->eval) {
|
|
case __SK_PASS:
|
|
err = tls_push_record(sk, flags, record_type);
|
|
if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
|
|
*copied -= sk_msg_free(sk, msg);
|
|
tls_free_open_rec(sk);
|
|
err = -sk->sk_err;
|
|
goto out_err;
|
|
}
|
|
break;
|
|
case __SK_REDIRECT:
|
|
redir_ingress = psock->redir_ingress;
|
|
sk_redir = psock->sk_redir;
|
|
memcpy(&msg_redir, msg, sizeof(*msg));
|
|
if (msg->apply_bytes < send)
|
|
msg->apply_bytes = 0;
|
|
else
|
|
msg->apply_bytes -= send;
|
|
sk_msg_return_zero(sk, msg, send);
|
|
msg->sg.size -= send;
|
|
release_sock(sk);
|
|
err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
|
|
&msg_redir, send, flags);
|
|
lock_sock(sk);
|
|
if (err < 0) {
|
|
*copied -= sk_msg_free_nocharge(sk, &msg_redir);
|
|
msg->sg.size = 0;
|
|
}
|
|
if (msg->sg.size == 0)
|
|
tls_free_open_rec(sk);
|
|
break;
|
|
case __SK_DROP:
|
|
default:
|
|
sk_msg_free_partial(sk, msg, send);
|
|
if (msg->apply_bytes < send)
|
|
msg->apply_bytes = 0;
|
|
else
|
|
msg->apply_bytes -= send;
|
|
if (msg->sg.size == 0)
|
|
tls_free_open_rec(sk);
|
|
*copied -= (send + delta);
|
|
err = -EACCES;
|
|
}
|
|
|
|
if (likely(!err)) {
|
|
bool reset_eval = !ctx->open_rec;
|
|
|
|
rec = ctx->open_rec;
|
|
if (rec) {
|
|
msg = &rec->msg_plaintext;
|
|
if (!msg->apply_bytes)
|
|
reset_eval = true;
|
|
}
|
|
if (reset_eval) {
|
|
psock->eval = __SK_NONE;
|
|
if (psock->sk_redir) {
|
|
sock_put(psock->sk_redir);
|
|
psock->sk_redir = NULL;
|
|
}
|
|
}
|
|
if (rec)
|
|
goto more_data;
|
|
}
|
|
out_err:
|
|
sk_psock_put(sk, psock);
|
|
return err;
|
|
}
|
|
|
|
static int tls_sw_push_pending_record(struct sock *sk, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec = ctx->open_rec;
|
|
struct sk_msg *msg_pl;
|
|
size_t copied;
|
|
|
|
if (!rec)
|
|
return 0;
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
copied = msg_pl->sg.size;
|
|
if (!copied)
|
|
return 0;
|
|
|
|
return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
|
|
&copied, flags);
|
|
}
|
|
|
|
int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
bool async_capable = ctx->async_capable;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
|
|
bool eor = !(msg->msg_flags & MSG_MORE);
|
|
size_t try_to_copy;
|
|
ssize_t copied = 0;
|
|
struct sk_msg *msg_pl, *msg_en;
|
|
struct tls_rec *rec;
|
|
int required_size;
|
|
int num_async = 0;
|
|
bool full_record;
|
|
int record_room;
|
|
int num_zc = 0;
|
|
int orig_size;
|
|
int ret = 0;
|
|
int pending;
|
|
|
|
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_CMSG_COMPAT))
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
|
|
if (ret)
|
|
return ret;
|
|
lock_sock(sk);
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
ret = tls_process_cmsg(sk, msg, &record_type);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret != -EAGAIN)
|
|
goto send_end;
|
|
}
|
|
}
|
|
|
|
while (msg_data_left(msg)) {
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto send_end;
|
|
}
|
|
|
|
if (ctx->open_rec)
|
|
rec = ctx->open_rec;
|
|
else
|
|
rec = ctx->open_rec = tls_get_rec(sk);
|
|
if (!rec) {
|
|
ret = -ENOMEM;
|
|
goto send_end;
|
|
}
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
msg_en = &rec->msg_encrypted;
|
|
|
|
orig_size = msg_pl->sg.size;
|
|
full_record = false;
|
|
try_to_copy = msg_data_left(msg);
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
|
|
if (try_to_copy >= record_room) {
|
|
try_to_copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + try_to_copy +
|
|
prot->overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
|
|
alloc_encrypted:
|
|
ret = tls_alloc_encrypted_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - msg_en->sg.size;
|
|
full_record = true;
|
|
}
|
|
|
|
if (!is_kvec && (full_record || eor) && !async_capable) {
|
|
u32 first = msg_pl->sg.end;
|
|
|
|
ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
|
|
msg_pl, try_to_copy);
|
|
if (ret)
|
|
goto fallback_to_reg_send;
|
|
|
|
num_zc++;
|
|
copied += try_to_copy;
|
|
|
|
sk_msg_sg_copy_set(msg_pl, first);
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied,
|
|
msg->msg_flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ctx->open_rec && ret == -ENOSPC)
|
|
goto rollback_iter;
|
|
else if (ret != -EAGAIN)
|
|
goto send_end;
|
|
}
|
|
continue;
|
|
rollback_iter:
|
|
copied -= try_to_copy;
|
|
sk_msg_sg_copy_clear(msg_pl, first);
|
|
iov_iter_revert(&msg->msg_iter,
|
|
msg_pl->sg.size - orig_size);
|
|
fallback_to_reg_send:
|
|
sk_msg_trim(sk, msg_pl, orig_size);
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + try_to_copy;
|
|
|
|
ret = tls_clone_plaintext_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto send_end;
|
|
|
|
/* Adjust try_to_copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
try_to_copy -= required_size - msg_pl->sg.size;
|
|
full_record = true;
|
|
sk_msg_trim(sk, msg_en,
|
|
msg_pl->sg.size + prot->overhead_size);
|
|
}
|
|
|
|
if (try_to_copy) {
|
|
ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
|
|
msg_pl, try_to_copy);
|
|
if (ret < 0)
|
|
goto trim_sgl;
|
|
}
|
|
|
|
/* Open records defined only if successfully copied, otherwise
|
|
* we would trim the sg but not reset the open record frags.
