linuxdebug/drivers/usb/misc/usbtest.c

3079 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/scatterlist.h>
#include <linux/mutex.h>
#include <linux/timer.h>
#include <linux/usb.h>
#define SIMPLE_IO_TIMEOUT 10000 /* in milliseconds */
/*-------------------------------------------------------------------------*/
static int override_alt = -1;
module_param_named(alt, override_alt, int, 0644);
MODULE_PARM_DESC(alt, ">= 0 to override altsetting selection");
static void complicated_callback(struct urb *urb);
/*-------------------------------------------------------------------------*/
/* FIXME make these public somewhere; usbdevfs.h? */
/* Parameter for usbtest driver. */
struct usbtest_param_32 {
/* inputs */
__u32 test_num; /* 0..(TEST_CASES-1) */
__u32 iterations;
__u32 length;
__u32 vary;
__u32 sglen;
/* outputs */
__s32 duration_sec;
__s32 duration_usec;
};
/*
* Compat parameter to the usbtest driver.
* This supports older user space binaries compiled with 64 bit compiler.
*/
struct usbtest_param_64 {
/* inputs */
__u32 test_num; /* 0..(TEST_CASES-1) */
__u32 iterations;
__u32 length;
__u32 vary;
__u32 sglen;
/* outputs */
__s64 duration_sec;
__s64 duration_usec;
};
/* IOCTL interface to the driver. */
#define USBTEST_REQUEST_32 _IOWR('U', 100, struct usbtest_param_32)
/* COMPAT IOCTL interface to the driver. */
#define USBTEST_REQUEST_64 _IOWR('U', 100, struct usbtest_param_64)
/*-------------------------------------------------------------------------*/
#define GENERIC /* let probe() bind using module params */
/* Some devices that can be used for testing will have "real" drivers.
* Entries for those need to be enabled here by hand, after disabling
* that "real" driver.
*/
//#define IBOT2 /* grab iBOT2 webcams */
//#define KEYSPAN_19Qi /* grab un-renumerated serial adapter */
/*-------------------------------------------------------------------------*/
struct usbtest_info {
const char *name;
u8 ep_in; /* bulk/intr source */
u8 ep_out; /* bulk/intr sink */
unsigned autoconf:1;
unsigned ctrl_out:1;
unsigned iso:1; /* try iso in/out */
unsigned intr:1; /* try interrupt in/out */
int alt;
};
/* this is accessed only through usbfs ioctl calls.
* one ioctl to issue a test ... one lock per device.
* tests create other threads if they need them.
* urbs and buffers are allocated dynamically,
* and data generated deterministically.
*/
struct usbtest_dev {
struct usb_interface *intf;
struct usbtest_info *info;
int in_pipe;
int out_pipe;
int in_iso_pipe;
int out_iso_pipe;
int in_int_pipe;
int out_int_pipe;
struct usb_endpoint_descriptor *iso_in, *iso_out;
struct usb_endpoint_descriptor *int_in, *int_out;
struct mutex lock;
#define TBUF_SIZE 256
u8 *buf;
};
static struct usb_device *testdev_to_usbdev(struct usbtest_dev *test)
{
return interface_to_usbdev(test->intf);
}
/* set up all urbs so they can be used with either bulk or interrupt */
#define INTERRUPT_RATE 1 /* msec/transfer */
#define ERROR(tdev, fmt, args...) \
dev_err(&(tdev)->intf->dev , fmt , ## args)
#define WARNING(tdev, fmt, args...) \
dev_warn(&(tdev)->intf->dev , fmt , ## args)
#define GUARD_BYTE 0xA5
#define MAX_SGLEN 128
/*-------------------------------------------------------------------------*/
static inline void endpoint_update(int edi,
struct usb_host_endpoint **in,
struct usb_host_endpoint **out,
struct usb_host_endpoint *e)
{
if (edi) {
if (!*in)
*in = e;
} else {
if (!*out)
*out = e;
}
}
static int
get_endpoints(struct usbtest_dev *dev, struct usb_interface *intf)
{
int tmp;
struct usb_host_interface *alt;
struct usb_host_endpoint *in, *out;
struct usb_host_endpoint *iso_in, *iso_out;
struct usb_host_endpoint *int_in, *int_out;
struct usb_device *udev;
for (tmp = 0; tmp < intf->num_altsetting; tmp++) {
unsigned ep;
in = out = NULL;
iso_in = iso_out = NULL;
int_in = int_out = NULL;
alt = intf->altsetting + tmp;
if (override_alt >= 0 &&
override_alt != alt->desc.bAlternateSetting)
continue;
/* take the first altsetting with in-bulk + out-bulk;
* ignore other endpoints and altsettings.
*/
for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) {
struct usb_host_endpoint *e;
int edi;
e = alt->endpoint + ep;
edi = usb_endpoint_dir_in(&e->desc);
switch (usb_endpoint_type(&e->desc)) {
case USB_ENDPOINT_XFER_BULK:
endpoint_update(edi, &in, &out, e);
continue;
case USB_ENDPOINT_XFER_INT:
if (dev->info->intr)
endpoint_update(edi, &int_in, &int_out, e);
continue;
case USB_ENDPOINT_XFER_ISOC:
if (dev->info->iso)
endpoint_update(edi, &iso_in, &iso_out, e);
fallthrough;
default:
continue;
}
}
if ((in && out) || iso_in || iso_out || int_in || int_out)
goto found;
}
return -EINVAL;
found:
udev = testdev_to_usbdev(dev);
dev->info->alt = alt->desc.bAlternateSetting;
if (alt->desc.bAlternateSetting != 0) {
tmp = usb_set_interface(udev,
alt->desc.bInterfaceNumber,
alt->desc.bAlternateSetting);
if (tmp < 0)
return tmp;
}
if (in)
dev->in_pipe = usb_rcvbulkpipe(udev,
in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
if (out)
dev->out_pipe = usb_sndbulkpipe(udev,
out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
if (iso_in) {
dev->iso_in = &iso_in->desc;
dev->in_iso_pipe = usb_rcvisocpipe(udev,
iso_in->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
}
if (iso_out) {
dev->iso_out = &iso_out->desc;
dev->out_iso_pipe = usb_sndisocpipe(udev,
iso_out->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
}
if (int_in) {
dev->int_in = &int_in->desc;
dev->in_int_pipe = usb_rcvintpipe(udev,
int_in->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
}
if (int_out) {
dev->int_out = &int_out->desc;
dev->out_int_pipe = usb_sndintpipe(udev,
int_out->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
}
return 0;
}
/*-------------------------------------------------------------------------*/
/* Support for testing basic non-queued I/O streams.
*
* These just package urbs as requests that can be easily canceled.
* Each urb's data buffer is dynamically allocated; callers can fill
* them with non-zero test data (or test for it) when appropriate.
*/
static void simple_callback(struct urb *urb)
{
complete(urb->context);
}
static struct urb *usbtest_alloc_urb(
struct usb_device *udev,
int pipe,
unsigned long bytes,
unsigned transfer_flags,
unsigned offset,
u8 bInterval,
usb_complete_t complete_fn)
{
struct urb *urb;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return urb;
if (bInterval)
usb_fill_int_urb(urb, udev, pipe, NULL, bytes, complete_fn,
NULL, bInterval);
else
usb_fill_bulk_urb(urb, udev, pipe, NULL, bytes, complete_fn,
NULL);
urb->interval = (udev->speed == USB_SPEED_HIGH)
? (INTERRUPT_RATE << 3)
: INTERRUPT_RATE;
urb->transfer_flags = transfer_flags;
if (usb_pipein(pipe))
urb->transfer_flags |= URB_SHORT_NOT_OK;
if ((bytes + offset) == 0)
return urb;
if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset,
GFP_KERNEL, &urb->transfer_dma);
else
urb->transfer_buffer = kmalloc(bytes + offset, GFP_KERNEL);
if (!urb->transfer_buffer) {
usb_free_urb(urb);
return NULL;
}
/* To test unaligned transfers add an offset and fill the
unused memory with a guard value */
if (offset) {
memset(urb->transfer_buffer, GUARD_BYTE, offset);
urb->transfer_buffer += offset;
if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
urb->transfer_dma += offset;
}
/* For inbound transfers use guard byte so that test fails if
data not correctly copied */
memset(urb->transfer_buffer,
usb_pipein(urb->pipe) ? GUARD_BYTE : 0,
bytes);
return urb;
}
static struct urb *simple_alloc_urb(
struct usb_device *udev,
int pipe,
unsigned long bytes,
u8 bInterval)
{
return usbtest_alloc_urb(udev, pipe, bytes, URB_NO_TRANSFER_DMA_MAP, 0,
bInterval, simple_callback);
}
static struct urb *complicated_alloc_urb(
struct usb_device *udev,
int pipe,
unsigned long bytes,
u8 bInterval)
{
return usbtest_alloc_urb(udev, pipe, bytes, URB_NO_TRANSFER_DMA_MAP, 0,
bInterval, complicated_callback);
}
static unsigned pattern;
static unsigned mod_pattern;
module_param_named(pattern, mod_pattern, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(mod_pattern, "i/o pattern (0 == zeroes)");
static unsigned get_maxpacket(struct usb_device *udev, int pipe)
{
struct usb_host_endpoint *ep;
ep = usb_pipe_endpoint(udev, pipe);
return le16_to_cpup(&ep->desc.wMaxPacketSize);
}
static int ss_isoc_get_packet_num(struct usb_device *udev, int pipe)
{
struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
return USB_SS_MULT(ep->ss_ep_comp.bmAttributes)
* (1 + ep->ss_ep_comp.bMaxBurst);
}
static void simple_fill_buf(struct urb *urb)
{
unsigned i;
u8 *buf = urb->transfer_buffer;
unsigned len = urb->transfer_buffer_length;
unsigned maxpacket;
switch (pattern) {
default:
fallthrough;
case 0:
memset(buf, 0, len);
break;
case 1: /* mod63 */
maxpacket = get_maxpacket(urb->dev, urb->pipe);
for (i = 0; i < len; i++)
*buf++ = (u8) ((i % maxpacket) % 63);
break;
}
}
static inline unsigned long buffer_offset(void *buf)
{
return (unsigned long)buf & (ARCH_KMALLOC_MINALIGN - 1);
}
static int check_guard_bytes(struct usbtest_dev *tdev, struct urb *urb)
{
u8 *buf = urb->transfer_buffer;
u8 *guard = buf - buffer_offset(buf);
unsigned i;
for (i = 0; guard < buf; i++, guard++) {
if (*guard != GUARD_BYTE) {
ERROR(tdev, "guard byte[%d] %d (not %d)\n",
i, *guard, GUARD_BYTE);
return -EINVAL;
}
}
return 0;
}
static int simple_check_buf(struct usbtest_dev *tdev, struct urb *urb)
{
unsigned i;
u8 expected;
u8 *buf = urb->transfer_buffer;
unsigned len = urb->actual_length;
unsigned maxpacket = get_maxpacket(urb->dev, urb->pipe);
int ret = check_guard_bytes(tdev, urb);
if (ret)
return ret;
for (i = 0; i < len; i++, buf++) {
switch (pattern) {
/* all-zeroes has no synchronization issues */
case 0:
expected = 0;
break;
/* mod63 stays in sync with short-terminated transfers,
* or otherwise when host and gadget agree on how large
* each usb transfer request should be. resync is done
* with set_interface or set_config.
