linuxdebug/drivers/usb/dwc2/core.h

1527 lines
62 KiB
C

/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
/*
* core.h - DesignWare HS OTG Controller common declarations
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*/
#ifndef __DWC2_CORE_H__
#define __DWC2_CORE_H__
#include <linux/acpi.h>
#include <linux/phy/phy.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#include <linux/usb/phy.h>
#include "hw.h"
/*
* Suggested defines for tracers:
* - no_printk: Disable tracing
* - pr_info: Print this info to the console
* - trace_printk: Print this info to trace buffer (good for verbose logging)
*/
#define DWC2_TRACE_SCHEDULER no_printk
#define DWC2_TRACE_SCHEDULER_VB no_printk
/* Detailed scheduler tracing, but won't overwhelm console */
#define dwc2_sch_dbg(hsotg, fmt, ...) \
DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
dev_name(hsotg->dev), ##__VA_ARGS__)
/* Verbose scheduler tracing */
#define dwc2_sch_vdbg(hsotg, fmt, ...) \
DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
dev_name(hsotg->dev), ##__VA_ARGS__)
/* Maximum number of Endpoints/HostChannels */
#define MAX_EPS_CHANNELS 16
/* dwc2-hsotg declarations */
static const char * const dwc2_hsotg_supply_names[] = {
"vusb_d", /* digital USB supply, 1.2V */
"vusb_a", /* analog USB supply, 1.1V */
};
#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
/*
* EP0_MPS_LIMIT
*
* Unfortunately there seems to be a limit of the amount of data that can
* be transferred by IN transactions on EP0. This is either 127 bytes or 3
* packets (which practically means 1 packet and 63 bytes of data) when the
* MPS is set to 64.
*
* This means if we are wanting to move >127 bytes of data, we need to
* split the transactions up, but just doing one packet at a time does
* not work (this may be an implicit DATA0 PID on first packet of the
* transaction) and doing 2 packets is outside the controller's limits.
*
* If we try to lower the MPS size for EP0, then no transfers work properly
* for EP0, and the system will fail basic enumeration. As no cause for this
* has currently been found, we cannot support any large IN transfers for
* EP0.
*/
#define EP0_MPS_LIMIT 64
struct dwc2_hsotg;
struct dwc2_hsotg_req;
/**
* struct dwc2_hsotg_ep - driver endpoint definition.
* @ep: The gadget layer representation of the endpoint.
* @name: The driver generated name for the endpoint.
* @queue: Queue of requests for this endpoint.
* @parent: Reference back to the parent device structure.
* @req: The current request that the endpoint is processing. This is
* used to indicate an request has been loaded onto the endpoint
* and has yet to be completed (maybe due to data move, or simply
* awaiting an ack from the core all the data has been completed).
* @debugfs: File entry for debugfs file for this endpoint.
* @dir_in: Set to true if this endpoint is of the IN direction, which
* means that it is sending data to the Host.
* @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
* @index: The index for the endpoint registers.
* @mc: Multi Count - number of transactions per microframe
* @interval: Interval for periodic endpoints, in frames or microframes.
* @name: The name array passed to the USB core.
* @halted: Set if the endpoint has been halted.
* @periodic: Set if this is a periodic ep, such as Interrupt
* @isochronous: Set if this is a isochronous ep
* @send_zlp: Set if we need to send a zero-length packet.
* @wedged: Set if ep is wedged.
* @desc_list_dma: The DMA address of descriptor chain currently in use.
* @desc_list: Pointer to descriptor DMA chain head currently in use.
* @desc_count: Count of entries within the DMA descriptor chain of EP.
* @next_desc: index of next free descriptor in the ISOC chain under SW control.
* @compl_desc: index of next descriptor to be completed by xFerComplete
* @total_data: The total number of data bytes done.
* @fifo_size: The size of the FIFO (for periodic IN endpoints)
* @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
* @fifo_load: The amount of data loaded into the FIFO (periodic IN)
* @last_load: The offset of data for the last start of request.
* @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
* @target_frame: Targeted frame num to setup next ISOC transfer
* @frame_overrun: Indicates SOF number overrun in DSTS
*
* This is the driver's state for each registered endpoint, allowing it
* to keep track of transactions that need doing. Each endpoint has a
* lock to protect the state, to try and avoid using an overall lock
* for the host controller as much as possible.
*
* For periodic IN endpoints, we have fifo_size and fifo_load to try
* and keep track of the amount of data in the periodic FIFO for each
* of these as we don't have a status register that tells us how much
* is in each of them. (note, this may actually be useless information
* as in shared-fifo mode periodic in acts like a single-frame packet
* buffer than a fifo)
*/
struct dwc2_hsotg_ep {
struct usb_ep ep;
struct list_head queue;
struct dwc2_hsotg *parent;
struct dwc2_hsotg_req *req;
struct dentry *debugfs;
unsigned long total_data;
unsigned int size_loaded;
unsigned int last_load;
unsigned int fifo_load;
unsigned short fifo_size;
unsigned short fifo_index;
unsigned char dir_in;
unsigned char map_dir;
unsigned char index;
unsigned char mc;
u16 interval;
unsigned int halted:1;
unsigned int periodic:1;
unsigned int isochronous:1;
unsigned int send_zlp:1;
unsigned int wedged:1;
unsigned int target_frame;
#define TARGET_FRAME_INITIAL 0xFFFFFFFF
bool frame_overrun;
dma_addr_t desc_list_dma;
struct dwc2_dma_desc *desc_list;
u8 desc_count;
unsigned int next_desc;
unsigned int compl_desc;
char name[10];
};
/**
* struct dwc2_hsotg_req - data transfer request
* @req: The USB gadget request
* @queue: The list of requests for the endpoint this is queued for.
* @saved_req_buf: variable to save req.buf when bounce buffers are used.