|
|
*/
|
|
tls_ctx->pending_open_record_frags = true;
|
|
copied += try_to_copy;
|
|
if (full_record || eor) {
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied,
|
|
msg->msg_flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ret != -EAGAIN) {
|
|
if (ret == -ENOSPC)
|
|
ret = 0;
|
|
goto send_end;
|
|
}
|
|
}
|
|
}
|
|
|
|
continue;
|
|
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
trim_sgl:
|
|
if (ctx->open_rec)
|
|
tls_trim_both_msgs(sk, orig_size);
|
|
goto send_end;
|
|
}
|
|
|
|
if (ctx->open_rec && msg_en->sg.size < required_size)
|
|
goto alloc_encrypted;
|
|
}
|
|
|
|
if (!num_async) {
|
|
goto send_end;
|
|
} else if (num_zc) {
|
|
/* Wait for pending encryptions to get completed */
|
|
spin_lock_bh(&ctx->encrypt_compl_lock);
|
|
ctx->async_notify = true;
|
|
|
|
pending = atomic_read(&ctx->encrypt_pending);
|
|
spin_unlock_bh(&ctx->encrypt_compl_lock);
|
|
if (pending)
|
|
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
else
|
|
reinit_completion(&ctx->async_wait.completion);
|
|
|
|
/* There can be no concurrent accesses, since we have no
|
|
* pending encrypt operations
|
|
*/
|
|
WRITE_ONCE(ctx->async_notify, false);
|
|
|
|
if (ctx->async_wait.err) {
|
|
ret = ctx->async_wait.err;
|
|
copied = 0;
|
|
}
|
|
}
|
|
|
|
/* Transmit if any encryptions have completed */
|
|
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
|
|
cancel_delayed_work(&ctx->tx_work.work);
|
|
tls_tx_records(sk, msg->msg_flags);
|
|
}
|
|
|
|
send_end:
|
|
ret = sk_stream_error(sk, msg->msg_flags, ret);
|
|
|
|
release_sock(sk);
|
|
mutex_unlock(&tls_ctx->tx_lock);
|
|
return copied > 0 ? copied : ret;
|
|
}
|
|
|
|
static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
struct sk_msg *msg_pl;
|
|
struct tls_rec *rec;
|
|
int num_async = 0;
|
|
ssize_t copied = 0;
|
|
bool full_record;
|
|
int record_room;
|
|
int ret = 0;
|
|
bool eor;
|
|
|
|
eor = !(flags & MSG_SENDPAGE_NOTLAST);
|
|
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
|
|
|
|
/* Call the sk_stream functions to manage the sndbuf mem. */
|
|
while (size > 0) {
|
|
size_t copy, required_size;
|
|
|
|
if (sk->sk_err) {
|
|
ret = -sk->sk_err;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
if (ctx->open_rec)
|
|
rec = ctx->open_rec;
|
|
else
|
|
rec = ctx->open_rec = tls_get_rec(sk);
|
|
if (!rec) {
|
|
ret = -ENOMEM;
|
|
goto sendpage_end;
|
|
}
|
|
|
|
msg_pl = &rec->msg_plaintext;
|
|
|
|
full_record = false;
|
|
record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
|
|
copy = size;
|
|
if (copy >= record_room) {
|
|
copy = record_room;
|
|
full_record = true;
|
|
}
|
|
|
|
required_size = msg_pl->sg.size + copy + prot->overhead_size;
|
|
|
|
if (!sk_stream_memory_free(sk))
|
|
goto wait_for_sndbuf;
|
|
alloc_payload:
|
|
ret = tls_alloc_encrypted_msg(sk, required_size);
|
|
if (ret) {
|
|
if (ret != -ENOSPC)
|
|
goto wait_for_memory;
|
|
|
|
/* Adjust copy according to the amount that was
|
|
* actually allocated. The difference is due
|
|
* to max sg elements limit
|
|
*/
|
|
copy -= required_size - msg_pl->sg.size;
|
|
full_record = true;
|
|
}
|
|
|
|
sk_msg_page_add(msg_pl, page, copy, offset);
|
|
sk_mem_charge(sk, copy);
|
|
|
|
offset += copy;
|
|
size -= copy;
|
|
copied += copy;
|
|
|
|
tls_ctx->pending_open_record_frags = true;
|
|
if (full_record || eor || sk_msg_full(msg_pl)) {
|
|
ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
|
|
record_type, &copied, flags);
|
|
if (ret) {
|
|
if (ret == -EINPROGRESS)
|
|
num_async++;
|
|
else if (ret == -ENOMEM)
|
|
goto wait_for_memory;
|
|
else if (ret != -EAGAIN) {
|
|
if (ret == -ENOSPC)
|
|
ret = 0;
|
|
goto sendpage_end;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
wait_for_sndbuf:
|
|
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
wait_for_memory:
|
|
ret = sk_stream_wait_memory(sk, &timeo);
|
|
if (ret) {
|
|
if (ctx->open_rec)
|
|
tls_trim_both_msgs(sk, msg_pl->sg.size);
|
|
goto sendpage_end;
|
|
}
|
|
|
|
if (ctx->open_rec)
|
|
goto alloc_payload;
|
|
}
|
|
|
|
if (num_async) {
|
|
/* Transmit if any encryptions have completed */
|
|
if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
|
|
cancel_delayed_work(&ctx->tx_work.work);
|
|
tls_tx_records(sk, flags);
|
|
}
|
|
}
|
|
sendpage_end:
|
|
ret = sk_stream_error(sk, flags, ret);
|
|
return copied > 0 ? copied : ret;
|
|
}
|
|
|
|
int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
|
|
MSG_NO_SHARED_FRAGS))
|
|
return -EOPNOTSUPP;
|
|
|
|
return tls_sw_do_sendpage(sk, page, offset, size, flags);
|
|
}
|
|
|
|
int tls_sw_sendpage(struct sock *sk, struct page *page,
|
|
int offset, size_t size, int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
int ret;
|
|
|
|
if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
|
|
if (ret)
|
|
return ret;
|
|
lock_sock(sk);
|
|
ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
|
|
release_sock(sk);
|
|
mutex_unlock(&tls_ctx->tx_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
|
|
bool released)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
long timeo;
|
|
|
|
timeo = sock_rcvtimeo(sk, nonblock);
|
|
|
|
while (!tls_strp_msg_ready(ctx)) {
|
|
if (!sk_psock_queue_empty(psock))
|
|
return 0;
|
|
|
|
if (sk->sk_err)
|
|
return sock_error(sk);
|
|
|
|
if (!skb_queue_empty(&sk->sk_receive_queue)) {
|
|
tls_strp_check_rcv(&ctx->strp);
|
|
if (tls_strp_msg_ready(ctx))
|
|
break;
|
|
}
|
|
|
|
if (sk->sk_shutdown & RCV_SHUTDOWN)
|
|
return 0;
|
|
|
|
if (sock_flag(sk, SOCK_DONE))
|
|
return 0;
|
|
|
|
if (!timeo)
|
|
return -EAGAIN;
|
|
|
|
released = true;
|
|
add_wait_queue(sk_sleep(sk), &wait);
|
|
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
sk_wait_event(sk, &timeo,
|
|
tls_strp_msg_ready(ctx) ||
|
|
!sk_psock_queue_empty(psock),
|
|
&wait);
|
|
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
|
|
remove_wait_queue(sk_sleep(sk), &wait);
|
|
|
|
/* Handle signals */
|
|
if (signal_pending(current))
|
|
return sock_intr_errno(timeo);
|
|
}
|
|
|
|
tls_strp_msg_load(&ctx->strp, released);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int tls_setup_from_iter(struct iov_iter *from,
|
|
int length, int *pages_used,
|
|
struct scatterlist *to,
|
|
int to_max_pages)
|
|
{
|
|