*/
case 1: /* mod63 */
expected = (i % maxpacket) % 63;
break;
/* always fail unsupported patterns */
default:
expected = !*buf;
break;
}
if (*buf == expected)
continue;
ERROR(tdev, "buf[%d] = %d (not %d)\n", i, *buf, expected);
return -EINVAL;
}
return 0;
}
static void simple_free_urb(struct urb *urb)
{
unsigned long offset = buffer_offset(urb->transfer_buffer);
if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
usb_free_coherent(
urb->dev,
urb->transfer_buffer_length + offset,
urb->transfer_buffer - offset,
urb->transfer_dma - offset);
else
kfree(urb->transfer_buffer - offset);
usb_free_urb(urb);
}
static int simple_io(
struct usbtest_dev *tdev,
struct urb *urb,
int iterations,
int vary,
int expected,
const char *label
)
{
struct usb_device *udev = urb->dev;
int max = urb->transfer_buffer_length;
struct completion completion;
int retval = 0;
unsigned long expire;
urb->context = &completion;
while (retval == 0 && iterations-- > 0) {
init_completion(&completion);
if (usb_pipeout(urb->pipe)) {
simple_fill_buf(urb);
urb->transfer_flags |= URB_ZERO_PACKET;
}
retval = usb_submit_urb(urb, GFP_KERNEL);
if (retval != 0)
break;
expire = msecs_to_jiffies(SIMPLE_IO_TIMEOUT);
if (!wait_for_completion_timeout(&completion, expire)) {
usb_kill_urb(urb);
retval = (urb->status == -ENOENT ?
-ETIMEDOUT : urb->status);
} else {
retval = urb->status;
}
urb->dev = udev;
if (retval == 0 && usb_pipein(urb->pipe))
retval = simple_check_buf(tdev, urb);
if (vary) {
int len = urb->transfer_buffer_length;
len += vary;
len %= max;
if (len == 0)
len = (vary < max) ? vary : max;
urb->transfer_buffer_length = len;
}
/* FIXME if endpoint halted, clear halt (and log) */
}
urb->transfer_buffer_length = max;
if (expected != retval)
dev_err(&udev->dev,
"%s failed, iterations left %d, status %d (not %d)\n",
label, iterations, retval, expected);
return retval;
}
/*-------------------------------------------------------------------------*/
/* We use scatterlist primitives to test queued I/O.
* Yes, this also tests the scatterlist primitives.
*/
static void free_sglist(struct scatterlist *sg, int nents)
{
unsigned i;
if (!sg)
return;
for (i = 0; i < nents; i++) {
if (!sg_page(&sg[i]))
continue;
kfree(sg_virt(&sg[i]));
}
kfree(sg);
}
static struct scatterlist *
alloc_sglist(int nents, int max, int vary, struct usbtest_dev *dev, int pipe)
{
struct scatterlist *sg;
unsigned int n_size = 0;
unsigned i;
unsigned size = max;
unsigned maxpacket =
get_maxpacket(interface_to_usbdev(dev->intf), pipe);
if (max == 0)
return NULL;
sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
if (!sg)
return NULL;
sg_init_table(sg, nents);
for (i = 0; i < nents; i++) {
char *buf;
unsigned j;
buf = kzalloc(size, GFP_KERNEL);
if (!buf) {
free_sglist(sg, i);
return NULL;
}
/* kmalloc pages are always physically contiguous! */
sg_set_buf(&sg[i], buf, size);
switch (pattern) {
case 0:
/* already zeroed */
break;
case 1:
for (j = 0; j < size; j++)
*buf++ = (u8) (((j + n_size) % maxpacket) % 63);
n_size += size;
break;
}
if (vary) {
size += vary;
size %= max;
if (size == 0)
size = (vary < max) ? vary : max;
}
}
return sg;
}
struct sg_timeout {
struct timer_list timer;
struct usb_sg_request *req;
};
static void sg_timeout(struct timer_list *t)
{
struct sg_timeout *timeout = from_timer(timeout, t, timer);
usb_sg_cancel(timeout->req);
}
static int perform_sglist(
struct usbtest_dev *tdev,
unsigned iterations,
int pipe,
struct usb_sg_request *req,
struct scatterlist *sg,
int nents
)
{
struct usb_device *udev = testdev_to_usbdev(tdev);
int retval = 0;
struct sg_timeout timeout = {
.req = req,
};
timer_setup_on_stack(&timeout.timer, sg_timeout, 0);
while (retval == 0 && iterations-- > 0) {
retval = usb_sg_init(req, udev, pipe,
(udev->speed == USB_SPEED_HIGH)
? (INTERRUPT_RATE << 3)
: INTERRUPT_RATE,
sg, nents, 0, GFP_KERNEL);
if (retval)
break;
mod_timer(&timeout.timer, jiffies +
msecs_to_jiffies(SIMPLE_IO_TIMEOUT));
usb_sg_wait(req);
if (!del_timer_sync(&timeout.timer))
retval = -ETIMEDOUT;
else
retval = req->status;
destroy_timer_on_stack(&timeout.timer);
/* FIXME check resulting data pattern */
/* FIXME if endpoint halted, clear halt (and log) */
}
/* FIXME for unlink or fault handling tests, don't report
* failure if retval is as we expected ...
*/
if (retval)
ERROR(tdev, "perform_sglist failed, "
"iterations left %d, status %d\n",
iterations, retval);
return retval;
}
/*-------------------------------------------------------------------------*/
/* unqueued control message testing
*
* there's a nice set of device functional requirements in chapter 9 of the
* usb 2.0 spec, which we can apply to ANY device, even ones that don't use
* special test firmware.
*
* we know the device is configured (or suspended) by the time it's visible
* through usbfs. we can't change that, so we won't test enumeration (which
* worked 'well enough' to get here, this time), power management (ditto),
* or remote wakeup (which needs human interaction).
*/
static unsigned realworld = 1;
module_param(realworld, uint, 0);
MODULE_PARM_DESC(realworld, "clear to demand stricter spec compliance");
static int get_altsetting(struct usbtest_dev *dev)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev = interface_to_usbdev(iface);
int retval;
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_REQ_GET_INTERFACE, USB_DIR_IN|USB_RECIP_INTERFACE,
0, iface->altsetting[0].desc.bInterfaceNumber,
dev->buf, 1, USB_CTRL_GET_TIMEOUT);
switch (retval) {
case 1:
return dev->buf[0];
case 0:
retval = -ERANGE;
fallthrough;
default:
return retval;
}
}
static int set_altsetting(struct usbtest_dev *dev, int alternate)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev;
if (alternate < 0 || alternate >= 256)
return -EINVAL;
udev = interface_to_usbdev(iface);
return usb_set_interface(udev,
iface->altsetting[0].desc.bInterfaceNumber,
alternate);
}
static int is_good_config(struct usbtest_dev *tdev, int len)
{
struct usb_config_descriptor *config;
if (len < sizeof(*config))
return 0;
config = (struct usb_config_descriptor *) tdev->buf;
switch (config->bDescriptorType) {
case USB_DT_CONFIG:
case USB_DT_OTHER_SPEED_CONFIG:
if (config->bLength != 9) {
ERROR(tdev, "bogus config descriptor length\n");
return 0;
}
/* this bit 'must be 1' but often isn't */
if (!realworld && !(config->bmAttributes & 0x80)) {
ERROR(tdev, "high bit of config attributes not set\n");
return 0;
}
if (config->bmAttributes & 0x1f) { /* reserved == 0 */
ERROR(tdev, "reserved config bits set\n");
return 0;
}
break;
default:
return 0;
}
if (le16_to_cpu(config->wTotalLength) == len) /* read it all */
return 1;
if (le16_to_cpu(config->wTotalLength) >= TBUF_SIZE) /* max partial read */
return 1;
ERROR(tdev, "bogus config descriptor read size\n");
return 0;
}
static int is_good_ext(struct usbtest_dev *tdev, u8 *buf)
{
struct usb_ext_cap_descriptor *ext;
u32 attr;
ext = (struct usb_ext_cap_descriptor *) buf;
if (ext->bLength != USB_DT_USB_EXT_CAP_SIZE) {
ERROR(tdev, "bogus usb 2.0 extension descriptor length\n");
return 0;
}
attr = le32_to_cpu(ext->bmAttributes);
/* bits[1:15] is used and others are reserved */
if (attr & ~0xfffe) { /* reserved == 0 */
ERROR(tdev, "reserved bits set\n");
return 0;
}
return 1;
}
static int is_good_ss_cap(struct usbtest_dev *tdev, u8 *buf)
{
struct usb_ss_cap_descriptor *ss;
ss = (struct usb_ss_cap_descriptor *) buf;
if (ss->bLength != USB_DT_USB_SS_CAP_SIZE) {
ERROR(tdev, "bogus superspeed device capability descriptor length\n");
return 0;
}
/*
* only bit[1] of bmAttributes is used for LTM and others are
* reserved
*/
if (ss->bmAttributes & ~0x02) { /* reserved == 0 */
ERROR(tdev, "reserved bits set in bmAttributes\n");
return 0;
}
/* bits[0:3] of wSpeedSupported is used and others are reserved */
if (le16_to_cpu(ss->wSpeedSupported) & ~0x0f) { /* reserved == 0 */
ERROR(tdev, "reserved bits set in wSpeedSupported\n");
return 0;
}
return 1;
}
static int is_good_con_id(struct usbtest_dev *tdev, u8 *buf)
{
struct usb_ss_container_id_descriptor *con_id;
con_id = (struct usb_ss_container_id_descriptor *) buf;
if (con_id->bLength != USB_DT_USB_SS_CONTN_ID_SIZE) {
ERROR(tdev, "bogus container id descriptor length\n");
return 0;
}
if (con_id->bReserved) { /* reserved == 0 */
ERROR(tdev, "reserved bits set\n");
return 0;
}
return 1;
}
/* sanity test for standard requests working with usb_control_mesg() and some
* of the utility functions which use it.