*/
struct dwc2_hsotg_req {
struct usb_request req;
struct list_head queue;
void *saved_req_buf;
};
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
#define call_gadget(_hs, _entry) \
do { \
if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
(_hs)->driver && (_hs)->driver->_entry) { \
spin_unlock(&_hs->lock); \
(_hs)->driver->_entry(&(_hs)->gadget); \
spin_lock(&_hs->lock); \
} \
} while (0)
#else
#define call_gadget(_hs, _entry) do {} while (0)
#endif
struct dwc2_hsotg;
struct dwc2_host_chan;
/* Device States */
enum dwc2_lx_state {
DWC2_L0, /* On state */
DWC2_L1, /* LPM sleep state */
DWC2_L2, /* USB suspend state */
DWC2_L3, /* Off state */
};
/* Gadget ep0 states */
enum dwc2_ep0_state {
DWC2_EP0_SETUP,
DWC2_EP0_DATA_IN,
DWC2_EP0_DATA_OUT,
DWC2_EP0_STATUS_IN,
DWC2_EP0_STATUS_OUT,
};
/**
* struct dwc2_core_params - Parameters for configuring the core
*
* @otg_caps: Specifies the OTG capabilities. OTG caps from the platform parameters,
* used to setup the:
* - HNP and SRP capable
* - SRP Only capable
* - No HNP/SRP capable (always available)
* Defaults to best available option
* - OTG revision number the device is compliant with, in binary-coded
* decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps)
* @host_dma: Specifies whether to use slave or DMA mode for accessing
* the data FIFOs. The driver will automatically detect the
* value for this parameter if none is specified.
* 0 - Slave (always available)
* 1 - DMA (default, if available)
* @dma_desc_enable: When DMA mode is enabled, specifies whether to use
* address DMA mode or descriptor DMA mode for accessing
* the data FIFOs. The driver will automatically detect the
* value for this if none is specified.
* 0 - Address DMA
* 1 - Descriptor DMA (default, if available)
* @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
* address DMA mode or descriptor DMA mode for accessing
* the data FIFOs in Full Speed mode only. The driver
* will automatically detect the value for this if none is
* specified.
* 0 - Address DMA
* 1 - Descriptor DMA in FS (default, if available)
* @speed: Specifies the maximum speed of operation in host and
* device mode. The actual speed depends on the speed of
* the attached device and the value of phy_type.
* 0 - High Speed
* (default when phy_type is UTMI+ or ULPI)
* 1 - Full Speed
* (default when phy_type is Full Speed)
* @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
* 1 - Allow dynamic FIFO sizing (default, if available)
* @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
* are enabled for non-periodic IN endpoints in device
* mode.
* @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
* dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
* in host mode when dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
* host mode when dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @max_transfer_size: The maximum transfer size supported, in bytes
* 2047 to 65,535
* Actual maximum value is autodetected and also
* the default.
* @max_packet_count: The maximum number of packets in a transfer
* 15 to 511
* Actual maximum value is autodetected and also
* the default.
* @host_channels: The number of host channel registers to use
* 1 to 16
* Actual maximum value is autodetected and also
* the default.
* @phy_type: Specifies the type of PHY interface to use. By default,
* the driver will automatically detect the phy_type.
* 0 - Full Speed Phy
* 1 - UTMI+ Phy
* 2 - ULPI Phy
* Defaults to best available option (2, 1, then 0)
* @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
* is applicable for a phy_type of UTMI+ or ULPI. (For a
* ULPI phy_type, this parameter indicates the data width
* between the MAC and the ULPI Wrapper.) Also, this
* parameter is applicable only if the OTG_HSPHY_WIDTH cC
* parameter was set to "8 and 16 bits", meaning that the
* core has been configured to work at either data path
* width.
* 8 or 16 (default 16 if available)
* @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
* data rate. This parameter is only applicable if phy_type
* is ULPI.
* 0 - single data rate ULPI interface with 8 bit wide
* data bus (default)
* 1 - double data rate ULPI interface with 4 bit wide
* data bus
* @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
* external supply to drive the VBus
* 0 - Internal supply (default)
* 1 - External supply
* @i2c_enable: Specifies whether to use the I2Cinterface for a full
* speed PHY. This parameter is only applicable if phy_type
* is FS.
* 0 - No (default)
* 1 - Yes
* @ipg_isoc_en: Indicates the IPG supports is enabled or disabled.
* 0 - Disable (default)
* 1 - Enable
* @acg_enable: For enabling Active Clock Gating in the controller
* 0 - No
* 1 - Yes
* @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
* 0 - No (default)
* 1 - Yes
* @host_support_fs_ls_low_power: Specifies whether low power mode is supported
* when attached to a Full Speed or Low Speed device in
* host mode.
* 0 - Don't support low power mode (default)
* 1 - Support low power mode
* @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
* when connected to a Low Speed device in host
* mode. This parameter is applicable only if
* host_support_fs_ls_low_power is enabled.
* 0 - 48 MHz
* (default when phy_type is UTMI+ or ULPI)
* 1 - 6 MHz
* (default when phy_type is Full Speed)
* @oc_disable: Flag to disable overcurrent condition.
* 0 - Allow overcurrent condition to get detected
* 1 - Disable overcurrent condtion to get detected
* @ts_dline: Enable Term Select Dline pulsing
* 0 - No (default)
* 1 - Yes
* @reload_ctl: Allow dynamic reloading of HFIR register during runtime
* 0 - No (default for core < 2.92a)
* 1 - Yes (default for core >= 2.92a)
* @ahbcfg: This field allows the default value of the GAHBCFG
* register to be overridden
* -1 - GAHBCFG value will be set to 0x06
* (INCR, default)
* all others - GAHBCFG value will be overridden with
* this value
* Not all bits can be controlled like this, the
* bits defined by GAHBCFG_CTRL_MASK are controlled
* by the driver and are ignored in this
* configuration value.