int rc = 0, i = 0, num_elem = *pages_used, maxpages;
|
|
struct page *pages[MAX_SKB_FRAGS];
|
|
unsigned int size = 0;
|
|
ssize_t copied, use;
|
|
size_t offset;
|
|
|
|
while (length > 0) {
|
|
i = 0;
|
|
maxpages = to_max_pages - num_elem;
|
|
if (maxpages == 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
copied = iov_iter_get_pages2(from, pages,
|
|
length,
|
|
maxpages, &offset);
|
|
if (copied <= 0) {
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
length -= copied;
|
|
size += copied;
|
|
while (copied) {
|
|
use = min_t(int, copied, PAGE_SIZE - offset);
|
|
|
|
sg_set_page(&to[num_elem],
|
|
pages[i], use, offset);
|
|
sg_unmark_end(&to[num_elem]);
|
|
/* We do not uncharge memory from this API */
|
|
|
|
offset = 0;
|
|
copied -= use;
|
|
|
|
i++;
|
|
num_elem++;
|
|
}
|
|
}
|
|
/* Mark the end in the last sg entry if newly added */
|
|
if (num_elem > *pages_used)
|
|
sg_mark_end(&to[num_elem - 1]);
|
|
out:
|
|
if (rc)
|
|
iov_iter_revert(from, size);
|
|
*pages_used = num_elem;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
|
|
unsigned int full_len)
|
|
{
|
|
struct strp_msg *clr_rxm;
|
|
struct sk_buff *clr_skb;
|
|
int err;
|
|
|
|
clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
|
|
&err, sk->sk_allocation);
|
|
if (!clr_skb)
|
|
return NULL;
|
|
|
|
skb_copy_header(clr_skb, skb);
|
|
clr_skb->len = full_len;
|
|
clr_skb->data_len = full_len;
|
|
|
|
clr_rxm = strp_msg(clr_skb);
|
|
clr_rxm->offset = 0;
|
|
|
|
return clr_skb;
|
|
}
|
|
|
|
/* Decrypt handlers
|
|
*
|
|
* tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
|
|
* They must transform the darg in/out argument are as follows:
|
|
* | Input | Output
|
|
* -------------------------------------------------------------------
|
|
* zc | Zero-copy decrypt allowed | Zero-copy performed
|
|
* async | Async decrypt allowed | Async crypto used / in progress
|
|
* skb | * | Output skb
|
|
*
|
|
* If ZC decryption was performed darg.skb will point to the input skb.
|
|
*/
|
|
|
|
/* This function decrypts the input skb into either out_iov or in out_sg
|
|
* or in skb buffers itself. The input parameter 'darg->zc' indicates if
|
|
* zero-copy mode needs to be tried or not. With zero-copy mode, either
|
|
* out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
|
|
* NULL, then the decryption happens inside skb buffers itself, i.e.
|
|
* zero-copy gets disabled and 'darg->zc' is updated.
|
|
*/
|
|
static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
|
|
struct scatterlist *out_sg,
|
|
struct tls_decrypt_arg *darg)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
int n_sgin, n_sgout, aead_size, err, pages = 0;
|
|
struct sk_buff *skb = tls_strp_msg(ctx);
|
|
const struct strp_msg *rxm = strp_msg(skb);
|
|
const struct tls_msg *tlm = tls_msg(skb);
|
|
struct aead_request *aead_req;
|
|
struct scatterlist *sgin = NULL;
|
|
struct scatterlist *sgout = NULL;
|
|
const int data_len = rxm->full_len - prot->overhead_size;
|
|
int tail_pages = !!prot->tail_size;
|
|
struct tls_decrypt_ctx *dctx;
|
|
struct sk_buff *clear_skb;
|
|
int iv_offset = 0;
|
|
u8 *mem;
|
|
|
|
n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
|
|
rxm->full_len - prot->prepend_size);
|
|
if (n_sgin < 1)
|
|
return n_sgin ?: -EBADMSG;
|
|
|
|
if (darg->zc && (out_iov || out_sg)) {
|
|
clear_skb = NULL;
|
|
|
|
if (out_iov)
|
|
n_sgout = 1 + tail_pages +
|
|
iov_iter_npages_cap(out_iov, INT_MAX, data_len);
|
|
else
|
|
n_sgout = sg_nents(out_sg);
|
|
} else {
|
|
darg->zc = false;
|
|
|
|
clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
|
|
if (!clear_skb)
|
|
return -ENOMEM;
|
|
|
|
n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
|
|
}
|
|
|
|
/* Increment to accommodate AAD */
|
|
n_sgin = n_sgin + 1;
|
|
|
|
/* Allocate a single block of memory which contains
|
|
* aead_req || tls_decrypt_ctx.
|
|
* Both structs are variable length.
|
|
*/
|
|
aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
|
|
mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
|
|
sk->sk_allocation);
|
|
if (!mem) {
|
|
err = -ENOMEM;
|
|
goto exit_free_skb;
|
|
}
|
|
|
|
/* Segment the allocated memory */
|
|
aead_req = (struct aead_request *)mem;
|
|
dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
|
|
sgin = &dctx->sg[0];
|
|
sgout = &dctx->sg[n_sgin];
|
|
|
|
/* For CCM based ciphers, first byte of nonce+iv is a constant */
|
|
switch (prot->cipher_type) {
|
|
case TLS_CIPHER_AES_CCM_128:
|
|
dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
|
|
iv_offset = 1;
|
|
break;
|
|
case TLS_CIPHER_SM4_CCM:
|
|
dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
|
|
iv_offset = 1;
|
|
break;
|
|
}
|
|
|
|
/* Prepare IV */
|
|
if (prot->version == TLS_1_3_VERSION ||
|
|
prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
|
|
memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
|
|
prot->iv_size + prot->salt_size);
|
|
} else {
|
|
err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
|
|
&dctx->iv[iv_offset] + prot->salt_size,
|
|
prot->iv_size);
|
|
if (err < 0)
|
|
goto exit_free;
|
|
memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
|
|
}
|
|
tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
|
|
|
|
/* Prepare AAD */
|
|
tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
|
|
prot->tail_size,
|
|
tls_ctx->rx.rec_seq, tlm->control, prot);
|
|
|
|
/* Prepare sgin */
|
|
sg_init_table(sgin, n_sgin);
|
|
sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
|
|
err = skb_to_sgvec(skb, &sgin[1],
|
|
rxm->offset + prot->prepend_size,
|
|
rxm->full_len - prot->prepend_size);
|
|
if (err < 0)
|
|
goto exit_free;
|
|
|
|
if (clear_skb) {
|
|
sg_init_table(sgout, n_sgout);
|
|
sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
|
|
|
|
err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
|
|
data_len + prot->tail_size);
|
|
if (err < 0)
|
|
goto exit_free;
|
|
} else if (out_iov) {
|
|
sg_init_table(sgout, n_sgout);
|
|
sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
|
|
|
|
err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
|
|
(n_sgout - 1 - tail_pages));
|
|
if (err < 0)
|
|
goto exit_free_pages;
|
|
|
|
if (prot->tail_size) {
|
|
sg_unmark_end(&sgout[pages]);
|
|