*
* this doesn't test how endpoint halts behave or data toggles get set, since
* we won't do I/O to bulk/interrupt endpoints here (which is how to change
* halt or toggle). toggle testing is impractical without support from hcds.
*
* this avoids failing devices linux would normally work with, by not testing
* config/altsetting operations for devices that only support their defaults.
* such devices rarely support those needless operations.
*
* NOTE that since this is a sanity test, it's not examining boundary cases
* to see if usbcore, hcd, and device all behave right. such testing would
* involve varied read sizes and other operation sequences.
*/
static int ch9_postconfig(struct usbtest_dev *dev)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev = interface_to_usbdev(iface);
int i, alt, retval;
/* [9.2.3] if there's more than one altsetting, we need to be able to
* set and get each one. mostly trusts the descriptors from usbcore.
*/
for (i = 0; i < iface->num_altsetting; i++) {
/* 9.2.3 constrains the range here */
alt = iface->altsetting[i].desc.bAlternateSetting;
if (alt < 0 || alt >= iface->num_altsetting) {
dev_err(&iface->dev,
"invalid alt [%d].bAltSetting = %d\n",
i, alt);
}
/* [real world] get/set unimplemented if there's only one */
if (realworld && iface->num_altsetting == 1)
continue;
/* [9.4.10] set_interface */
retval = set_altsetting(dev, alt);
if (retval) {
dev_err(&iface->dev, "can't set_interface = %d, %d\n",
alt, retval);
return retval;
}
/* [9.4.4] get_interface always works */
retval = get_altsetting(dev);
if (retval != alt) {
dev_err(&iface->dev, "get alt should be %d, was %d\n",
alt, retval);
return (retval < 0) ? retval : -EDOM;
}
}
/* [real world] get_config unimplemented if there's only one */
if (!realworld || udev->descriptor.bNumConfigurations != 1) {
int expected = udev->actconfig->desc.bConfigurationValue;
/* [9.4.2] get_configuration always works
* ... although some cheap devices (like one TI Hub I've got)
* won't return config descriptors except before set_config.
*/
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_REQ_GET_CONFIGURATION,
USB_DIR_IN | USB_RECIP_DEVICE,
0, 0, dev->buf, 1, USB_CTRL_GET_TIMEOUT);
if (retval != 1 || dev->buf[0] != expected) {
dev_err(&iface->dev, "get config --> %d %d (1 %d)\n",
retval, dev->buf[0], expected);
return (retval < 0) ? retval : -EDOM;
}
}
/* there's always [9.4.3] a device descriptor [9.6.1] */
retval = usb_get_descriptor(udev, USB_DT_DEVICE, 0,
dev->buf, sizeof(udev->descriptor));
if (retval != sizeof(udev->descriptor)) {
dev_err(&iface->dev, "dev descriptor --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
}
/*
* there's always [9.4.3] a bos device descriptor [9.6.2] in USB
* 3.0 spec
*/
if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0210) {
struct usb_bos_descriptor *bos = NULL;
struct usb_dev_cap_header *header = NULL;
unsigned total, num, length;
u8 *buf;
retval = usb_get_descriptor(udev, USB_DT_BOS, 0, dev->buf,
sizeof(*udev->bos->desc));
if (retval != sizeof(*udev->bos->desc)) {
dev_err(&iface->dev, "bos descriptor --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
}
bos = (struct usb_bos_descriptor *)dev->buf;
total = le16_to_cpu(bos->wTotalLength);
num = bos->bNumDeviceCaps;
if (total > TBUF_SIZE)
total = TBUF_SIZE;
/*
* get generic device-level capability descriptors [9.6.2]
* in USB 3.0 spec
*/
retval = usb_get_descriptor(udev, USB_DT_BOS, 0, dev->buf,
total);
if (retval != total) {
dev_err(&iface->dev, "bos descriptor set --> %d\n",
retval);
return (retval < 0) ? retval : -EDOM;
}
length = sizeof(*udev->bos->desc);
buf = dev->buf;
for (i = 0; i < num; i++) {
buf += length;
if (buf + sizeof(struct usb_dev_cap_header) >
dev->buf + total)
break;
header = (struct usb_dev_cap_header *)buf;
length = header->bLength;
if (header->bDescriptorType !=
USB_DT_DEVICE_CAPABILITY) {
dev_warn(&udev->dev, "not device capability descriptor, skip\n");
continue;
}
switch (header->bDevCapabilityType) {
case USB_CAP_TYPE_EXT:
if (buf + USB_DT_USB_EXT_CAP_SIZE >
dev->buf + total ||
!is_good_ext(dev, buf)) {
dev_err(&iface->dev, "bogus usb 2.0 extension descriptor\n");
return -EDOM;
}
break;
case USB_SS_CAP_TYPE:
if (buf + USB_DT_USB_SS_CAP_SIZE >
dev->buf + total ||
!is_good_ss_cap(dev, buf)) {
dev_err(&iface->dev, "bogus superspeed device capability descriptor\n");
return -EDOM;
}
break;
case CONTAINER_ID_TYPE:
if (buf + USB_DT_USB_SS_CONTN_ID_SIZE >
dev->buf + total ||
!is_good_con_id(dev, buf)) {
dev_err(&iface->dev, "bogus container id descriptor\n");
return -EDOM;
}
break;
default:
break;
}
}
}
/* there's always [9.4.3] at least one config descriptor [9.6.3] */
for (i = 0; i < udev->descriptor.bNumConfigurations; i++) {
retval = usb_get_descriptor(udev, USB_DT_CONFIG, i,
dev->buf, TBUF_SIZE);
if (!is_good_config(dev, retval)) {
dev_err(&iface->dev,
"config [%d] descriptor --> %d\n",
i, retval);
return (retval < 0) ? retval : -EDOM;
}
/* FIXME cross-checking udev->config[i] to make sure usbcore
* parsed it right (etc) would be good testing paranoia
*/
}
/* and sometimes [9.2.6.6] speed dependent descriptors */
if (le16_to_cpu(udev->descriptor.bcdUSB) == 0x0200) {
struct usb_qualifier_descriptor *d = NULL;
/* device qualifier [9.6.2] */
retval = usb_get_descriptor(udev,
USB_DT_DEVICE_QUALIFIER, 0, dev->buf,
sizeof(struct usb_qualifier_descriptor));
if (retval == -EPIPE) {
if (udev->speed == USB_SPEED_HIGH) {
dev_err(&iface->dev,
"hs dev qualifier --> %d\n",
retval);
return retval;
}
/* usb2.0 but not high-speed capable; fine */
} else if (retval != sizeof(struct usb_qualifier_descriptor)) {
dev_err(&iface->dev, "dev qualifier --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
} else
d = (struct usb_qualifier_descriptor *) dev->buf;
/* might not have [9.6.2] any other-speed configs [9.6.4] */
if (d) {
unsigned max = d->bNumConfigurations;
for (i = 0; i < max; i++) {
retval = usb_get_descriptor(udev,
USB_DT_OTHER_SPEED_CONFIG, i,
dev->buf, TBUF_SIZE);
if (!is_good_config(dev, retval)) {
dev_err(&iface->dev,
"other speed config --> %d\n",
retval);
return (retval < 0) ? retval : -EDOM;
}
}
}
}
/* FIXME fetch strings from at least the device descriptor */
/* [9.4.5] get_status always works */
retval = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, dev->buf);
if (retval) {
dev_err(&iface->dev, "get dev status --> %d\n", retval);
return retval;
}
/* FIXME configuration.bmAttributes says if we could try to set/clear
* the device's remote wakeup feature ... if we can, test that here
*/
retval = usb_get_std_status(udev, USB_RECIP_INTERFACE,
iface->altsetting[0].desc.bInterfaceNumber, dev->buf);
if (retval) {
dev_err(&iface->dev, "get interface status --> %d\n", retval);
return retval;
}
/* FIXME get status for each endpoint in the interface */
return 0;
}
/*-------------------------------------------------------------------------*/
/* use ch9 requests to test whether:
* (a) queues work for control, keeping N subtests queued and
* active (auto-resubmit) for M loops through the queue.
* (b) protocol stalls (control-only) will autorecover.
* it's not like bulk/intr; no halt clearing.
* (c) short control reads are reported and handled.
* (d) queues are always processed in-order
*/
struct ctrl_ctx {
spinlock_t lock;
struct usbtest_dev *dev;
struct completion complete;
unsigned count;
unsigned pending;
int status;
struct urb **urb;
struct usbtest_param_32 *param;
int last;
};
#define NUM_SUBCASES 16 /* how many test subcases here? */
struct subcase {
struct usb_ctrlrequest setup;
int number;
int expected;
};
static void ctrl_complete(struct urb *urb)
{
struct ctrl_ctx *ctx = urb->context;
struct usb_ctrlrequest *reqp;
struct subcase *subcase;
int status = urb->status;
unsigned long flags;
reqp = (struct usb_ctrlrequest *)urb->setup_packet;
subcase = container_of(reqp, struct subcase, setup);
spin_lock_irqsave(&ctx->lock, flags);
ctx->count--;
ctx->pending--;
/* queue must transfer and complete in fifo order, unless
* usb_unlink_urb() is used to unlink something not at the
* physical queue head (not tested).
*/
if (subcase->number > 0) {
if ((subcase->number - ctx->last) != 1) {
ERROR(ctx->dev,
"subcase %d completed out of order, last %d\n",
subcase->number, ctx->last);
status = -EDOM;
ctx->last = subcase->number;
goto error;
}
}
ctx->last = subcase->number;
/* succeed or fault in only one way? */
if (status == subcase->expected)
status = 0;
/* async unlink for cleanup? */
else if (status != -ECONNRESET) {
/* some faults are allowed, not required */
if (subcase->expected > 0 && (
((status == -subcase->expected /* happened */
|| status == 0)))) /* didn't */
status = 0;
/* sometimes more than one fault is allowed */
else if (subcase->number == 12 && status == -EPIPE)
status = 0;
else
ERROR(ctx->dev, "subtest %d error, status %d\n",
subcase->number, status);
}
/* unexpected status codes mean errors; ideally, in hardware */
if (status) {
error:
if (ctx->status == 0) {
int i;
ctx->status = status;
ERROR(ctx->dev, "control queue %02x.%02x, err %d, "
"%d left, subcase %d, len %d/%d\n",
reqp->bRequestType, reqp->bRequest,
status, ctx->count, subcase->number,
urb->actual_length,
urb->transfer_buffer_length);
/* FIXME this "unlink everything" exit route should
* be a separate test case.