* @uframe_sched: True to enable the microframe scheduler
* @external_id_pin_ctl: Specifies whether ID pin is handled externally.
* Disable CONIDSTSCHNG controller interrupt in such
* case.
* 0 - No (default)
* 1 - Yes
* @power_down: Specifies whether the controller support power_down.
* If power_down is enabled, the controller will enter
* power_down in both peripheral and host mode when
* needed.
* 0 - No (default)
* 1 - Partial power down
* 2 - Hibernation
* @no_clock_gating: Specifies whether to avoid clock gating feature.
* 0 - No (use clock gating)
* 1 - Yes (avoid it)
* @lpm: Enable LPM support.
* 0 - No
* 1 - Yes
* @lpm_clock_gating: Enable core PHY clock gating.
* 0 - No
* 1 - Yes
* @besl: Enable LPM Errata support.
* 0 - No
* 1 - Yes
* @hird_threshold_en: HIRD or HIRD Threshold enable.
* 0 - No
* 1 - Yes
* @hird_threshold: Value of BESL or HIRD Threshold.
* @ref_clk_per: Indicates in terms of pico seconds the period
* of ref_clk.
* 62500 - 16MHz
* 58823 - 17MHz
* 52083 - 19.2MHz
* 50000 - 20MHz
* 41666 - 24MHz
* 33333 - 30MHz (default)
* 25000 - 40MHz
* @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
* the controller should generate an interrupt if the
* device had been in L1 state until that period.
* This is used by SW to initiate Remote WakeUp in the
* controller so as to sync to the uF number from the host.
* @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
* register.
* 0 - Deactivate the transceiver (default)
* 1 - Activate the transceiver
* @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
* detection using GGPIO register.
* 0 - Deactivate the external level detection (default)
* 1 - Activate the external level detection
* @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent
* detection.
* 0 - Deactivate the overcurrent detection
* 1 - Activate the overcurrent detection (default)
* @g_dma: Enables gadget dma usage (default: autodetect).
* @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
* @g_rx_fifo_size: The periodic rx fifo size for the device, in
* DWORDS from 16-32768 (default: 2048 if
* possible, otherwise autodetect).
* @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
* DWORDS from 16-32768 (default: 1024 if
* possible, otherwise autodetect).
* @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
* mode. Each value corresponds to one EP
* starting from EP1 (max 15 values). Sizes are
* in DWORDS with possible values from
* 16-32768 (default: 256, 256, 256, 256, 768,
* 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
* @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
* while full&low speed device connect. And change speed
* back to DWC2_SPEED_PARAM_HIGH while device is gone.
* 0 - No (default)
* 1 - Yes
* @service_interval: Enable service interval based scheduling.
* 0 - No
* 1 - Yes
*
* The following parameters may be specified when starting the module. These
* parameters define how the DWC_otg controller should be configured. A
* value of -1 (or any other out of range value) for any parameter means
* to read the value from hardware (if possible) or use the builtin
* default described above.
*/
struct dwc2_core_params {
struct usb_otg_caps otg_caps;
u8 phy_type;
#define DWC2_PHY_TYPE_PARAM_FS 0
#define DWC2_PHY_TYPE_PARAM_UTMI 1
#define DWC2_PHY_TYPE_PARAM_ULPI 2
u8 speed;
#define DWC2_SPEED_PARAM_HIGH 0
#define DWC2_SPEED_PARAM_FULL 1
#define DWC2_SPEED_PARAM_LOW 2
u8 phy_utmi_width;
bool phy_ulpi_ddr;
bool phy_ulpi_ext_vbus;
bool enable_dynamic_fifo;
bool en_multiple_tx_fifo;
bool i2c_enable;
bool acg_enable;
bool ulpi_fs_ls;
bool ts_dline;
bool reload_ctl;
bool uframe_sched;
bool external_id_pin_ctl;
int power_down;
#define DWC2_POWER_DOWN_PARAM_NONE 0
#define DWC2_POWER_DOWN_PARAM_PARTIAL 1
#define DWC2_POWER_DOWN_PARAM_HIBERNATION 2
bool no_clock_gating;
bool lpm;
bool lpm_clock_gating;
bool besl;
bool hird_threshold_en;
bool service_interval;
u8 hird_threshold;
bool activate_stm_fs_transceiver;
bool activate_stm_id_vb_detection;
bool activate_ingenic_overcurrent_detection;
bool ipg_isoc_en;
u16 max_packet_count;
u32 max_transfer_size;
u32 ahbcfg;
/* GREFCLK parameters */
u32 ref_clk_per;
u16 sof_cnt_wkup_alert;
/* Host parameters */
bool host_dma;
bool dma_desc_enable;
bool dma_desc_fs_enable;
bool host_support_fs_ls_low_power;
bool host_ls_low_power_phy_clk;
bool oc_disable;
u8 host_channels;
u16 host_rx_fifo_size;
u16 host_nperio_tx_fifo_size;
u16 host_perio_tx_fifo_size;
/* Gadget parameters */
bool g_dma;
bool g_dma_desc;
u32 g_rx_fifo_size;
u32 g_np_tx_fifo_size;
u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
bool change_speed_quirk;
};
/**
* struct dwc2_hw_params - Autodetected parameters.
*
* These parameters are the various parameters read from hardware
* registers during initialization. They typically contain the best
* supported or maximum value that can be configured in the
* corresponding dwc2_core_params value.
*
* The values that are not in dwc2_core_params are documented below.