sg_set_buf(&sgout[pages + 1], &dctx->tail,
|
|
prot->tail_size);
|
|
sg_mark_end(&sgout[pages + 1]);
|
|
}
|
|
} else if (out_sg) {
|
|
memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
|
|
}
|
|
|
|
/* Prepare and submit AEAD request */
|
|
err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
|
|
data_len + prot->tail_size, aead_req, darg);
|
|
if (err)
|
|
goto exit_free_pages;
|
|
|
|
darg->skb = clear_skb ?: tls_strp_msg(ctx);
|
|
clear_skb = NULL;
|
|
|
|
if (unlikely(darg->async)) {
|
|
err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
|
|
if (err)
|
|
__skb_queue_tail(&ctx->async_hold, darg->skb);
|
|
return err;
|
|
}
|
|
|
|
if (prot->tail_size)
|
|
darg->tail = dctx->tail;
|
|
|
|
exit_free_pages:
|
|
/* Release the pages in case iov was mapped to pages */
|
|
for (; pages > 0; pages--)
|
|
put_page(sg_page(&sgout[pages]));
|
|
exit_free:
|
|
kfree(mem);
|
|
exit_free_skb:
|
|
consume_skb(clear_skb);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
|
|
struct msghdr *msg, struct tls_decrypt_arg *darg)
|
|
{
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct strp_msg *rxm;
|
|
int pad, err;
|
|
|
|
err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
|
|
if (err < 0) {
|
|
if (err == -EBADMSG)
|
|
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
|
|
return err;
|
|
}
|
|
/* keep going even for ->async, the code below is TLS 1.3 */
|
|
|
|
/* If opportunistic TLS 1.3 ZC failed retry without ZC */
|
|
if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
|
|
darg->tail != TLS_RECORD_TYPE_DATA)) {
|
|
darg->zc = false;
|
|
if (!darg->tail)
|
|
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
|
|
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
|
|
return tls_decrypt_sw(sk, tls_ctx, msg, darg);
|
|
}
|
|
|
|
pad = tls_padding_length(prot, darg->skb, darg);
|
|
if (pad < 0) {
|
|
if (darg->skb != tls_strp_msg(ctx))
|
|
consume_skb(darg->skb);
|
|
return pad;
|
|
}
|
|
|
|
rxm = strp_msg(darg->skb);
|
|
rxm->full_len -= pad;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
tls_decrypt_device(struct sock *sk, struct msghdr *msg,
|
|
struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
|
|
{
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct strp_msg *rxm;
|
|
int pad, err;
|
|
|
|
if (tls_ctx->rx_conf != TLS_HW)
|
|
return 0;
|
|
|
|
err = tls_device_decrypted(sk, tls_ctx);
|
|
if (err <= 0)
|
|
return err;
|
|
|
|
pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
|
|
if (pad < 0)
|
|
return pad;
|
|
|
|
darg->async = false;
|
|
darg->skb = tls_strp_msg(ctx);
|
|
/* ->zc downgrade check, in case TLS 1.3 gets here */
|
|
darg->zc &= !(prot->version == TLS_1_3_VERSION &&
|
|
tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
|
|
|
|
rxm = strp_msg(darg->skb);
|
|
rxm->full_len -= pad;
|
|
|
|
if (!darg->zc) {
|
|
/* Non-ZC case needs a real skb */
|
|
darg->skb = tls_strp_msg_detach(ctx);
|
|
if (!darg->skb)
|
|
return -ENOMEM;
|
|
} else {
|
|
unsigned int off, len;
|
|
|
|
/* In ZC case nobody cares about the output skb.
|
|
* Just copy the data here. Note the skb is not fully trimmed.
|
|
*/
|
|
off = rxm->offset + prot->prepend_size;
|
|
len = rxm->full_len - prot->overhead_size;
|
|
|
|
err = skb_copy_datagram_msg(darg->skb, off, msg, len);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
|
|
struct tls_decrypt_arg *darg)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct strp_msg *rxm;
|
|
int err;
|
|
|
|
err = tls_decrypt_device(sk, msg, tls_ctx, darg);
|
|
if (!err)
|
|
err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
rxm = strp_msg(darg->skb);
|
|
rxm->offset += prot->prepend_size;
|
|
rxm->full_len -= prot->overhead_size;
|
|
tls_advance_record_sn(sk, prot, &tls_ctx->rx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
|
|
{
|
|
struct tls_decrypt_arg darg = { .zc = true, };
|
|
|
|
return tls_decrypt_sg(sk, NULL, sgout, &darg);
|
|
}
|
|
|
|
static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
|
|
u8 *control)
|
|
{
|
|
int err;
|
|
|
|
if (!*control) {
|
|
*control = tlm->control;
|
|
if (!*control)
|
|
return -EBADMSG;
|
|
|
|
err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
|
|
sizeof(*control), control);
|
|
if (*control != TLS_RECORD_TYPE_DATA) {
|
|
if (err || msg->msg_flags & MSG_CTRUNC)
|
|
return -EIO;
|
|
}
|
|
} else if (*control != tlm->control) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
|
|
{
|
|
tls_strp_msg_done(&ctx->strp);
|
|
}
|
|
|
|
/* This function traverses the rx_list in tls receive context to copies the
|
|
* decrypted records into the buffer provided by caller zero copy is not
|
|
* true. Further, the records are removed from the rx_list if it is not a peek
|
|
* case and the record has been consumed completely.
|
|
*/
|
|
static int process_rx_list(struct tls_sw_context_rx *ctx,
|
|
struct msghdr *msg,
|
|
u8 *control,
|
|
size_t skip,
|
|
size_t len,
|
|
bool is_peek)
|
|
{
|
|
struct sk_buff *skb = skb_peek(&ctx->rx_list);
|
|
struct tls_msg *tlm;
|
|
ssize_t copied = 0;
|
|
int err;
|
|
|
|
while (skip && skb) {
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
tlm = tls_msg(skb);
|
|
|
|
err = tls_record_content_type(msg, tlm, control);
|
|
if (err <= 0)
|
|
goto out;
|
|
|
|
if (skip < rxm->full_len)
|
|
break;
|
|
|
|
skip = skip - rxm->full_len;
|
|
skb = skb_peek_next(skb, &ctx->rx_list);
|
|
}
|
|
|
|
while (len && skb) {
|
|
struct sk_buff *next_skb;
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int chunk = min_t(unsigned int, rxm->full_len - skip, len);
|
|
|
|
tlm = tls_msg(skb);
|
|
|
|
err = tls_record_content_type(msg, tlm, control);
|
|
if (err <= 0)
|
|
goto out;
|
|
|
|
err = skb_copy_datagram_msg(skb, rxm->offset + skip,
|
|
msg, chunk);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
len = len - chunk;
|
|
copied = copied + chunk;
|
|
|
|
/* Consume the data from record if it is non-peek case*/
|
|
if (!is_peek) {
|
|
rxm->offset = rxm->offset + chunk;
|
|
rxm->full_len = rxm->full_len - chunk;
|
|
|
|
/* Return if there is unconsumed data in the record */
|
|
if (rxm->full_len - skip)
|
|
break;
|
|
}
|
|
|
|
/* The remaining skip-bytes must lie in 1st record in rx_list.
|
|
* So from the 2nd record, 'skip' should be 0.