*/
/* unlink whatever's still pending */
for (i = 1; i < ctx->param->sglen; i++) {
struct urb *u = ctx->urb[
(i + subcase->number)
% ctx->param->sglen];
if (u == urb || !u->dev)
continue;
spin_unlock(&ctx->lock);
status = usb_unlink_urb(u);
spin_lock(&ctx->lock);
switch (status) {
case -EINPROGRESS:
case -EBUSY:
case -EIDRM:
continue;
default:
ERROR(ctx->dev, "urb unlink --> %d\n",
status);
}
}
status = ctx->status;
}
}
/* resubmit if we need to, else mark this as done */
if ((status == 0) && (ctx->pending < ctx->count)) {
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status != 0) {
ERROR(ctx->dev,
"can't resubmit ctrl %02x.%02x, err %d\n",
reqp->bRequestType, reqp->bRequest, status);
urb->dev = NULL;
} else
ctx->pending++;
} else
urb->dev = NULL;
/* signal completion when nothing's queued */
if (ctx->pending == 0)
complete(&ctx->complete);
spin_unlock_irqrestore(&ctx->lock, flags);
}
static int
test_ctrl_queue(struct usbtest_dev *dev, struct usbtest_param_32 *param)
{
struct usb_device *udev = testdev_to_usbdev(dev);
struct urb **urb;
struct ctrl_ctx context;
int i;
if (param->sglen == 0 || param->iterations > UINT_MAX / param->sglen)
return -EOPNOTSUPP;
spin_lock_init(&context.lock);
context.dev = dev;
init_completion(&context.complete);
context.count = param->sglen * param->iterations;
context.pending = 0;
context.status = -ENOMEM;
context.param = param;
context.last = -1;
/* allocate and init the urbs we'll queue.
* as with bulk/intr sglists, sglen is the queue depth; it also
* controls which subtests run (more tests than sglen) or rerun.
*/
urb = kcalloc(param->sglen, sizeof(struct urb *), GFP_KERNEL);
if (!urb)
return -ENOMEM;
for (i = 0; i < param->sglen; i++) {
int pipe = usb_rcvctrlpipe(udev, 0);
unsigned len;
struct urb *u;
struct usb_ctrlrequest req;
struct subcase *reqp;
/* sign of this variable means:
* -: tested code must return this (negative) error code
* +: tested code may return this (negative too) error code
*/
int expected = 0;
/* requests here are mostly expected to succeed on any
* device, but some are chosen to trigger protocol stalls
* or short reads.
*/
memset(&req, 0, sizeof(req));
req.bRequest = USB_REQ_GET_DESCRIPTOR;
req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;
switch (i % NUM_SUBCASES) {
case 0: /* get device descriptor */
req.wValue = cpu_to_le16(USB_DT_DEVICE << 8);
len = sizeof(struct usb_device_descriptor);
break;
case 1: /* get first config descriptor (only) */
req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0);
len = sizeof(struct usb_config_descriptor);
break;
case 2: /* get altsetting (OFTEN STALLS) */
req.bRequest = USB_REQ_GET_INTERFACE;
req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
/* index = 0 means first interface */
len = 1;
expected = EPIPE;
break;
case 3: /* get interface status */
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
/* interface 0 */
len = 2;
break;
case 4: /* get device status */
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;
len = 2;
break;
case 5: /* get device qualifier (MAY STALL) */
req.wValue = cpu_to_le16 (USB_DT_DEVICE_QUALIFIER << 8);
len = sizeof(struct usb_qualifier_descriptor);
if (udev->speed != USB_SPEED_HIGH)
expected = EPIPE;
break;
case 6: /* get first config descriptor, plus interface */
req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0);
len = sizeof(struct usb_config_descriptor);
len += sizeof(struct usb_interface_descriptor);
break;
case 7: /* get interface descriptor (ALWAYS STALLS) */
req.wValue = cpu_to_le16 (USB_DT_INTERFACE << 8);
/* interface == 0 */
len = sizeof(struct usb_interface_descriptor);
expected = -EPIPE;
break;
/* NOTE: two consecutive stalls in the queue here.
* that tests fault recovery a bit more aggressively. */
case 8: /* clear endpoint halt (MAY STALL) */
req.bRequest = USB_REQ_CLEAR_FEATURE;
req.bRequestType = USB_RECIP_ENDPOINT;
/* wValue 0 == ep halt */
/* wIndex 0 == ep0 (shouldn't halt!) */
len = 0;
pipe = usb_sndctrlpipe(udev, 0);
expected = EPIPE;
break;
case 9: /* get endpoint status */
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_ENDPOINT;
/* endpoint 0 */
len = 2;
break;
case 10: /* trigger short read (EREMOTEIO) */
req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0);
len = 1024;
expected = -EREMOTEIO;
break;
/* NOTE: two consecutive _different_ faults in the queue. */
case 11: /* get endpoint descriptor (ALWAYS STALLS) */
req.wValue = cpu_to_le16(USB_DT_ENDPOINT << 8);
/* endpoint == 0 */
len = sizeof(struct usb_interface_descriptor);
expected = EPIPE;
break;
/* NOTE: sometimes even a third fault in the queue! */
case 12: /* get string 0 descriptor (MAY STALL) */
req.wValue = cpu_to_le16(USB_DT_STRING << 8);
/* string == 0, for language IDs */
len = sizeof(struct usb_interface_descriptor);
/* may succeed when > 4 languages */
expected = EREMOTEIO; /* or EPIPE, if no strings */
break;
case 13: /* short read, resembling case 10 */
req.wValue = cpu_to_le16((USB_DT_CONFIG << 8) | 0);
/* last data packet "should" be DATA1, not DATA0 */
if (udev->speed == USB_SPEED_SUPER)
len = 1024 - 512;
else
len = 1024 - udev->descriptor.bMaxPacketSize0;
expected = -EREMOTEIO;
break;
case 14: /* short read; try to fill the last packet */
req.wValue = cpu_to_le16((USB_DT_DEVICE << 8) | 0);
/* device descriptor size == 18 bytes */
len = udev->descriptor.bMaxPacketSize0;
if (udev->speed == USB_SPEED_SUPER)
len = 512;
switch (len) {
case 8:
len = 24;
break;
case 16:
len = 32;
break;
}
expected = -EREMOTEIO;
break;
case 15:
req.wValue = cpu_to_le16(USB_DT_BOS << 8);
if (udev->bos)
len = le16_to_cpu(udev->bos->desc->wTotalLength);
else
len = sizeof(struct usb_bos_descriptor);
if (le16_to_cpu(udev->descriptor.bcdUSB) < 0x0201)
expected = -EPIPE;
break;
default:
ERROR(dev, "bogus number of ctrl queue testcases!\n");
context.status = -EINVAL;
goto cleanup;
}
req.wLength = cpu_to_le16(len);
urb[i] = u = simple_alloc_urb(udev, pipe, len, 0);
if (!u)
goto cleanup;
reqp = kmalloc(sizeof(*reqp), GFP_KERNEL);
if (!reqp)
goto cleanup;
reqp->setup = req;
reqp->number = i % NUM_SUBCASES;
reqp->expected = expected;
u->setup_packet = (char *) &reqp->setup;
u->context = &context;
u->complete = ctrl_complete;
}
/* queue the urbs */
context.urb = urb;
spin_lock_irq(&context.lock);
for (i = 0; i < param->sglen; i++) {
context.status = usb_submit_urb(urb[i], GFP_ATOMIC);
if (context.status != 0) {
ERROR(dev, "can't submit urb[%d], status %d\n",
i, context.status);
context.count = context.pending;
break;
}
context.pending++;
}
spin_unlock_irq(&context.lock);
/* FIXME set timer and time out; provide a disconnect hook */
/* wait for the last one to complete */
if (context.pending > 0)
wait_for_completion(&context.complete);
cleanup:
for (i = 0; i < param->sglen; i++) {
if (!urb[i])
continue;
urb[i]->dev = udev;
kfree(urb[i]->setup_packet);
simple_free_urb(urb[i]);
}
kfree(urb);
return context.status;
}
#undef NUM_SUBCASES
/*-------------------------------------------------------------------------*/
static void unlink1_callback(struct urb *urb)
{
int status = urb->status;
/* we "know" -EPIPE (stall) never happens */
if (!status)
status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) {
urb->status = status;
complete(urb->context);
}
}
static int unlink1(struct usbtest_dev *dev, int pipe, int size, int async)
{
struct urb *urb;
struct completion completion;
int retval = 0;
init_completion(&completion);
urb = simple_alloc_urb(testdev_to_usbdev(dev), pipe, size, 0);
if (!urb)
return -ENOMEM;
urb->context = &completion;
urb->complete = unlink1_callback;
if (usb_pipeout(urb->pipe)) {
simple_fill_buf(urb);
urb->transfer_flags |= URB_ZERO_PACKET;
}
/* keep the endpoint busy. there are lots of hc/hcd-internal
* states, and testing should get to all of them over time.
*
* FIXME want additional tests for when endpoint is STALLing
* due to errors, or is just NAKing requests.
*/
retval = usb_submit_urb(urb, GFP_KERNEL);
if (retval != 0) {
dev_err(&dev->intf->dev, "submit fail %d\n", retval);
return retval;
}
/* unlinking that should always work. variable delay tests more
* hcd states and code paths, even with little other system load.
*/
msleep(jiffies % (2 * INTERRUPT_RATE));
if (async) {
while (!completion_done(&completion)) {
retval = usb_unlink_urb(urb);
if (retval == 0 && usb_pipein(urb->pipe))
retval = simple_check_buf(dev, urb);
switch (retval) {
case -EBUSY:
case -EIDRM:
/* we can't unlink urbs while they're completing
* or if they've completed, and we haven't
* resubmitted. "normal" drivers would prevent
* resubmission, but since we're testing unlink
* paths, we can't.