*
* @op_mode: Mode of Operation
* 0 - HNP- and SRP-Capable OTG (Host & Device)
* 1 - SRP-Capable OTG (Host & Device)
* 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
* 3 - SRP-Capable Device
* 4 - Non-OTG Device
* 5 - SRP-Capable Host
* 6 - Non-OTG Host
* @arch: Architecture
* 0 - Slave only
* 1 - External DMA
* 2 - Internal DMA
* @ipg_isoc_en: This feature indicates that the controller supports
* the worst-case scenario of Rx followed by Rx
* Interpacket Gap (IPG) (32 bitTimes) as per the utmi
* specification for any token following ISOC OUT token.
* 0 - Don't support
* 1 - Support
* @power_optimized: Are power optimizations enabled?
* @num_dev_ep: Number of device endpoints available
* @num_dev_in_eps: Number of device IN endpoints available
* @num_dev_perio_in_ep: Number of device periodic IN endpoints
* available
* @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue
* Depth
* 0 to 30
* @host_perio_tx_q_depth:
* Host Mode Periodic Request Queue Depth
* 2, 4 or 8
* @nperio_tx_q_depth:
* Non-Periodic Request Queue Depth
* 2, 4 or 8
* @hs_phy_type: High-speed PHY interface type
* 0 - High-speed interface not supported
* 1 - UTMI+
* 2 - ULPI
* 3 - UTMI+ and ULPI
* @fs_phy_type: Full-speed PHY interface type
* 0 - Full speed interface not supported
* 1 - Dedicated full speed interface
* 2 - FS pins shared with UTMI+ pins
* 3 - FS pins shared with ULPI pins
* @total_fifo_size: Total internal RAM for FIFOs (bytes)
* @hibernation: Is hibernation enabled?
* @utmi_phy_data_width: UTMI+ PHY data width
* 0 - 8 bits
* 1 - 16 bits
* 2 - 8 or 16 bits
* @snpsid: Value from SNPSID register
* @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
* @g_tx_fifo_size: Power-on values of TxFIFO sizes
* @dma_desc_enable: When DMA mode is enabled, specifies whether to use
* address DMA mode or descriptor DMA mode for accessing
* the data FIFOs. The driver will automatically detect the
* value for this if none is specified.
* 0 - Address DMA
* 1 - Descriptor DMA (default, if available)
* @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
* 1 - Allow dynamic FIFO sizing (default, if available)
* @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
* are enabled for non-periodic IN endpoints in device
* mode.
* @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
* in host mode when dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
* host mode when dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @max_transfer_size: The maximum transfer size supported, in bytes
* 2047 to 65,535
* Actual maximum value is autodetected and also
* the default.
* @max_packet_count: The maximum number of packets in a transfer
* 15 to 511
* Actual maximum value is autodetected and also
* the default.
* @host_channels: The number of host channel registers to use
* 1 to 16
* Actual maximum value is autodetected and also
* the default.
* @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
* in device mode when dynamic FIFO sizing is enabled
* 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @i2c_enable: Specifies whether to use the I2Cinterface for a full
* speed PHY. This parameter is only applicable if phy_type
* is FS.
* 0 - No (default)
* 1 - Yes
* @acg_enable: For enabling Active Clock Gating in the controller
* 0 - Disable
* 1 - Enable
* @lpm_mode: For enabling Link Power Management in the controller
* 0 - Disable
* 1 - Enable
* @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic
* FIFO sizing is enabled 16 to 32768
* Actual maximum value is autodetected and also
* the default.
* @service_interval_mode: For enabling service interval based scheduling in the
* controller.
* 0 - Disable
* 1 - Enable
*/
struct dwc2_hw_params {
unsigned op_mode:3;
unsigned arch:2;
unsigned dma_desc_enable:1;
unsigned enable_dynamic_fifo:1;
unsigned en_multiple_tx_fifo:1;
unsigned rx_fifo_size:16;
unsigned host_nperio_tx_fifo_size:16;
unsigned dev_nperio_tx_fifo_size:16;
unsigned host_perio_tx_fifo_size:16;
unsigned nperio_tx_q_depth:3;
unsigned host_perio_tx_q_depth:3;
unsigned dev_token_q_depth:5;
unsigned max_transfer_size:26;
unsigned max_packet_count:11;
unsigned host_channels:5;
unsigned hs_phy_type:2;
unsigned fs_phy_type:2;
unsigned i2c_enable:1;
unsigned acg_enable:1;
unsigned num_dev_ep:4;
unsigned num_dev_in_eps : 4;
unsigned num_dev_perio_in_ep:4;
unsigned total_fifo_size:16;
unsigned power_optimized:1;
unsigned hibernation:1;
unsigned utmi_phy_data_width:2;
unsigned lpm_mode:1;
unsigned ipg_isoc_en:1;
unsigned service_interval_mode:1;
u32 snpsid;
u32 dev_ep_dirs;
u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
};
/* Size of control and EP0 buffers */
#define DWC2_CTRL_BUFF_SIZE 8
/**
* struct dwc2_gregs_backup - Holds global registers state before
* entering partial power down
* @gotgctl: Backup of GOTGCTL register
* @gintmsk: Backup of GINTMSK register
* @gahbcfg: Backup of GAHBCFG register
* @gusbcfg: Backup of GUSBCFG register
* @grxfsiz: Backup of GRXFSIZ register
* @gnptxfsiz: Backup of GNPTXFSIZ register
* @gi2cctl: Backup of GI2CCTL register
* @glpmcfg: Backup of GLPMCFG register
* @gdfifocfg: Backup of GDFIFOCFG register
* @pcgcctl: Backup of PCGCCTL register
* @pcgcctl1: Backup of PCGCCTL1 register
* @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
* @gpwrdn: Backup of GPWRDN register
* @valid: True if registers values backuped.