|
|
*/
|
|
skip = 0;
|
|
|
|
if (msg)
|
|
msg->msg_flags |= MSG_EOR;
|
|
|
|
next_skb = skb_peek_next(skb, &ctx->rx_list);
|
|
|
|
if (!is_peek) {
|
|
__skb_unlink(skb, &ctx->rx_list);
|
|
consume_skb(skb);
|
|
}
|
|
|
|
skb = next_skb;
|
|
}
|
|
err = 0;
|
|
|
|
out:
|
|
return copied ? : err;
|
|
}
|
|
|
|
static bool
|
|
tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
|
|
size_t len_left, size_t decrypted, ssize_t done,
|
|
size_t *flushed_at)
|
|
{
|
|
size_t max_rec;
|
|
|
|
if (len_left <= decrypted)
|
|
return false;
|
|
|
|
max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
|
|
if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
|
|
return false;
|
|
|
|
*flushed_at = done;
|
|
return sk_flush_backlog(sk);
|
|
}
|
|
|
|
static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
|
|
bool nonblock)
|
|
{
|
|
long timeo;
|
|
int err;
|
|
|
|
lock_sock(sk);
|
|
|
|
timeo = sock_rcvtimeo(sk, nonblock);
|
|
|
|
while (unlikely(ctx->reader_present)) {
|
|
DEFINE_WAIT_FUNC(wait, woken_wake_function);
|
|
|
|
ctx->reader_contended = 1;
|
|
|
|
add_wait_queue(&ctx->wq, &wait);
|
|
sk_wait_event(sk, &timeo,
|
|
!READ_ONCE(ctx->reader_present), &wait);
|
|
remove_wait_queue(&ctx->wq, &wait);
|
|
|
|
if (timeo <= 0) {
|
|
err = -EAGAIN;
|
|
goto err_unlock;
|
|
}
|
|
if (signal_pending(current)) {
|
|
err = sock_intr_errno(timeo);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
WRITE_ONCE(ctx->reader_present, 1);
|
|
|
|
return 0;
|
|
|
|
err_unlock:
|
|
release_sock(sk);
|
|
return err;
|
|
}
|
|
|
|
static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
|
|
{
|
|
if (unlikely(ctx->reader_contended)) {
|
|
if (wq_has_sleeper(&ctx->wq))
|
|
wake_up(&ctx->wq);
|
|
else
|
|
ctx->reader_contended = 0;
|
|
|
|
WARN_ON_ONCE(!ctx->reader_present);
|
|
}
|
|
|
|
WRITE_ONCE(ctx->reader_present, 0);
|
|
release_sock(sk);
|
|
}
|
|
|
|
int tls_sw_recvmsg(struct sock *sk,
|
|
struct msghdr *msg,
|
|
size_t len,
|
|
int flags,
|
|
int *addr_len)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
ssize_t decrypted = 0, async_copy_bytes = 0;
|
|
struct sk_psock *psock;
|
|
unsigned char control = 0;
|
|
size_t flushed_at = 0;
|
|
struct strp_msg *rxm;
|
|
struct tls_msg *tlm;
|
|
ssize_t copied = 0;
|
|
bool async = false;
|
|
int target, err;
|
|
bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
|
|
bool is_peek = flags & MSG_PEEK;
|
|
bool released = true;
|
|
bool bpf_strp_enabled;
|
|
bool zc_capable;
|
|
|
|
if (unlikely(flags & MSG_ERRQUEUE))
|
|
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
|
|
|
|
psock = sk_psock_get(sk);
|
|
err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
|
|
if (err < 0)
|
|
return err;
|
|
bpf_strp_enabled = sk_psock_strp_enabled(psock);
|
|
|
|
/* If crypto failed the connection is broken */
|
|
err = ctx->async_wait.err;
|
|
if (err)
|
|
goto end;
|
|
|
|
/* Process pending decrypted records. It must be non-zero-copy */
|
|
err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
|
|
if (err < 0)
|
|
goto end;
|
|
|
|
copied = err;
|
|
if (len <= copied)
|
|
goto end;
|
|
|
|
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
|
|
len = len - copied;
|
|
|
|
zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
|
|
ctx->zc_capable;
|
|
decrypted = 0;
|
|
while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
|
|
struct tls_decrypt_arg darg;
|
|
int to_decrypt, chunk;
|
|
|
|
err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
|
|
released);
|
|
if (err <= 0) {
|
|
if (psock) {
|
|
chunk = sk_msg_recvmsg(sk, psock, msg, len,
|
|
flags);
|
|
if (chunk > 0) {
|
|
decrypted += chunk;
|
|
len -= chunk;
|
|
continue;
|
|
}
|
|
}
|
|
goto recv_end;
|
|
}
|
|
|
|
memset(&darg.inargs, 0, sizeof(darg.inargs));
|
|
|
|
rxm = strp_msg(tls_strp_msg(ctx));
|
|
tlm = tls_msg(tls_strp_msg(ctx));
|
|
|
|
to_decrypt = rxm->full_len - prot->overhead_size;
|
|
|
|
if (zc_capable && to_decrypt <= len &&
|
|
tlm->control == TLS_RECORD_TYPE_DATA)
|
|
darg.zc = true;
|
|
|
|
/* Do not use async mode if record is non-data */
|
|
if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
|
|
darg.async = ctx->async_capable;
|
|
else
|
|
darg.async = false;
|
|
|
|
err = tls_rx_one_record(sk, msg, &darg);
|
|
if (err < 0) {
|
|
tls_err_abort(sk, -EBADMSG);
|
|
goto recv_end;
|
|
}
|
|
|
|
async |= darg.async;
|
|
|
|
/* If the type of records being processed is not known yet,
|
|
* set it to record type just dequeued. If it is already known,
|
|
* but does not match the record type just dequeued, go to end.
|
|
* We always get record type here since for tls1.2, record type
|
|
* is known just after record is dequeued from stream parser.
|
|
* For tls1.3, we disable async.