*/
ERROR(dev, "unlink retry\n");
continue;
case 0:
case -EINPROGRESS:
break;
default:
dev_err(&dev->intf->dev,
"unlink fail %d\n", retval);
return retval;
}
break;
}
} else
usb_kill_urb(urb);
wait_for_completion(&completion);
retval = urb->status;
simple_free_urb(urb);
if (async)
return (retval == -ECONNRESET) ? 0 : retval - 1000;
else
return (retval == -ENOENT || retval == -EPERM) ?
0 : retval - 2000;
}
static int unlink_simple(struct usbtest_dev *dev, int pipe, int len)
{
int retval = 0;
/* test sync and async paths */
retval = unlink1(dev, pipe, len, 1);
if (!retval)
retval = unlink1(dev, pipe, len, 0);
return retval;
}
/*-------------------------------------------------------------------------*/
struct queued_ctx {
struct completion complete;
atomic_t pending;
unsigned num;
int status;
struct urb **urbs;
};
static void unlink_queued_callback(struct urb *urb)
{
int status = urb->status;
struct queued_ctx *ctx = urb->context;
if (ctx->status)
goto done;
if (urb == ctx->urbs[ctx->num - 4] || urb == ctx->urbs[ctx->num - 2]) {
if (status == -ECONNRESET)
goto done;
/* What error should we report if the URB completed normally? */
}
if (status != 0)
ctx->status = status;
done:
if (atomic_dec_and_test(&ctx->pending))
complete(&ctx->complete);
}
static int unlink_queued(struct usbtest_dev *dev, int pipe, unsigned num,
unsigned size)
{
struct queued_ctx ctx;
struct usb_device *udev = testdev_to_usbdev(dev);
void *buf;
dma_addr_t buf_dma;
int i;
int retval = -ENOMEM;
init_completion(&ctx.complete);
atomic_set(&ctx.pending, 1); /* One more than the actual value */
ctx.num = num;
ctx.status = 0;
buf = usb_alloc_coherent(udev, size, GFP_KERNEL, &buf_dma);
if (!buf)
return retval;
memset(buf, 0, size);
/* Allocate and init the urbs we'll queue */
ctx.urbs = kcalloc(num, sizeof(struct urb *), GFP_KERNEL);
if (!ctx.urbs)
goto free_buf;
for (i = 0; i < num; i++) {
ctx.urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
if (!ctx.urbs[i])
goto free_urbs;
usb_fill_bulk_urb(ctx.urbs[i], udev, pipe, buf, size,
unlink_queued_callback, &ctx);
ctx.urbs[i]->transfer_dma = buf_dma;
ctx.urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
if (usb_pipeout(ctx.urbs[i]->pipe)) {
simple_fill_buf(ctx.urbs[i]);
ctx.urbs[i]->transfer_flags |= URB_ZERO_PACKET;
}
}
/* Submit all the URBs and then unlink URBs num - 4 and num - 2. */
for (i = 0; i < num; i++) {
atomic_inc(&ctx.pending);
retval = usb_submit_urb(ctx.urbs[i], GFP_KERNEL);
if (retval != 0) {
dev_err(&dev->intf->dev, "submit urbs[%d] fail %d\n",
i, retval);
atomic_dec(&ctx.pending);
ctx.status = retval;
break;
}
}
if (i == num) {
usb_unlink_urb(ctx.urbs[num - 4]);
usb_unlink_urb(ctx.urbs[num - 2]);
} else {
while (--i >= 0)
usb_unlink_urb(ctx.urbs[i]);
}
if (atomic_dec_and_test(&ctx.pending)) /* The extra count */
complete(&ctx.complete);
wait_for_completion(&ctx.complete);
retval = ctx.status;
free_urbs:
for (i = 0; i < num; i++)
usb_free_urb(ctx.urbs[i]);
kfree(ctx.urbs);
free_buf:
usb_free_coherent(udev, size, buf, buf_dma);
return retval;
}
/*-------------------------------------------------------------------------*/
static int verify_not_halted(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
u16 status;
/* shouldn't look or act halted */
retval = usb_get_std_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't get no-halt status, %d\n",
ep, retval);
return retval;
}
if (status != 0) {
ERROR(tdev, "ep %02x bogus status: %04x != 0\n", ep, status);
return -EINVAL;
}
retval = simple_io(tdev, urb, 1, 0, 0, __func__);
if (retval != 0)
return -EINVAL;
return 0;
}
static int verify_halted(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
u16 status;
/* should look and act halted */
retval = usb_get_std_status(urb->dev, USB_RECIP_ENDPOINT, ep, &status);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't get halt status, %d\n",
ep, retval);
return retval;
}
if (status != 1) {
ERROR(tdev, "ep %02x bogus status: %04x != 1\n", ep, status);
return -EINVAL;
}
retval = simple_io(tdev, urb, 1, 0, -EPIPE, __func__);
if (retval != -EPIPE)
return -EINVAL;
retval = simple_io(tdev, urb, 1, 0, -EPIPE, "verify_still_halted");
if (retval != -EPIPE)
return -EINVAL;
return 0;
}
static int test_halt(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
/* shouldn't look or act halted now */
retval = verify_not_halted(tdev, ep, urb);
if (retval < 0)
return retval;
/* set halt (protocol test only), verify it worked */
retval = usb_control_msg(urb->dev, usb_sndctrlpipe(urb->dev, 0),
USB_REQ_SET_FEATURE, USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT, ep,
NULL, 0, USB_CTRL_SET_TIMEOUT);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't set halt, %d\n", ep, retval);
return retval;
}
retval = verify_halted(tdev, ep, urb);
if (retval < 0) {
int ret;
/* clear halt anyways, else further tests will fail */
ret = usb_clear_halt(urb->dev, urb->pipe);
if (ret)
ERROR(tdev, "ep %02x couldn't clear halt, %d\n",
ep, ret);
return retval;
}
/* clear halt (tests API + protocol), verify it worked */
retval = usb_clear_halt(urb->dev, urb->pipe);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval);
return retval;
}
retval = verify_not_halted(tdev, ep, urb);
if (retval < 0)
return retval;
/* NOTE: could also verify SET_INTERFACE clear halts ... */
return 0;
}
static int test_toggle_sync(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
/* clear initial data toggle to DATA0 */
retval = usb_clear_halt(urb->dev, urb->pipe);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval);
return retval;
}
/* transfer 3 data packets, should be DATA0, DATA1, DATA0 */
retval = simple_io(tdev, urb, 1, 0, 0, __func__);
if (retval != 0)
return -EINVAL;
/* clear halt resets device side data toggle, host should react to it */
retval = usb_clear_halt(urb->dev, urb->pipe);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval);
return retval;
}
/* host should use DATA0 again after clear halt */
retval = simple_io(tdev, urb, 1, 0, 0, __func__);
return retval;
}
static int halt_simple(struct usbtest_dev *dev)
{
int ep;
int retval = 0;
struct urb *urb;
struct usb_device *udev = testdev_to_usbdev(dev);
if (udev->speed == USB_SPEED_SUPER)
urb = simple_alloc_urb(udev, 0, 1024, 0);
else
urb = simple_alloc_urb(udev, 0, 512, 0);
if (urb == NULL)
return -ENOMEM;
if (dev->in_pipe) {
ep = usb_pipeendpoint(dev->in_pipe) | USB_DIR_IN;
urb->pipe = dev->in_pipe;
retval = test_halt(dev, ep, urb);
if (retval < 0)
goto done;
}
if (dev->out_pipe) {
ep = usb_pipeendpoint(dev->out_pipe);
urb->pipe = dev->out_pipe;
retval = test_halt(dev, ep, urb);
}
done:
simple_free_urb(urb);
return retval;
}
static int toggle_sync_simple(struct usbtest_dev *dev)
{
int ep;
int retval = 0;
struct urb *urb;
struct usb_device *udev = testdev_to_usbdev(dev);
unsigned maxp = get_maxpacket(udev, dev->out_pipe);
/*
* Create a URB that causes a transfer of uneven amount of data packets
* This way the clear toggle has an impact on the data toggle sequence.
* Use 2 maxpacket length packets and one zero packet.
*/
urb = simple_alloc_urb(udev, 0, 2 * maxp, 0);
if (urb == NULL)
return -ENOMEM;
urb->transfer_flags |= URB_ZERO_PACKET;
ep = usb_pipeendpoint(dev->out_pipe);
urb->pipe = dev->out_pipe;
retval = test_toggle_sync(dev, ep, urb);
simple_free_urb(urb);
return retval;
}
/*-------------------------------------------------------------------------*/
/* Control OUT tests use the vendor control requests from Intel's
* USB 2.0 compliance test device: write a buffer, read it back.
*
* Intel's spec only _requires_ that it work for one packet, which
* is pretty weak. Some HCDs place limits here; most devices will
* need to be able to handle more than one OUT data packet. We'll
* try whatever we're told to try.
*/
static int ctrl_out(struct usbtest_dev *dev,
unsigned count, unsigned length, unsigned vary, unsigned offset)
{
unsigned i, j, len;
int retval;
u8 *buf;
char *what = "?";
struct usb_device *udev;
if (length < 1 || length > 0xffff || vary >= length)
return -EINVAL;
buf = kmalloc(length + offset, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf += offset;
udev = testdev_to_usbdev(dev);
len = length;
retval = 0;
/* NOTE: hardware might well act differently if we pushed it
* with lots back-to-back queued requests.
*/
for (i = 0; i < count; i++) {
/* write patterned data */
for (j = 0; j < len; j++)
buf[j] = (u8)(i + j);
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
0x5b, USB_DIR_OUT|USB_TYPE_VENDOR,
0, 0, buf, len, USB_CTRL_SET_TIMEOUT);
if (retval != len) {
what = "write";
if (retval >= 0) {
ERROR(dev, "ctrl_out, wlen %d (expected %d)\n",
retval, len);
retval = -EBADMSG;
}
break;
}
/* read it back -- assuming nothing intervened!! */
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
0x5c, USB_DIR_IN|USB_TYPE_VENDOR,
0, 0, buf, len, USB_CTRL_GET_TIMEOUT);
if (retval != len) {
what = "read";
if (retval >= 0) {
ERROR(dev, "ctrl_out, rlen %d (expected %d)\n",
retval, len);
retval = -EBADMSG;
}
break;
}
/* fail if we can't verify */
for (j = 0; j < len; j++) {
if (buf[j] != (u8)(i + j)) {
ERROR(dev, "ctrl_out, byte %d is %d not %d\n",
j, buf[j], (u8)(i + j));
retval = -EBADMSG;
break;
}
}
if (retval < 0) {
what = "verify";
break;
}
len += vary;
/* [real world] the "zero bytes IN" case isn't really used.