*/
struct dwc2_gregs_backup {
u32 gotgctl;
u32 gintmsk;
u32 gahbcfg;
u32 gusbcfg;
u32 grxfsiz;
u32 gnptxfsiz;
u32 gi2cctl;
u32 glpmcfg;
u32 pcgcctl;
u32 pcgcctl1;
u32 gdfifocfg;
u32 gpwrdn;
bool valid;
};
/**
* struct dwc2_dregs_backup - Holds device registers state before
* entering partial power down
* @dcfg: Backup of DCFG register
* @dctl: Backup of DCTL register
* @daintmsk: Backup of DAINTMSK register
* @diepmsk: Backup of DIEPMSK register
* @doepmsk: Backup of DOEPMSK register
* @diepctl: Backup of DIEPCTL register
* @dieptsiz: Backup of DIEPTSIZ register
* @diepdma: Backup of DIEPDMA register
* @doepctl: Backup of DOEPCTL register
* @doeptsiz: Backup of DOEPTSIZ register
* @doepdma: Backup of DOEPDMA register
* @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
* @valid: True if registers values backuped.
*/
struct dwc2_dregs_backup {
u32 dcfg;
u32 dctl;
u32 daintmsk;
u32 diepmsk;
u32 doepmsk;
u32 diepctl[MAX_EPS_CHANNELS];
u32 dieptsiz[MAX_EPS_CHANNELS];
u32 diepdma[MAX_EPS_CHANNELS];
u32 doepctl[MAX_EPS_CHANNELS];
u32 doeptsiz[MAX_EPS_CHANNELS];
u32 doepdma[MAX_EPS_CHANNELS];
u32 dtxfsiz[MAX_EPS_CHANNELS];
bool valid;
};
/**
* struct dwc2_hregs_backup - Holds host registers state before
* entering partial power down
* @hcfg: Backup of HCFG register
* @haintmsk: Backup of HAINTMSK register
* @hcintmsk: Backup of HCINTMSK register
* @hprt0: Backup of HPTR0 register
* @hfir: Backup of HFIR register
* @hptxfsiz: Backup of HPTXFSIZ register
* @valid: True if registers values backuped.
*/
struct dwc2_hregs_backup {
u32 hcfg;
u32 haintmsk;
u32 hcintmsk[MAX_EPS_CHANNELS];
u32 hprt0;
u32 hfir;
u32 hptxfsiz;
bool valid;
};
/*
* Constants related to high speed periodic scheduling
*
* We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
* reservation point of view it's assumed that the schedule goes right back to
* the beginning after the end of the schedule.
*
* What does that mean for scheduling things with a long interval? It means
* we'll reserve time for them in every possible microframe that they could
* ever be scheduled in. ...but we'll still only actually schedule them as
* often as they were requested.
*
* We keep our schedule in a "bitmap" structure. This simplifies having
* to keep track of and merge intervals: we just let the bitmap code do most
* of the heavy lifting. In a way scheduling is much like memory allocation.
*
* We schedule 100us per uframe or 80% of 125us (the maximum amount you're
* supposed to schedule for periodic transfers). That's according to spec.
*
* Note that though we only schedule 80% of each microframe, the bitmap that we
* keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
* space for each uFrame).
*
* Requirements:
* - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
* - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
* could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
* be bugs). The 8 comes from the USB spec: number of microframes per frame.
*/
#define DWC2_US_PER_UFRAME 125
#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
#define DWC2_HS_SCHEDULE_UFRAMES 8
#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
DWC2_HS_PERIODIC_US_PER_UFRAME)
/*
* Constants related to low speed scheduling
*
* For high speed we schedule every 1us. For low speed that's a bit overkill,
* so we make up a unit called a "slice" that's worth 25us. There are 40
* slices in a full frame and we can schedule 36 of those (90%) for periodic
* transfers.
*
* Our low speed schedule can be as short as 1 frame or could be longer. When
* we only schedule 1 frame it means that we'll need to reserve a time every
* frame even for things that only transfer very rarely, so something that runs
* every 2048 frames will get time reserved in every frame. Our low speed
* schedule can be longer and we'll be able to handle more overlap, but that
* will come at increased memory cost and increased time to schedule.
*
* Note: one other advantage of a short low speed schedule is that if we mess
* up and miss scheduling we can jump in and use any of the slots that we
* happened to reserve.
*
* With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
* the schedule. There will be one schedule per TT.
*
* Requirements:
* - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
*/
#define DWC2_US_PER_SLICE 25
#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
#define DWC2_ROUND_US_TO_SLICE(us) \
(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
DWC2_US_PER_SLICE)
#define DWC2_LS_PERIODIC_US_PER_FRAME \
900
#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
(DWC2_LS_PERIODIC_US_PER_FRAME / \
DWC2_US_PER_SLICE)
#define DWC2_LS_SCHEDULE_FRAMES 1
#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
DWC2_LS_PERIODIC_SLICES_PER_FRAME)
/**
* struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
* and periodic schedules
*
* These are common for both host and peripheral modes:
*
* @dev: The struct device pointer
* @regs: Pointer to controller regs
* @hw_params: Parameters that were autodetected from the
* hardware registers
* @params: Parameters that define how the core should be configured
* @op_state: The operational State, during transitions (a_host=>
* a_peripheral and b_device=>b_host) this may not match
* the core, but allows the software to determine
* transitions
* @dr_mode: Requested mode of operation, one of following:
* - USB_DR_MODE_PERIPHERAL
* - USB_DR_MODE_HOST
* - USB_DR_MODE_OTG
* @role_sw: usb_role_switch handle
* @role_sw_default_mode: default operation mode of controller while usb role
* is USB_ROLE_NONE
* @hcd_enabled: Host mode sub-driver initialization indicator.
* @gadget_enabled: Peripheral mode sub-driver initialization indicator.
* @ll_hw_enabled: Status of low-level hardware resources.