|
|
*/
|
|
err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
|
|
if (err <= 0) {
|
|
DEBUG_NET_WARN_ON_ONCE(darg.zc);
|
|
tls_rx_rec_done(ctx);
|
|
put_on_rx_list_err:
|
|
__skb_queue_tail(&ctx->rx_list, darg.skb);
|
|
goto recv_end;
|
|
}
|
|
|
|
/* periodically flush backlog, and feed strparser */
|
|
released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
|
|
decrypted + copied,
|
|
&flushed_at);
|
|
|
|
/* TLS 1.3 may have updated the length by more than overhead */
|
|
rxm = strp_msg(darg.skb);
|
|
chunk = rxm->full_len;
|
|
tls_rx_rec_done(ctx);
|
|
|
|
if (!darg.zc) {
|
|
bool partially_consumed = chunk > len;
|
|
struct sk_buff *skb = darg.skb;
|
|
|
|
DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
|
|
|
|
if (async) {
|
|
/* TLS 1.2-only, to_decrypt must be text len */
|
|
chunk = min_t(int, to_decrypt, len);
|
|
async_copy_bytes += chunk;
|
|
put_on_rx_list:
|
|
decrypted += chunk;
|
|
len -= chunk;
|
|
__skb_queue_tail(&ctx->rx_list, skb);
|
|
continue;
|
|
}
|
|
|
|
if (bpf_strp_enabled) {
|
|
released = true;
|
|
err = sk_psock_tls_strp_read(psock, skb);
|
|
if (err != __SK_PASS) {
|
|
rxm->offset = rxm->offset + rxm->full_len;
|
|
rxm->full_len = 0;
|
|
if (err == __SK_DROP)
|
|
consume_skb(skb);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (partially_consumed)
|
|
chunk = len;
|
|
|
|
err = skb_copy_datagram_msg(skb, rxm->offset,
|
|
msg, chunk);
|
|
if (err < 0)
|
|
goto put_on_rx_list_err;
|
|
|
|
if (is_peek)
|
|
goto put_on_rx_list;
|
|
|
|
if (partially_consumed) {
|
|
rxm->offset += chunk;
|
|
rxm->full_len -= chunk;
|
|
goto put_on_rx_list;
|
|
}
|
|
|
|
consume_skb(skb);
|
|
}
|
|
|
|
decrypted += chunk;
|
|
len -= chunk;
|
|
|
|
/* Return full control message to userspace before trying
|
|
* to parse another message type
|
|
*/
|
|
msg->msg_flags |= MSG_EOR;
|
|
if (control != TLS_RECORD_TYPE_DATA)
|
|
break;
|
|
}
|
|
|
|
recv_end:
|
|
if (async) {
|
|
int ret, pending;
|
|
|
|
/* Wait for all previously submitted records to be decrypted */
|
|
spin_lock_bh(&ctx->decrypt_compl_lock);
|
|
reinit_completion(&ctx->async_wait.completion);
|
|
pending = atomic_read(&ctx->decrypt_pending);
|
|
spin_unlock_bh(&ctx->decrypt_compl_lock);
|
|
ret = 0;
|
|
if (pending)
|
|
ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
__skb_queue_purge(&ctx->async_hold);
|
|
|
|
if (ret) {
|
|
if (err >= 0 || err == -EINPROGRESS)
|
|
err = ret;
|
|
decrypted = 0;
|
|
goto end;
|
|
}
|
|
|
|
/* Drain records from the rx_list & copy if required */
|
|
if (is_peek || is_kvec)
|
|
err = process_rx_list(ctx, msg, &control, copied,
|
|
decrypted, is_peek);
|
|
else
|
|
err = process_rx_list(ctx, msg, &control, 0,
|
|
async_copy_bytes, is_peek);
|
|
decrypted += max(err, 0);
|
|
}
|
|
|
|
copied += decrypted;
|
|
|
|
end:
|
|
tls_rx_reader_unlock(sk, ctx);
|
|
if (psock)
|
|
sk_psock_put(sk, psock);
|
|
return copied ? : err;
|
|
}
|
|
|
|
ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
|
|
struct pipe_inode_info *pipe,
|
|
size_t len, unsigned int flags)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct strp_msg *rxm = NULL;
|
|
struct sock *sk = sock->sk;
|
|
struct tls_msg *tlm;
|
|
struct sk_buff *skb;
|
|
ssize_t copied = 0;
|
|
int chunk;
|
|
int err;
|
|
|
|
err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (!skb_queue_empty(&ctx->rx_list)) {
|
|
skb = __skb_dequeue(&ctx->rx_list);
|
|
} else {
|
|
struct tls_decrypt_arg darg;
|
|
|
|
err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
|
|
true);
|
|
if (err <= 0)
|
|
goto splice_read_end;
|
|
|
|
memset(&darg.inargs, 0, sizeof(darg.inargs));
|
|
|
|
err = tls_rx_one_record(sk, NULL, &darg);
|
|
if (err < 0) {
|
|
tls_err_abort(sk, -EBADMSG);
|
|
goto splice_read_end;
|
|
}
|
|
|
|
tls_rx_rec_done(ctx);
|
|
skb = darg.skb;
|
|
}
|
|
|
|
rxm = strp_msg(skb);
|
|
tlm = tls_msg(skb);
|
|
|
|
/* splice does not support reading control messages */
|
|
if (tlm->control != TLS_RECORD_TYPE_DATA) {
|
|
err = -EINVAL;
|
|
goto splice_requeue;
|
|
}
|
|
|
|
chunk = min_t(unsigned int, rxm->full_len, len);
|
|
copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
|
|
if (copied < 0)
|
|
goto splice_requeue;
|
|
|
|
if (chunk < rxm->full_len) {
|
|
rxm->offset += len;
|
|
rxm->full_len -= len;
|
|
goto splice_requeue;
|
|
}
|
|
|
|
consume_skb(skb);
|
|
|
|
splice_read_end:
|
|
tls_rx_reader_unlock(sk, ctx);
|
|
return copied ? : err;
|
|
|
|
splice_requeue:
|
|
__skb_queue_head(&ctx->rx_list, skb);
|
|
goto splice_read_end;
|
|
}
|
|
|
|
bool tls_sw_sock_is_readable(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
bool ingress_empty = true;
|
|
struct sk_psock *psock;
|
|
|
|
rcu_read_lock();
|
|
psock = sk_psock(sk);
|
|
if (psock)
|
|
ingress_empty = list_empty(&psock->ingress_msg);
|
|
rcu_read_unlock();
|
|
|
|
return !ingress_empty || tls_strp_msg_ready(ctx) ||
|
|
!skb_queue_empty(&ctx->rx_list);
|
|
}
|
|
|
|
int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
|
|
size_t cipher_overhead;
|
|
size_t data_len = 0;
|
|
int ret;
|
|
|
|
/* Verify that we have a full TLS header, or wait for more data */
|
|
if (strp->stm.offset + prot->prepend_size > skb->len)
|
|
return 0;
|
|
|
|
/* Sanity-check size of on-stack buffer. */
|
|
if (WARN_ON(prot->prepend_size > sizeof(header))) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
/* Linearize header to local buffer */
|
|
ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
|
|
if (ret < 0)
|
|
goto read_failure;
|
|
|
|
strp->mark = header[0];
|
|
|
|
data_len = ((header[4] & 0xFF) | (header[3] << 8));
|
|
|
|
cipher_overhead = prot->tag_size;
|
|
if (prot->version != TLS_1_3_VERSION &&
|
|
prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
|
|
cipher_overhead += prot->iv_size;
|
|
|
|
if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
|
|
prot->tail_size) {
|
|
ret = -EMSGSIZE;
|
|
goto read_failure;
|
|
}
|
|
if (data_len < cipher_overhead) {
|
|
ret = -EBADMSG;
|
|
goto read_failure;
|
|
}
|
|
|
|
/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
|
|
if (header[1] != TLS_1_2_VERSION_MINOR ||
|
|
header[2] != TLS_1_2_VERSION_MAJOR) {
|
|
ret = -EINVAL;
|
|
goto read_failure;
|
|
}
|
|
|
|
tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
|
|
TCP_SKB_CB(skb)->seq + strp->stm.offset);
|
|
return data_len + TLS_HEADER_SIZE;
|
|
|
|
read_failure:
|
|
tls_err_abort(strp->sk, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void tls_rx_msg_ready(struct tls_strparser *strp)
|
|
{
|
|
struct tls_sw_context_rx *ctx;
|
|
|
|
ctx = container_of(strp, struct tls_sw_context_rx, strp);
|
|
ctx->saved_data_ready(strp->sk);
|
|
}
|
|
|
|
static void tls_data_ready(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_psock *psock;
|
|
gfp_t alloc_save;
|
|
|
|
alloc_save = sk->sk_allocation;
|
|
sk->sk_allocation = GFP_ATOMIC;
|
|
tls_strp_data_ready(&ctx->strp);
|
|
sk->sk_allocation = alloc_save;
|
|
|
|
psock = sk_psock_get(sk);
|
|
if (psock) {
|
|
if (!list_empty(&psock->ingress_msg))
|
|
ctx->saved_data_ready(sk);
|
|
sk_psock_put(sk, psock);
|
|
}
|
|
}
|
|
|
|
void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
|
|
set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
|
|
cancel_delayed_work_sync(&ctx->tx_work.work);
|
|
}
|
|
|
|
void tls_sw_release_resources_tx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
struct tls_rec *rec, *tmp;
|
|
int pending;
|
|
|
|
/* Wait for any pending async encryptions to complete */
|
|
spin_lock_bh(&ctx->encrypt_compl_lock);
|
|
ctx->async_notify = true;
|
|
pending = atomic_read(&ctx->encrypt_pending);
|
|
spin_unlock_bh(&ctx->encrypt_compl_lock);
|
|
|
|
if (pending)
|
|
crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
|
|
|
|
tls_tx_records(sk, -1);
|
|
|
|
/* Free up un-sent records in tx_list. First, free
|
|
* the partially sent record if any at head of tx_list.