* hardware can easily trip up in this weird case, since its
* status stage is IN, not OUT like other ep0in transfers.
*/
if (len > length)
len = realworld ? 1 : 0;
}
if (retval < 0)
ERROR(dev, "ctrl_out %s failed, code %d, count %d\n",
what, retval, i);
kfree(buf - offset);
return retval;
}
/*-------------------------------------------------------------------------*/
/* ISO/BULK tests ... mimics common usage
* - buffer length is split into N packets (mostly maxpacket sized)
* - multi-buffers according to sglen
*/
struct transfer_context {
unsigned count;
unsigned pending;
spinlock_t lock;
struct completion done;
int submit_error;
unsigned long errors;
unsigned long packet_count;
struct usbtest_dev *dev;
bool is_iso;
};
static void complicated_callback(struct urb *urb)
{
struct transfer_context *ctx = urb->context;
unsigned long flags;
spin_lock_irqsave(&ctx->lock, flags);
ctx->count--;
ctx->packet_count += urb->number_of_packets;
if (urb->error_count > 0)
ctx->errors += urb->error_count;
else if (urb->status != 0)
ctx->errors += (ctx->is_iso ? urb->number_of_packets : 1);
else if (urb->actual_length != urb->transfer_buffer_length)
ctx->errors++;
else if (check_guard_bytes(ctx->dev, urb) != 0)
ctx->errors++;
if (urb->status == 0 && ctx->count > (ctx->pending - 1)
&& !ctx->submit_error) {
int status = usb_submit_urb(urb, GFP_ATOMIC);
switch (status) {
case 0:
goto done;
default:
dev_err(&ctx->dev->intf->dev,
"resubmit err %d\n",
status);
fallthrough;
case -ENODEV: /* disconnected */
case -ESHUTDOWN: /* endpoint disabled */
ctx->submit_error = 1;
break;
}
}
ctx->pending--;
if (ctx->pending == 0) {
if (ctx->errors)
dev_err(&ctx->dev->intf->dev,
"during the test, %lu errors out of %lu\n",
ctx->errors, ctx->packet_count);
complete(&ctx->done);
}
done:
spin_unlock_irqrestore(&ctx->lock, flags);
}
static struct urb *iso_alloc_urb(
struct usb_device *udev,
int pipe,
struct usb_endpoint_descriptor *desc,
long bytes,
unsigned offset
)
{
struct urb *urb;
unsigned i, maxp, packets;
if (bytes < 0 || !desc)
return NULL;
maxp = usb_endpoint_maxp(desc);
if (udev->speed >= USB_SPEED_SUPER)
maxp *= ss_isoc_get_packet_num(udev, pipe);
else
maxp *= usb_endpoint_maxp_mult(desc);
packets = DIV_ROUND_UP(bytes, maxp);
urb = usb_alloc_urb(packets, GFP_KERNEL);
if (!urb)
return urb;
urb->dev = udev;
urb->pipe = pipe;
urb->number_of_packets = packets;
urb->transfer_buffer_length = bytes;
urb->transfer_buffer = usb_alloc_coherent(udev, bytes + offset,
GFP_KERNEL,
&urb->transfer_dma);
if (!urb->transfer_buffer) {
usb_free_urb(urb);
return NULL;
}
if (offset) {
memset(urb->transfer_buffer, GUARD_BYTE, offset);
urb->transfer_buffer += offset;
urb->transfer_dma += offset;
}
/* For inbound transfers use guard byte so that test fails if
data not correctly copied */
memset(urb->transfer_buffer,
usb_pipein(urb->pipe) ? GUARD_BYTE : 0,
bytes);
for (i = 0; i < packets; i++) {
/* here, only the last packet will be short */
urb->iso_frame_desc[i].length = min((unsigned) bytes, maxp);
bytes -= urb->iso_frame_desc[i].length;
urb->iso_frame_desc[i].offset = maxp * i;
}
urb->complete = complicated_callback;
/* urb->context = SET BY CALLER */
urb->interval = 1 << (desc->bInterval - 1);
urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
return urb;
}
static int
test_queue(struct usbtest_dev *dev, struct usbtest_param_32 *param,
int pipe, struct usb_endpoint_descriptor *desc, unsigned offset)
{
struct transfer_context context;
struct usb_device *udev;
unsigned i;
unsigned long packets = 0;
int status = 0;
struct urb **urbs;
if (!param->sglen || param->iterations > UINT_MAX / param->sglen)
return -EINVAL;
if (param->sglen > MAX_SGLEN)
return -EINVAL;
urbs = kcalloc(param->sglen, sizeof(*urbs), GFP_KERNEL);
if (!urbs)
return -ENOMEM;
memset(&context, 0, sizeof(context));
context.count = param->iterations * param->sglen;
context.dev = dev;
context.is_iso = !!desc;
init_completion(&context.done);
spin_lock_init(&context.lock);
udev = testdev_to_usbdev(dev);
for (i = 0; i < param->sglen; i++) {
if (context.is_iso)
urbs[i] = iso_alloc_urb(udev, pipe, desc,
param->length, offset);
else
urbs[i] = complicated_alloc_urb(udev, pipe,
param->length, 0);
if (!urbs[i]) {
status = -ENOMEM;
goto fail;
}
packets += urbs[i]->number_of_packets;
urbs[i]->context = &context;
}
packets *= param->iterations;
if (context.is_iso) {
int transaction_num;
if (udev->speed >= USB_SPEED_SUPER)
transaction_num = ss_isoc_get_packet_num(udev, pipe);
else
transaction_num = usb_endpoint_maxp_mult(desc);
dev_info(&dev->intf->dev,
"iso period %d %sframes, wMaxPacket %d, transactions: %d\n",
1 << (desc->bInterval - 1),
(udev->speed >= USB_SPEED_HIGH) ? "micro" : "",
usb_endpoint_maxp(desc),
transaction_num);
dev_info(&dev->intf->dev,
"total %lu msec (%lu packets)\n",
(packets * (1 << (desc->bInterval - 1)))
/ ((udev->speed >= USB_SPEED_HIGH) ? 8 : 1),
packets);
}
spin_lock_irq(&context.lock);
for (i = 0; i < param->sglen; i++) {
++context.pending;
status = usb_submit_urb(urbs[i], GFP_ATOMIC);
if (status < 0) {
ERROR(dev, "submit iso[%d], error %d\n", i, status);
if (i == 0) {
spin_unlock_irq(&context.lock);
goto fail;
}
simple_free_urb(urbs[i]);
urbs[i] = NULL;
context.pending--;
context.submit_error = 1;
break;
}
}
spin_unlock_irq(&context.lock);
wait_for_completion(&context.done);
for (i = 0; i < param->sglen; i++) {
if (urbs[i])
simple_free_urb(urbs[i]);
}
/*
* Isochronous transfers are expected to fail sometimes. As an
* arbitrary limit, we will report an error if any submissions
* fail or if the transfer failure rate is > 10%.
*/
if (status != 0)
;
else if (context.submit_error)
status = -EACCES;
else if (context.errors >
(context.is_iso ? context.packet_count / 10 : 0))
status = -EIO;
kfree(urbs);
return status;
fail:
for (i = 0; i < param->sglen; i++) {
if (urbs[i])
simple_free_urb(urbs[i]);
}
kfree(urbs);
return status;
}
static int test_unaligned_bulk(
struct usbtest_dev *tdev,
int pipe,
unsigned length,
int iterations,
unsigned transfer_flags,
const char *label)
{
int retval;
struct urb *urb = usbtest_alloc_urb(testdev_to_usbdev(tdev),
pipe, length, transfer_flags, 1, 0, simple_callback);
if (!urb)
return -ENOMEM;
retval = simple_io(tdev, urb, iterations, 0, 0, label);
simple_free_urb(urb);
return retval;
}
/* Run tests. */
static int
usbtest_do_ioctl(struct usb_interface *intf, struct usbtest_param_32 *param)
{
struct usbtest_dev *dev = usb_get_intfdata(intf);
struct usb_device *udev = testdev_to_usbdev(dev);
struct urb *urb;
struct scatterlist *sg;
struct usb_sg_request req;
unsigned i;
int retval = -EOPNOTSUPP;
if (param->iterations <= 0)
return -EINVAL;
if (param->sglen > MAX_SGLEN)
return -EINVAL;
/*
* Just a bunch of test cases that every HCD is expected to handle.
*
* Some may need specific firmware, though it'd be good to have
* one firmware image to handle all the test cases.
*
* FIXME add more tests! cancel requests, verify the data, control
* queueing, concurrent read+write threads, and so on.