* @hibernated: True if core is hibernated
* @in_ppd: True if core is partial power down mode.
* @bus_suspended: True if bus is suspended
* @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a
* remote wakeup.
* @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
* @need_phy_for_wake: Quirk saying that we should keep the PHY on at
* suspend if we need USB to wake us up.
* @frame_number: Frame number read from the core. For both device
* and host modes. The value ranges are from 0
* to HFNUM_MAX_FRNUM.
* @phy: The otg phy transceiver structure for phy control.
* @uphy: The otg phy transceiver structure for old USB phy
* control.
* @plat: The platform specific configuration data. This can be
* removed once all SoCs support usb transceiver.
* @supplies: Definition of USB power supplies
* @vbus_supply: Regulator supplying vbus.
* @usb33d: Optional 3.3v regulator used on some stm32 devices to
* supply ID and VBUS detection hardware.
* @lock: Spinlock that protects all the driver data structures
* @priv: Stores a pointer to the struct usb_hcd
* @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
* transfer are in process of being queued
* @srp_success: Stores status of SRP request in the case of a FS PHY
* with an I2C interface
* @wq_otg: Workqueue object used for handling of some interrupts
* @wf_otg: Work object for handling Connector ID Status Change
* interrupt
* @wkp_timer: Timer object for handling Wakeup Detected interrupt
* @lx_state: Lx state of connected device
* @gr_backup: Backup of global registers during suspend
* @dr_backup: Backup of device registers during suspend
* @hr_backup: Backup of host registers during suspend
* @needs_byte_swap: Specifies whether the opposite endianness.
*
* These are for host mode:
*
* @flags: Flags for handling root port state changes
* @flags.d32: Contain all root port flags
* @flags.b: Separate root port flags from each other
* @flags.b.port_connect_status_change: True if root port connect status
* changed
* @flags.b.port_connect_status: True if device connected to root port
* @flags.b.port_reset_change: True if root port reset status changed
* @flags.b.port_enable_change: True if root port enable status changed
* @flags.b.port_suspend_change: True if root port suspend status changed
* @flags.b.port_over_current_change: True if root port over current state
* changed.
* @flags.b.port_l1_change: True if root port l1 status changed
* @flags.b.reserved: Reserved bits of root port register
* @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
* Transfers associated with these QHs are not currently
* assigned to a host channel.
* @non_periodic_sched_active: Active QHs in the non-periodic schedule.
* Transfers associated with these QHs are currently
* assigned to a host channel.
* @non_periodic_qh_ptr: Pointer to next QH to process in the active
* non-periodic schedule
* @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
* Transfers associated with these QHs are not currently
* assigned to a host channel.
* @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
* list of QHs for periodic transfers that are _not_
* scheduled for the next frame. Each QH in the list has an
* interval counter that determines when it needs to be
* scheduled for execution. This scheduling mechanism
* allows only a simple calculation for periodic bandwidth
* used (i.e. must assume that all periodic transfers may
* need to execute in the same frame). However, it greatly
* simplifies scheduling and should be sufficient for the
* vast majority of OTG hosts, which need to connect to a
* small number of peripherals at one time. Items move from
* this list to periodic_sched_ready when the QH interval
* counter is 0 at SOF.
* @periodic_sched_ready: List of periodic QHs that are ready for execution in
* the next frame, but have not yet been assigned to host
* channels. Items move from this list to
* periodic_sched_assigned as host channels become
* available during the current frame.
* @periodic_sched_assigned: List of periodic QHs to be executed in the next
* frame that are assigned to host channels. Items move
* from this list to periodic_sched_queued as the
* transactions for the QH are queued to the DWC_otg
* controller.
* @periodic_sched_queued: List of periodic QHs that have been queued for
* execution. Items move from this list to either
* periodic_sched_inactive or periodic_sched_ready when the
* channel associated with the transfer is released. If the
* interval for the QH is 1, the item moves to
* periodic_sched_ready because it must be rescheduled for
* the next frame. Otherwise, the item moves to
* periodic_sched_inactive.
* @split_order: List keeping track of channels doing splits, in order.
* @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
* This value is in microseconds per (micro)frame. The
* assumption is that all periodic transfers may occur in
* the same (micro)frame.
* @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
* host is in high speed mode; low speed schedules are
* stored elsewhere since we need one per TT.
* @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
* SOF enable/disable.
* @free_hc_list: Free host channels in the controller. This is a list of
* struct dwc2_host_chan items.
* @periodic_channels: Number of host channels assigned to periodic transfers.
* Currently assuming that there is a dedicated host
* channel for each periodic transaction and at least one
* host channel is available for non-periodic transactions.
* @non_periodic_channels: Number of host channels assigned to non-periodic
* transfers
* @available_host_channels: Number of host channels available for the
* microframe scheduler to use
* @hc_ptr_array: Array of pointers to the host channel descriptors.
* Allows accessing a host channel descriptor given the
* host channel number. This is useful in interrupt
* handlers.
* @status_buf: Buffer used for data received during the status phase of
* a control transfer.
* @status_buf_dma: DMA address for status_buf
* @start_work: Delayed work for handling host A-cable connection
* @reset_work: Delayed work for handling a port reset
* @phy_reset_work: Work structure for doing a PHY reset
* @otg_port: OTG port number
* @frame_list: Frame list
* @frame_list_dma: Frame list DMA address
* @frame_list_sz: Frame list size
* @desc_gen_cache: Kmem cache for generic descriptors
* @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
* @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf
*
* These are for peripheral mode:
*
* @driver: USB gadget driver
* @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
* @num_of_eps: Number of available EPs (excluding EP0)
* @debug_root: Root directrory for debugfs.
* @ep0_reply: Request used for ep0 reply.
* @ep0_buff: Buffer for EP0 reply data, if needed.
* @ctrl_buff: Buffer for EP0 control requests.