|
|
*/
|
|
if (tls_ctx->partially_sent_record) {
|
|
tls_free_partial_record(sk, tls_ctx);
|
|
rec = list_first_entry(&ctx->tx_list,
|
|
struct tls_rec, list);
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
|
|
list_del(&rec->list);
|
|
sk_msg_free(sk, &rec->msg_encrypted);
|
|
sk_msg_free(sk, &rec->msg_plaintext);
|
|
kfree(rec);
|
|
}
|
|
|
|
crypto_free_aead(ctx->aead_send);
|
|
tls_free_open_rec(sk);
|
|
}
|
|
|
|
void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
void tls_sw_release_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
kfree(tls_ctx->rx.rec_seq);
|
|
kfree(tls_ctx->rx.iv);
|
|
|
|
if (ctx->aead_recv) {
|
|
__skb_queue_purge(&ctx->rx_list);
|
|
crypto_free_aead(ctx->aead_recv);
|
|
tls_strp_stop(&ctx->strp);
|
|
/* If tls_sw_strparser_arm() was not called (cleanup paths)
|
|
* we still want to tls_strp_stop(), but sk->sk_data_ready was
|
|
* never swapped.
|
|
*/
|
|
if (ctx->saved_data_ready) {
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
sk->sk_data_ready = ctx->saved_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
void tls_sw_strparser_done(struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
tls_strp_done(&ctx->strp);
|
|
}
|
|
|
|
void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
void tls_sw_free_resources_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
tls_sw_release_resources_rx(sk);
|
|
tls_sw_free_ctx_rx(tls_ctx);
|
|
}
|
|
|
|
/* The work handler to transmitt the encrypted records in tx_list */
|
|
static void tx_work_handler(struct work_struct *work)
|
|
{
|
|
struct delayed_work *delayed_work = to_delayed_work(work);
|
|
struct tx_work *tx_work = container_of(delayed_work,
|
|
struct tx_work, work);
|
|
struct sock *sk = tx_work->sk;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_sw_context_tx *ctx;
|
|
|
|
if (unlikely(!tls_ctx))
|
|
return;
|
|
|
|
ctx = tls_sw_ctx_tx(tls_ctx);
|
|
if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
|
|
return;
|
|
|
|
if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
|
|
return;
|
|
|
|
if (mutex_trylock(&tls_ctx->tx_lock)) {
|
|
lock_sock(sk);
|
|
tls_tx_records(sk, -1);
|
|
release_sock(sk);
|
|
mutex_unlock(&tls_ctx->tx_lock);
|
|
} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
|
|
/* Someone is holding the tx_lock, they will likely run Tx
|
|
* and cancel the work on their way out of the lock section.
|
|
* Schedule a long delay just in case.
|
|
*/
|
|
schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
|
|
}
|
|
}
|
|
|
|
static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
|
|
{
|
|
struct tls_rec *rec;
|
|
|
|
rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
|
|
if (!rec)
|
|
return false;
|
|
|
|
return READ_ONCE(rec->tx_ready);
|
|
}
|
|
|
|
void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
|
|
{
|
|
struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
|
|
|
|
/* Schedule the transmission if tx list is ready */
|
|
if (tls_is_tx_ready(tx_ctx) &&
|
|
!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
|
|
schedule_delayed_work(&tx_ctx->tx_work.work, 0);
|
|
}
|
|
|
|
void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
write_lock_bh(&sk->sk_callback_lock);
|
|
rx_ctx->saved_data_ready = sk->sk_data_ready;
|
|
sk->sk_data_ready = tls_data_ready;
|
|
write_unlock_bh(&sk->sk_callback_lock);
|
|
}
|
|
|
|
void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
|
|
|
|
rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
|
|
tls_ctx->prot_info.version != TLS_1_3_VERSION;
|
|
}
|
|
|
|
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_crypto_info *crypto_info;
|
|
struct tls_sw_context_tx *sw_ctx_tx = NULL;
|
|
struct tls_sw_context_rx *sw_ctx_rx = NULL;
|
|
struct cipher_context *cctx;
|
|
struct crypto_aead **aead;
|
|
u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
|
|
struct crypto_tfm *tfm;
|
|
char *iv, *rec_seq, *key, *salt, *cipher_name;
|
|
size_t keysize;
|
|
int rc = 0;
|
|
|
|
if (!ctx) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (tx) {
|
|
if (!ctx->priv_ctx_tx) {
|
|
sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
|
|
if (!sw_ctx_tx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_tx = sw_ctx_tx;
|
|
} else {
|
|
sw_ctx_tx =
|
|
(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
|
|
}
|
|
} else {
|
|
if (!ctx->priv_ctx_rx) {
|
|
sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
|
|
if (!sw_ctx_rx) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->priv_ctx_rx = sw_ctx_rx;
|
|
} else {
|
|
sw_ctx_rx =
|
|
(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
|
|
}
|
|
}
|
|
|
|
if (tx) {
|
|
crypto_init_wait(&sw_ctx_tx->async_wait);
|
|
spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
|
|
crypto_info = &ctx->crypto_send.info;
|
|
cctx = &ctx->tx;
|
|
aead = &sw_ctx_tx->aead_send;
|
|
INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
|
|
INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
|
|
sw_ctx_tx->tx_work.sk = sk;
|
|
} else {
|
|
crypto_init_wait(&sw_ctx_rx->async_wait);
|
|
spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
|
|
init_waitqueue_head(&sw_ctx_rx->wq);
|
|
crypto_info = &ctx->crypto_recv.info;
|
|
cctx = &ctx->rx;
|
|
skb_queue_head_init(&sw_ctx_rx->rx_list);
|
|
skb_queue_head_init(&sw_ctx_rx->async_hold);
|
|
aead = &sw_ctx_rx->aead_recv;
|
|
}
|
|
|
|
switch (crypto_info->cipher_type) {
|
|
case TLS_CIPHER_AES_GCM_128: {
|
|
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
|
|
|
|
gcm_128_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
iv = gcm_128_info->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
|
|
rec_seq = gcm_128_info->rec_seq;
|
|
keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
|
|
key = gcm_128_info->key;
|
|
salt = gcm_128_info->salt;
|
|
salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
|
|
cipher_name = "gcm(aes)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_AES_GCM_256: {
|
|
struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
|
|
|
|
gcm_256_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
|
|
iv = gcm_256_info->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
|
|
rec_seq = gcm_256_info->rec_seq;
|
|
keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
|
|
key = gcm_256_info->key;
|
|
salt = gcm_256_info->salt;