*/
switch (param->test_num) {
case 0:
dev_info(&intf->dev, "TEST 0: NOP\n");
retval = 0;
break;
/* Simple non-queued bulk I/O tests */
case 1:
if (dev->out_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 1: write %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->out_pipe, param->length, 0);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk sink (maybe accepts short writes) */
retval = simple_io(dev, urb, param->iterations, 0, 0, "test1");
simple_free_urb(urb);
break;
case 2:
if (dev->in_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 2: read %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->in_pipe, param->length, 0);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk source (maybe generates short writes) */
retval = simple_io(dev, urb, param->iterations, 0, 0, "test2");
simple_free_urb(urb);
break;
case 3:
if (dev->out_pipe == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 3: write/%d 0..%d bytes %u times\n",
param->vary, param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->out_pipe, param->length, 0);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk sink (maybe accepts short writes) */
retval = simple_io(dev, urb, param->iterations, param->vary,
0, "test3");
simple_free_urb(urb);
break;
case 4:
if (dev->in_pipe == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 4: read/%d 0..%d bytes %u times\n",
param->vary, param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->in_pipe, param->length, 0);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk source (maybe generates short writes) */
retval = simple_io(dev, urb, param->iterations, param->vary,
0, "test4");
simple_free_urb(urb);
break;
/* Queued bulk I/O tests */
case 5:
if (dev->out_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 5: write %d sglists %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
sg = alloc_sglist(param->sglen, param->length,
0, dev, dev->out_pipe);
if (!sg) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk sink (maybe accepts short writes) */
retval = perform_sglist(dev, param->iterations, dev->out_pipe,
&req, sg, param->sglen);
free_sglist(sg, param->sglen);
break;
case 6:
if (dev->in_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 6: read %d sglists %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
sg = alloc_sglist(param->sglen, param->length,
0, dev, dev->in_pipe);
if (!sg) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk source (maybe generates short writes) */
retval = perform_sglist(dev, param->iterations, dev->in_pipe,
&req, sg, param->sglen);
free_sglist(sg, param->sglen);
break;
case 7:
if (dev->out_pipe == 0 || param->sglen == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 7: write/%d %d sglists %d entries 0..%d bytes\n",
param->vary, param->iterations,
param->sglen, param->length);
sg = alloc_sglist(param->sglen, param->length,
param->vary, dev, dev->out_pipe);
if (!sg) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk sink (maybe accepts short writes) */
retval = perform_sglist(dev, param->iterations, dev->out_pipe,
&req, sg, param->sglen);
free_sglist(sg, param->sglen);
break;
case 8:
if (dev->in_pipe == 0 || param->sglen == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 8: read/%d %d sglists %d entries 0..%d bytes\n",
param->vary, param->iterations,
param->sglen, param->length);
sg = alloc_sglist(param->sglen, param->length,
param->vary, dev, dev->in_pipe);
if (!sg) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: bulk source (maybe generates short writes) */
retval = perform_sglist(dev, param->iterations, dev->in_pipe,
&req, sg, param->sglen);
free_sglist(sg, param->sglen);
break;
/* non-queued sanity tests for control (chapter 9 subset) */
case 9:
retval = 0;
dev_info(&intf->dev,
"TEST 9: ch9 (subset) control tests, %d times\n",
param->iterations);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = ch9_postconfig(dev);
if (retval)
dev_err(&intf->dev, "ch9 subset failed, "
"iterations left %d\n", i);
break;
/* queued control messaging */
case 10:
retval = 0;
dev_info(&intf->dev,
"TEST 10: queue %d control calls, %d times\n",
param->sglen,
param->iterations);
retval = test_ctrl_queue(dev, param);
break;
/* simple non-queued unlinks (ring with one urb) */
case 11:
if (dev->in_pipe == 0 || !param->length)
break;
retval = 0;
dev_info(&intf->dev, "TEST 11: unlink %d reads of %d\n",
param->iterations, param->length);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = unlink_simple(dev, dev->in_pipe,
param->length);
if (retval)
dev_err(&intf->dev, "unlink reads failed %d, "
"iterations left %d\n", retval, i);
break;
case 12:
if (dev->out_pipe == 0 || !param->length)
break;
retval = 0;
dev_info(&intf->dev, "TEST 12: unlink %d writes of %d\n",
param->iterations, param->length);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = unlink_simple(dev, dev->out_pipe,
param->length);
if (retval)
dev_err(&intf->dev, "unlink writes failed %d, "
"iterations left %d\n", retval, i);
break;
/* ep halt tests */
case 13:
if (dev->out_pipe == 0 && dev->in_pipe == 0)
break;
retval = 0;
dev_info(&intf->dev, "TEST 13: set/clear %d halts\n",
param->iterations);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = halt_simple(dev);
if (retval)
ERROR(dev, "halts failed, iterations left %d\n", i);
break;
/* control write tests */
case 14:
if (!dev->info->ctrl_out)
break;
dev_info(&intf->dev, "TEST 14: %d ep0out, %d..%d vary %d\n",
param->iterations,
realworld ? 1 : 0, param->length,
param->vary);
retval = ctrl_out(dev, param->iterations,
param->length, param->vary, 0);
break;
/* iso write tests */
case 15:
if (dev->out_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 15: write %d iso, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
/* FIRMWARE: iso sink */
retval = test_queue(dev, param,
dev->out_iso_pipe, dev->iso_out, 0);
break;
/* iso read tests */
case 16:
if (dev->in_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 16: read %d iso, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
/* FIRMWARE: iso source */
retval = test_queue(dev, param,
dev->in_iso_pipe, dev->iso_in, 0);
break;
/* FIXME scatterlist cancel (needs helper thread) */
/* Tests for bulk I/O using DMA mapping by core and odd address */
case 17:
if (dev->out_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 17: write odd addr %d bytes %u times core map\n",
param->length, param->iterations);
retval = test_unaligned_bulk(
dev, dev->out_pipe,
param->length, param->iterations,
0, "test17");
break;
case 18:
if (dev->in_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 18: read odd addr %d bytes %u times core map\n",
param->length, param->iterations);
retval = test_unaligned_bulk(
dev, dev->in_pipe,
param->length, param->iterations,
0, "test18");
break;
/* Tests for bulk I/O using premapped coherent buffer and odd address */
case 19:
if (dev->out_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 19: write odd addr %d bytes %u times premapped\n",
param->length, param->iterations);
retval = test_unaligned_bulk(
dev, dev->out_pipe,
param->length, param->iterations,
URB_NO_TRANSFER_DMA_MAP, "test19");
break;
case 20:
if (dev->in_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 20: read odd addr %d bytes %u times premapped\n",
param->length, param->iterations);
retval = test_unaligned_bulk(
dev, dev->in_pipe,
param->length, param->iterations,
URB_NO_TRANSFER_DMA_MAP, "test20");
break;
/* control write tests with unaligned buffer */
case 21:
if (!dev->info->ctrl_out)
break;
dev_info(&intf->dev,
"TEST 21: %d ep0out odd addr, %d..%d vary %d\n",
param->iterations,
realworld ? 1 : 0, param->length,
param->vary);
retval = ctrl_out(dev, param->iterations,
param->length, param->vary, 1);
break;
/* unaligned iso tests */
case 22:
if (dev->out_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 22: write %d iso odd, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
retval = test_queue(dev, param,
dev->out_iso_pipe, dev->iso_out, 1);
break;
case 23:
if (dev->in_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 23: read %d iso odd, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
retval = test_queue(dev, param,
dev->in_iso_pipe, dev->iso_in, 1);
break;
/* unlink URBs from a bulk-OUT queue */
case 24:
if (dev->out_pipe == 0 || !param->length || param->sglen < 4)
break;
retval = 0;
dev_info(&intf->dev, "TEST 24: unlink from %d queues of "
"%d %d-byte writes\n",
param->iterations, param->sglen, param->length);
for (i = param->iterations; retval == 0 && i > 0; --i) {
retval = unlink_queued(dev, dev->out_pipe,
param->sglen, param->length);
if (retval) {
dev_err(&intf->dev,
"unlink queued writes failed %d, "
"iterations left %d\n", retval, i);
break;
}
}
break;
/* Simple non-queued interrupt I/O tests */
case 25:
if (dev->out_int_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 25: write %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->out_int_pipe, param->length,
dev->int_out->bInterval);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: interrupt sink (maybe accepts short writes) */
retval = simple_io(dev, urb, param->iterations, 0, 0, "test25");
simple_free_urb(urb);
break;
case 26:
if (dev->in_int_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 26: read %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb(udev, dev->in_int_pipe, param->length,
dev->int_in->bInterval);
if (!urb) {
retval = -ENOMEM;
break;
}
/* FIRMWARE: interrupt source (maybe generates short writes) */
retval = simple_io(dev, urb, param->iterations, 0, 0, "test26");
simple_free_urb(urb);
break;
case 27:
/* We do performance test, so ignore data compare */
if (dev->out_pipe == 0 || param->sglen == 0 || pattern != 0)
break;
dev_info(&intf->dev,
"TEST 27: bulk write %dMbytes\n", (param->iterations *
param->sglen * param->length) / (1024 * 1024));
retval = test_queue(dev, param,
dev->out_pipe, NULL, 0);
break;
case 28:
if (dev->in_pipe == 0 || param->sglen == 0 || pattern != 0)
break;
dev_info(&intf->dev,
"TEST 28: bulk read %dMbytes\n", (param->iterations *
param->sglen * param->length) / (1024 * 1024));
retval = test_queue(dev, param,
dev->in_pipe, NULL, 0);
break;
/* Test data Toggle/seq_nr clear between bulk out transfers */
case 29:
if (dev->out_pipe == 0)
break;
retval = 0;
dev_info(&intf->dev, "TEST 29: Clear toggle between bulk writes %d times\n",
param->iterations);
for (i = param->iterations; retval == 0 && i > 0; --i)
retval = toggle_sync_simple(dev);
if (retval)
ERROR(dev, "toggle sync failed, iterations left %d\n",
i);
break;
}
return retval;
}
/*-------------------------------------------------------------------------*/
/* We only have this one interface to user space, through usbfs.
* User mode code can scan usbfs to find N different devices (maybe on
* different busses) to use when testing, and allocate one thread per
* test. So discovery is simplified, and we have no device naming issues.
*
* Don't use these only as stress/load tests. Use them along with
* other USB bus activity: plugging, unplugging, mousing, mp3 playback,
* video capture, and so on. Run different tests at different times, in
* different sequences. Nothing here should interact with other devices,
* except indirectly by consuming USB bandwidth and CPU resources for test
* threads and request completion. But the only way to know that for sure
* is to test when HC queues are in use by many devices.
*
* WARNING: Because usbfs grabs udev->dev.sem before calling this ioctl(),
* it locks out usbcore in certain code paths. Notably, if you disconnect
* the device-under-test, hub_wq will wait block forever waiting for the
* ioctl to complete ... so that usb_disconnect() can abort the pending
* urbs and then call usbtest_disconnect(). To abort a test, you're best
* off just killing the userspace task and waiting for it to exit.
*/
static int
usbtest_ioctl(struct usb_interface *intf, unsigned int code, void *buf)
{
struct usbtest_dev *dev = usb_get_intfdata(intf);
struct usbtest_param_64 *param_64 = buf;
struct usbtest_param_32 temp;
struct usbtest_param_32 *param_32 = buf;
struct timespec64 start;
struct timespec64 end;
struct timespec64 duration;
int retval = -EOPNOTSUPP;
/* FIXME USBDEVFS_CONNECTINFO doesn't say how fast the device is. */
pattern = mod_pattern;
if (mutex_lock_interruptible(&dev->lock))
return -ERESTARTSYS;
/* FIXME: What if a system sleep starts while a test is running? */
/* some devices, like ez-usb default devices, need a non-default
* altsetting to have any active endpoints. some tests change
* altsettings; force a default so most tests don't need to check.