* @ctrl_req: Request for EP0 control packets.
* @ep0_state: EP0 control transfers state
* @delayed_status: true when gadget driver asks for delayed status
* @test_mode: USB test mode requested by the host
* @remote_wakeup_allowed: True if device is allowed to wake-up host by
* remote-wakeup signalling
* @setup_desc_dma: EP0 setup stage desc chain DMA address
* @setup_desc: EP0 setup stage desc chain pointer
* @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
* @ctrl_in_desc: EP0 IN data phase desc chain pointer
* @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
* @ctrl_out_desc: EP0 OUT data phase desc chain pointer
* @irq: Interrupt request line number
* @clk: Pointer to otg clock
* @reset: Pointer to dwc2 reset controller
* @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10.
* @regset: A pointer to a struct debugfs_regset32, which contains
* a pointer to an array of register definitions, the
* array size and the base address where the register bank
* is to be found.
* @last_frame_num: Number of last frame. Range from 0 to 32768
* @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
* defined, for missed SOFs tracking. Array holds that
* frame numbers, which not equal to last_frame_num +1
* @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
* defined, for missed SOFs tracking.
* If current_frame_number != last_frame_num+1
* then last_frame_num added to this array
* @frame_num_idx: Actual size of frame_num_array and last_frame_num_array
* @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed
* 0 - if missed SOFs frame numbers not dumbed
* @fifo_mem: Total internal RAM for FIFOs (bytes)
* @fifo_map: Each bit intend for concrete fifo. If that bit is set,
* then that fifo is used
* @gadget: Represents a usb gadget device
* @connected: Used in slave mode. True if device connected with host
* @eps_in: The IN endpoints being supplied to the gadget framework
* @eps_out: The OUT endpoints being supplied to the gadget framework
* @new_connection: Used in host mode. True if there are new connected
* device
* @enabled: Indicates the enabling state of controller
*
*/
struct dwc2_hsotg {
struct device *dev;
void __iomem *regs;
/** Params detected from hardware */
struct dwc2_hw_params hw_params;
/** Params to actually use */
struct dwc2_core_params params;
enum usb_otg_state op_state;
enum usb_dr_mode dr_mode;
struct usb_role_switch *role_sw;
enum usb_dr_mode role_sw_default_mode;
unsigned int hcd_enabled:1;
unsigned int gadget_enabled:1;
unsigned int ll_hw_enabled:1;
unsigned int hibernated:1;
unsigned int in_ppd:1;
bool bus_suspended;
unsigned int reset_phy_on_wake:1;
unsigned int need_phy_for_wake:1;
unsigned int phy_off_for_suspend:1;
u16 frame_number;
struct phy *phy;
struct usb_phy *uphy;
struct dwc2_hsotg_plat *plat;
struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
struct regulator *vbus_supply;
struct regulator *usb33d;
spinlock_t lock;
void *priv;
int irq;
struct clk *clk;
struct reset_control *reset;
struct reset_control *reset_ecc;
unsigned int queuing_high_bandwidth:1;
unsigned int srp_success:1;
struct workqueue_struct *wq_otg;
struct work_struct wf_otg;
struct timer_list wkp_timer;
enum dwc2_lx_state lx_state;
struct dwc2_gregs_backup gr_backup;
struct dwc2_dregs_backup dr_backup;
struct dwc2_hregs_backup hr_backup;
struct dentry *debug_root;
struct debugfs_regset32 *regset;
bool needs_byte_swap;
/* DWC OTG HW Release versions */
#define DWC2_CORE_REV_2_71a 0x4f54271a
#define DWC2_CORE_REV_2_72a 0x4f54272a
#define DWC2_CORE_REV_2_80a 0x4f54280a
#define DWC2_CORE_REV_2_90a 0x4f54290a
#define DWC2_CORE_REV_2_91a 0x4f54291a
#define DWC2_CORE_REV_2_92a 0x4f54292a
#define DWC2_CORE_REV_2_94a 0x4f54294a
#define DWC2_CORE_REV_3_00a 0x4f54300a
#define DWC2_CORE_REV_3_10a 0x4f54310a
#define DWC2_CORE_REV_4_00a 0x4f54400a
#define DWC2_CORE_REV_4_20a 0x4f54420a
#define DWC2_FS_IOT_REV_1_00a 0x5531100a
#define DWC2_HS_IOT_REV_1_00a 0x5532100a
#define DWC2_CORE_REV_MASK 0x0000ffff
/* DWC OTG HW Core ID */
#define DWC2_OTG_ID 0x4f540000
#define DWC2_FS_IOT_ID 0x55310000
#define DWC2_HS_IOT_ID 0x55320000
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
union dwc2_hcd_internal_flags {
u32 d32;
struct {
unsigned port_connect_status_change:1;
unsigned port_connect_status:1;
unsigned port_reset_change:1;
unsigned port_enable_change:1;
unsigned port_suspend_change:1;
unsigned port_over_current_change:1;
unsigned port_l1_change:1;
unsigned reserved:25;
} b;
} flags;
struct list_head non_periodic_sched_inactive;
struct list_head non_periodic_sched_waiting;
struct list_head non_periodic_sched_active;
struct list_head *non_periodic_qh_ptr;
struct list_head periodic_sched_inactive;
struct list_head periodic_sched_ready;
struct list_head periodic_sched_assigned;
struct list_head periodic_sched_queued;
struct list_head split_order;
u16 periodic_usecs;
DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US);
u16 periodic_qh_count;
bool new_connection;
u16 last_frame_num;
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
#define FRAME_NUM_ARRAY_SIZE 1000
u16 *frame_num_array;
u16 *last_frame_num_array;
int frame_num_idx;
int dumped_frame_num_array;
#endif
struct list_head free_hc_list;
int periodic_channels;
int non_periodic_channels;
int available_host_channels;
struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
u8 *status_buf;
dma_addr_t status_buf_dma;
#define DWC2_HCD_STATUS_BUF_SIZE 64
struct delayed_work start_work;
struct delayed_work reset_work;
struct work_struct phy_reset_work;
u8 otg_port;
u32 *frame_list;
dma_addr_t frame_list_dma;
u32 frame_list_sz;
struct kmem_cache *desc_gen_cache;
struct kmem_cache *desc_hsisoc_cache;
struct kmem_cache *unaligned_cache;
#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
/* Gadget structures */
struct usb_gadget_driver *driver;
int fifo_mem;
unsigned int dedicated_fifos:1;
unsigned char num_of_eps;
u32 fifo_map;
struct usb_request *ep0_reply;
struct usb_request *ctrl_req;
void *ep0_buff;
void *ctrl_buff;
enum dwc2_ep0_state ep0_state;
unsigned delayed_status : 1;
u8 test_mode;
dma_addr_t setup_desc_dma[2];
struct dwc2_dma_desc *setup_desc[2];
dma_addr_t ctrl_in_desc_dma;
struct dwc2_dma_desc *ctrl_in_desc;
dma_addr_t ctrl_out_desc_dma;
struct dwc2_dma_desc *ctrl_out_desc;
struct usb_gadget gadget;
unsigned int enabled:1;