|
|
salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
|
|
cipher_name = "gcm(aes)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_AES_CCM_128: {
|
|
struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
|
|
|
|
ccm_128_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
|
|
iv = ccm_128_info->iv;
|
|
rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
|
|
rec_seq = ccm_128_info->rec_seq;
|
|
keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
|
|
key = ccm_128_info->key;
|
|
salt = ccm_128_info->salt;
|
|
salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
|
|
cipher_name = "ccm(aes)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_CHACHA20_POLY1305: {
|
|
struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
|
|
|
|
chacha20_poly1305_info = (void *)crypto_info;
|
|
nonce_size = 0;
|
|
tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
|
|
iv = chacha20_poly1305_info->iv;
|
|
rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
|
|
rec_seq = chacha20_poly1305_info->rec_seq;
|
|
keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
|
|
key = chacha20_poly1305_info->key;
|
|
salt = chacha20_poly1305_info->salt;
|
|
salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
|
|
cipher_name = "rfc7539(chacha20,poly1305)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_SM4_GCM: {
|
|
struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
|
|
|
|
sm4_gcm_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
|
|
tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
|
|
iv = sm4_gcm_info->iv;
|
|
rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
|
|
rec_seq = sm4_gcm_info->rec_seq;
|
|
keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
|
|
key = sm4_gcm_info->key;
|
|
salt = sm4_gcm_info->salt;
|
|
salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
|
|
cipher_name = "gcm(sm4)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_SM4_CCM: {
|
|
struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
|
|
|
|
sm4_ccm_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
|
|
tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
|
|
iv = sm4_ccm_info->iv;
|
|
rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
|
|
rec_seq = sm4_ccm_info->rec_seq;
|
|
keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
|
|
key = sm4_ccm_info->key;
|
|
salt = sm4_ccm_info->salt;
|
|
salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
|
|
cipher_name = "ccm(sm4)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_ARIA_GCM_128: {
|
|
struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
|
|
|
|
aria_gcm_128_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
|
|
tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
|
|
iv = aria_gcm_128_info->iv;
|
|
rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
|
|
rec_seq = aria_gcm_128_info->rec_seq;
|
|
keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
|
|
key = aria_gcm_128_info->key;
|
|
salt = aria_gcm_128_info->salt;
|
|
salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
|
|
cipher_name = "gcm(aria)";
|
|
break;
|
|
}
|
|
case TLS_CIPHER_ARIA_GCM_256: {
|
|
struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
|
|
|
|
gcm_256_info = (void *)crypto_info;
|
|
nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
|
|
tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
|
|
iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
|
|
iv = gcm_256_info->iv;
|
|
rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
|
|
rec_seq = gcm_256_info->rec_seq;
|
|
keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
|
|
key = gcm_256_info->key;
|
|
salt = gcm_256_info->salt;
|
|
salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
|
|
cipher_name = "gcm(aria)";
|
|
break;
|
|
}
|
|
default:
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
if (crypto_info->version == TLS_1_3_VERSION) {
|
|
nonce_size = 0;
|
|
prot->aad_size = TLS_HEADER_SIZE;
|
|
prot->tail_size = 1;
|
|
} else {
|
|
prot->aad_size = TLS_AAD_SPACE_SIZE;
|
|
prot->tail_size = 0;
|
|
}
|
|
|
|
/* Sanity-check the sizes for stack allocations. */
|
|
if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
|
|
rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
|
|
prot->aad_size > TLS_MAX_AAD_SIZE) {
|
|
rc = -EINVAL;
|
|
goto free_priv;
|
|
}
|
|
|
|
prot->version = crypto_info->version;
|
|
prot->cipher_type = crypto_info->cipher_type;
|
|
prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
|
|
prot->tag_size = tag_size;
|
|
prot->overhead_size = prot->prepend_size +
|
|
prot->tag_size + prot->tail_size;
|
|
prot->iv_size = iv_size;
|
|
prot->salt_size = salt_size;
|
|
cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
|
|
if (!cctx->iv) {
|
|
rc = -ENOMEM;
|
|
goto free_priv;
|
|
}
|
|
/* Note: 128 & 256 bit salt are the same size */
|
|
prot->rec_seq_size = rec_seq_size;
|
|
memcpy(cctx->iv, salt, salt_size);
|
|
memcpy(cctx->iv + salt_size, iv, iv_size);
|
|
cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
|
|
if (!cctx->rec_seq) {
|
|
rc = -ENOMEM;
|
|
goto free_iv;
|
|
}
|
|
|
|
if (!*aead) {
|
|
*aead = crypto_alloc_aead(cipher_name, 0, 0);
|
|
if (IS_ERR(*aead)) {
|
|
rc = PTR_ERR(*aead);
|
|
*aead = NULL;
|
|
goto free_rec_seq;
|
|
}
|
|
}
|
|
|
|
ctx->push_pending_record = tls_sw_push_pending_record;
|
|
|
|
rc = crypto_aead_setkey(*aead, key, keysize);
|
|
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
rc = crypto_aead_setauthsize(*aead, prot->tag_size);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
if (sw_ctx_rx) {
|
|
tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
|
|
|
|
tls_update_rx_zc_capable(ctx);
|
|
sw_ctx_rx->async_capable =
|
|
crypto_info->version != TLS_1_3_VERSION &&
|
|
!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
|
|
|
|
rc = tls_strp_init(&sw_ctx_rx->strp, sk);
|
|
if (rc)
|
|
goto free_aead;
|
|
}
|
|
|
|
goto out;
|
|
|
|
free_aead:
|
|
crypto_free_aead(*aead);
|
|
*aead = NULL;
|
|
free_rec_seq:
|
|
kfree(cctx->rec_seq);
|
|
cctx->rec_seq = NULL;
|
|
free_iv:
|
|
kfree(cctx->iv);
|
|
cctx->iv = NULL;
|
|
free_priv:
|
|
if (tx) {
|
|
kfree(ctx->priv_ctx_tx);
|
|
ctx->priv_ctx_tx = NULL;
|
|
} else {
|
|
kfree(ctx->priv_ctx_rx);
|
|
ctx->priv_ctx_rx = NULL;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|