*/
if (dev->info->alt >= 0) {
if (intf->altsetting->desc.bInterfaceNumber) {
retval = -ENODEV;
goto free_mutex;
}
retval = set_altsetting(dev, dev->info->alt);
if (retval) {
dev_err(&intf->dev,
"set altsetting to %d failed, %d\n",
dev->info->alt, retval);
goto free_mutex;
}
}
switch (code) {
case USBTEST_REQUEST_64:
temp.test_num = param_64->test_num;
temp.iterations = param_64->iterations;
temp.length = param_64->length;
temp.sglen = param_64->sglen;
temp.vary = param_64->vary;
param_32 = &temp;
break;
case USBTEST_REQUEST_32:
break;
default:
retval = -EOPNOTSUPP;
goto free_mutex;
}
ktime_get_ts64(&start);
retval = usbtest_do_ioctl(intf, param_32);
if (retval < 0)
goto free_mutex;
ktime_get_ts64(&end);
duration = timespec64_sub(end, start);
temp.duration_sec = duration.tv_sec;
temp.duration_usec = duration.tv_nsec/NSEC_PER_USEC;
switch (code) {
case USBTEST_REQUEST_32:
param_32->duration_sec = temp.duration_sec;
param_32->duration_usec = temp.duration_usec;
break;
case USBTEST_REQUEST_64:
param_64->duration_sec = temp.duration_sec;
param_64->duration_usec = temp.duration_usec;
break;
}
free_mutex:
mutex_unlock(&dev->lock);
return retval;
}
/*-------------------------------------------------------------------------*/
static unsigned force_interrupt;
module_param(force_interrupt, uint, 0);
MODULE_PARM_DESC(force_interrupt, "0 = test default; else interrupt");
#ifdef GENERIC
static unsigned short vendor;
module_param(vendor, ushort, 0);
MODULE_PARM_DESC(vendor, "vendor code (from usb-if)");
static unsigned short product;
module_param(product, ushort, 0);
MODULE_PARM_DESC(product, "product code (from vendor)");
#endif
static int
usbtest_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *udev;
struct usbtest_dev *dev;
struct usbtest_info *info;
char *rtest, *wtest;
char *irtest, *iwtest;
char *intrtest, *intwtest;
udev = interface_to_usbdev(intf);
#ifdef GENERIC
/* specify devices by module parameters? */
if (id->match_flags == 0) {
/* vendor match required, product match optional */
if (!vendor || le16_to_cpu(udev->descriptor.idVendor) != (u16)vendor)
return -ENODEV;
if (product && le16_to_cpu(udev->descriptor.idProduct) != (u16)product)
return -ENODEV;
dev_info(&intf->dev, "matched module params, "
"vend=0x%04x prod=0x%04x\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
}
#endif
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
info = (struct usbtest_info *) id->driver_info;
dev->info = info;
mutex_init(&dev->lock);
dev->intf = intf;
/* cacheline-aligned scratch for i/o */
dev->buf = kmalloc(TBUF_SIZE, GFP_KERNEL);
if (dev->buf == NULL) {
kfree(dev);
return -ENOMEM;
}
/* NOTE this doesn't yet test the handful of difference that are
* visible with high speed interrupts: bigger maxpacket (1K) and
* "high bandwidth" modes (up to 3 packets/uframe).
*/
rtest = wtest = "";
irtest = iwtest = "";
intrtest = intwtest = "";
if (force_interrupt || udev->speed == USB_SPEED_LOW) {
if (info->ep_in) {
dev->in_pipe = usb_rcvintpipe(udev, info->ep_in);
rtest = " intr-in";
}
if (info->ep_out) {
dev->out_pipe = usb_sndintpipe(udev, info->ep_out);
wtest = " intr-out";
}
} else {
if (override_alt >= 0 || info->autoconf) {
int status;
status = get_endpoints(dev, intf);
if (status < 0) {
WARNING(dev, "couldn't get endpoints, %d\n",
status);
kfree(dev->buf);
kfree(dev);
return status;
}
/* may find bulk or ISO pipes */
} else {
if (info->ep_in)
dev->in_pipe = usb_rcvbulkpipe(udev,
info->ep_in);
if (info->ep_out)
dev->out_pipe = usb_sndbulkpipe(udev,
info->ep_out);
}
if (dev->in_pipe)
rtest = " bulk-in";
if (dev->out_pipe)
wtest = " bulk-out";
if (dev->in_iso_pipe)
irtest = " iso-in";
if (dev->out_iso_pipe)
iwtest = " iso-out";
if (dev->in_int_pipe)
intrtest = " int-in";
if (dev->out_int_pipe)
intwtest = " int-out";
}
usb_set_intfdata(intf, dev);
dev_info(&intf->dev, "%s\n", info->name);
dev_info(&intf->dev, "%s {control%s%s%s%s%s%s%s} tests%s\n",
usb_speed_string(udev->speed),
info->ctrl_out ? " in/out" : "",
rtest, wtest,
irtest, iwtest,
intrtest, intwtest,
info->alt >= 0 ? " (+alt)" : "");
return 0;
}
static int usbtest_suspend(struct usb_interface *intf, pm_message_t message)
{
return 0;
}
static int usbtest_resume(struct usb_interface *intf)
{
return 0;
}
static void usbtest_disconnect(struct usb_interface *intf)
{
struct usbtest_dev *dev = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
dev_dbg(&intf->dev, "disconnect\n");
kfree(dev->buf);
kfree(dev);
}
/* Basic testing only needs a device that can source or sink bulk traffic.
* Any device can test control transfers (default with GENERIC binding).
*
* Several entries work with the default EP0 implementation that's built
* into EZ-USB chips. There's a default vendor ID which can be overridden
* by (very) small config EEPROMS, but otherwise all these devices act
* identically until firmware is loaded: only EP0 works. It turns out
* to be easy to make other endpoints work, without modifying that EP0
* behavior. For now, we expect that kind of firmware.
*/
/* an21xx or fx versions of ez-usb */
static struct usbtest_info ez1_info = {
.name = "EZ-USB device",
.ep_in = 2,
.ep_out = 2,
.alt = 1,
};
/* fx2 version of ez-usb */
static struct usbtest_info ez2_info = {
.name = "FX2 device",
.ep_in = 6,
.ep_out = 2,
.alt = 1,
};
/* ezusb family device with dedicated usb test firmware,
*/
static struct usbtest_info fw_info = {
.name = "usb test device",
.ep_in = 2,
.ep_out = 2,
.alt = 1,
.autoconf = 1, /* iso and ctrl_out need autoconf */
.ctrl_out = 1,
.iso = 1, /* iso_ep's are #8 in/out */
};
/* peripheral running Linux and 'zero.c' test firmware, or
* its user-mode cousin. different versions of this use
* different hardware with the same vendor/product codes.
* host side MUST rely on the endpoint descriptors.
*/
static struct usbtest_info gz_info = {
.name = "Linux gadget zero",
.autoconf = 1,
.ctrl_out = 1,
.iso = 1,
.intr = 1,
.alt = 0,
};
static struct usbtest_info um_info = {
.name = "Linux user mode test driver",
.autoconf = 1,
.alt = -1,
};
static struct usbtest_info um2_info = {
.name = "Linux user mode ISO test driver",
.autoconf = 1,
.iso = 1,
.alt = -1,
};
#ifdef IBOT2
/* this is a nice source of high speed bulk data;
* uses an FX2, with firmware provided in the device
*/
static struct usbtest_info ibot2_info = {
.name = "iBOT2 webcam",
.ep_in = 2,
.alt = -1,
};
#endif
#ifdef GENERIC
/* we can use any device to test control traffic */
static struct usbtest_info generic_info = {
.name = "Generic USB device",
.alt = -1,
};
#endif
static const struct usb_device_id id_table[] = {
/*-------------------------------------------------------------*/
/* EZ-USB devices which download firmware to replace (or in our
* case augment) the default device implementation.
*/
/* generic EZ-USB FX controller */
{ USB_DEVICE(0x0547, 0x2235),
.driver_info = (unsigned long) &ez1_info,
},
/* CY3671 development board with EZ-USB FX */
{ USB_DEVICE(0x0547, 0x0080),
.driver_info = (unsigned long) &ez1_info,
},
/* generic EZ-USB FX2 controller (or development board) */
{ USB_DEVICE(0x04b4, 0x8613),
.driver_info = (unsigned long) &ez2_info,
},
/* re-enumerated usb test device firmware */
{ USB_DEVICE(0xfff0, 0xfff0),
.driver_info = (unsigned long) &fw_info,
},
/* "Gadget Zero" firmware runs under Linux */
{ USB_DEVICE(0x0525, 0xa4a0),
.driver_info = (unsigned long) &gz_info,
},
/* so does a user-mode variant */
{ USB_DEVICE(0x0525, 0xa4a4),
.driver_info = (unsigned long) &um_info,
},
/* ... and a user-mode variant that talks iso */
{ USB_DEVICE(0x0525, 0xa4a3),
.driver_info = (unsigned long) &um2_info,
},
#ifdef KEYSPAN_19Qi
/* Keyspan 19qi uses an21xx (original EZ-USB) */
/* this does not coexist with the real Keyspan 19qi driver! */
{ USB_DEVICE(0x06cd, 0x010b),
.driver_info = (unsigned long) &ez1_info,
},
#endif
/*-------------------------------------------------------------*/
#ifdef IBOT2
/* iBOT2 makes a nice source of high speed bulk-in data */
/* this does not coexist with a real iBOT2 driver! */
{ USB_DEVICE(0x0b62, 0x0059),
.driver_info = (unsigned long) &ibot2_info,
},
#endif
/*-------------------------------------------------------------*/
#ifdef GENERIC
/* module params can specify devices to use for control tests */
{ .driver_info = (unsigned long) &generic_info, },
#endif
/*-------------------------------------------------------------*/
{ }
};
MODULE_DEVICE_TABLE(usb, id_table);
static struct usb_driver usbtest_driver = {
.name = "usbtest",
.id_table = id_table,
.probe = usbtest_probe,
.unlocked_ioctl = usbtest_ioctl,
.disconnect = usbtest_disconnect,
.suspend = usbtest_suspend,
.resume = usbtest_resume,
};
/*-------------------------------------------------------------------------*/
static int __init usbtest_init(void)
{
#ifdef GENERIC
if (vendor)
pr_debug("params: vend=0x%04x prod=0x%04x\n", vendor, product);
#endif
return usb_register(&usbtest_driver);
}
module_init(usbtest_init);
static void __exit usbtest_exit(void)
{
usb_deregister(&usbtest_driver);
}
module_exit(usbtest_exit);
MODULE_DESCRIPTION("USB Core/HCD Testing Driver");
MODULE_LICENSE("GPL");