unsigned int connected:1;
unsigned int remote_wakeup_allowed:1;
struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
};
/* Normal architectures just use readl/write */
static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
{
u32 val;
val = readl(hsotg->regs + offset);
if (hsotg->needs_byte_swap)
return swab32(val);
else
return val;
}
static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
{
if (hsotg->needs_byte_swap)
writel(swab32(value), hsotg->regs + offset);
else
writel(value, hsotg->regs + offset);
#ifdef DWC2_LOG_WRITES
pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
#endif
}
static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
void *buffer, unsigned int count)
{
if (count) {
u32 *buf = buffer;
do {
u32 x = dwc2_readl(hsotg, offset);
*buf++ = x;
} while (--count);
}
}
static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
const void *buffer, unsigned int count)
{
if (count) {
const u32 *buf = buffer;
do {
dwc2_writel(hsotg, *buf++, offset);
} while (--count);
}
}
/* Reasons for halting a host channel */
enum dwc2_halt_status {
DWC2_HC_XFER_NO_HALT_STATUS,
DWC2_HC_XFER_COMPLETE,
DWC2_HC_XFER_URB_COMPLETE,
DWC2_HC_XFER_ACK,
DWC2_HC_XFER_NAK,
DWC2_HC_XFER_NYET,
DWC2_HC_XFER_STALL,
DWC2_HC_XFER_XACT_ERR,
DWC2_HC_XFER_FRAME_OVERRUN,
DWC2_HC_XFER_BABBLE_ERR,
DWC2_HC_XFER_DATA_TOGGLE_ERR,
DWC2_HC_XFER_AHB_ERR,
DWC2_HC_XFER_PERIODIC_INCOMPLETE,
DWC2_HC_XFER_URB_DEQUEUE,
};
/* Core version information */
static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
{
return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
}
static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
{
return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
}
static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
{
return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
}
/*
* The following functions support initialization of the core driver component
* and the DWC_otg controller
*/
int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
bool restore);
int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
int reset, int is_host);
void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
/*
* Common core Functions.
* The following functions support managing the DWC_otg controller in either
* device or host mode.
*/
void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
int is_host);
int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
/* This function should be called on every hardware interrupt. */
irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
/* The device ID match table */
extern const struct of_device_id dwc2_of_match_table[];
extern const struct acpi_device_id dwc2_acpi_match[];
int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
/* Common polling functions */
int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
u32 timeout);
int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
u32 timeout);
/* Parameters */
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
int dwc2_init_params(struct dwc2_hsotg *hsotg);
/*
* The following functions check the controller's OTG operation mode
* capability (GHWCFG2.OTG_MODE).
*
* These functions can be used before the internal hsotg->hw_params
* are read in and cached so they always read directly from the
* GHWCFG2 register.
*/
unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
/*
* Returns the mode of operation, host or device
*/
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
{
return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
}
static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
{
return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
}
int dwc2_drd_init(struct dwc2_hsotg *hsotg);
void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
/*
* Dump core registers and SPRAM
*/
void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
/* Gadget defines */
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
bool reset);
void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
#define dwc2_is_device_connected(hsotg) (hsotg->connected)
#define dwc2_is_device_enabled(hsotg) (hsotg->enabled)
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
int rem_wakeup, int reset);
int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
bool restore);
void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
int rem_wakeup);
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
{ hsotg->fifo_map = 0; }
#else
static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
{ return 0; }
static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
bool reset) {}
static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
int testmode)
{ return 0; }
#define dwc2_is_device_connected(hsotg) (0)
#define dwc2_is_device_enabled(hsotg) (0)
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
int remote_wakeup)
{ return 0; }
static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
int rem_wakeup, int reset)
{ return 0; }
static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
bool restore)
{ return 0; }
static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
int rem_wakeup) {}
static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
#endif
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
int dwc2_port_resume(struct dwc2_hsotg *hsotg);
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
int rem_wakeup, int reset);
int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
int rem_wakeup, bool restore);
void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
{ schedule_work(&hsotg->phy_reset_work); }
#else
static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
int us)
{ return 0; }
static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
{ return 0; }
static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
{ return 0; }
static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
int rem_wakeup, int reset)
{ return 0; }
static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
{ return 0; }
static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
int rem_wakeup, bool restore)
{ return 0; }
static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
int rem_wakeup) {}
static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
{ return false; }
static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
#endif
#endif /* __DWC2_CORE_H__ */