linuxdebug/drivers/net/ethernet/sfc/falcon/rx.c

980 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*/
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/prefetch.h>
#include <linux/moduleparam.h>
#include <linux/iommu.h>
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
#include "filter.h"
#include "nic.h"
#include "selftest.h"
#include "workarounds.h"
/* Preferred number of descriptors to fill at once */
#define EF4_RX_PREFERRED_BATCH 8U
/* Number of RX buffers to recycle pages for. When creating the RX page recycle
* ring, this number is divided by the number of buffers per page to calculate
* the number of pages to store in the RX page recycle ring.
*/
#define EF4_RECYCLE_RING_SIZE_IOMMU 4096
#define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
/* Size of buffer allocated for skb header area. */
#define EF4_SKB_HEADERS 128u
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
static unsigned int rx_refill_threshold;
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
#define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
EF4_RX_USR_BUF_SIZE)
/*
* RX maximum head room required.
*
* This must be at least 1 to prevent overflow, plus one packet-worth
* to allow pipelined receives.
*/
#define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
{
return page_address(buf->page) + buf->page_offset;
}
static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
#else
const u8 *data = eh + efx->rx_packet_hash_offset;
return (u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24;
#endif
}
static inline struct ef4_rx_buffer *
ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
{
if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
return ef4_rx_buffer(rx_queue, 0);
else
return rx_buf + 1;
}
static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
struct ef4_rx_buffer *rx_buf,
unsigned int len)
{
dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
DMA_FROM_DEVICE);
}
void ef4_rx_config_page_split(struct ef4_nic *efx)
{
efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
EF4_RX_BUF_ALIGNMENT);
efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
efx->rx_page_buf_step);
efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
efx->rx_bufs_per_page;
efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
efx->rx_bufs_per_page);
}
/* Check the RX page recycle ring for a page that can be reused. */
static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
{
struct ef4_nic *efx = rx_queue->efx;
struct page *page;
struct ef4_rx_page_state *state;
unsigned index;
if (unlikely(!rx_queue->page_ring))
return NULL;
index = rx_queue->page_remove & rx_queue->page_ptr_mask;
page = rx_queue->page_ring[index];
if (page == NULL)
return NULL;
rx_queue->page_ring[index] = NULL;
/* page_remove cannot exceed page_add. */
if (rx_queue->page_remove != rx_queue->page_add)
++rx_queue->page_remove;
/* If page_count is 1 then we hold the only reference to this page. */
if (page_count(page) == 1) {
++rx_queue->page_recycle_count;
return page;
} else {
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
++rx_queue->page_recycle_failed;
}
return NULL;
}
/**
* ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
*
* @rx_queue: Efx RX queue
* @atomic: control memory allocation flags
*
* This allocates a batch of pages, maps them for DMA, and populates
* struct ef4_rx_buffers for each one. Return a negative error code or
* 0 on success. If a single page can be used for multiple buffers,
* then the page will either be inserted fully, or not at all.
*/
static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
{
struct ef4_nic *efx = rx_queue->efx;
struct ef4_rx_buffer *rx_buf;
struct page *page;
unsigned int page_offset;
struct ef4_rx_page_state *state;
dma_addr_t dma_addr;
unsigned index, count;
count = 0;
do {
page = ef4_reuse_page(rx_queue);
if (page == NULL) {
page = alloc_pages(__GFP_COMP |
(atomic ? GFP_ATOMIC : GFP_KERNEL),
efx->rx_buffer_order);
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr =
dma_map_page(&efx->pci_dev->dev, page, 0,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
return -EIO;
}
state = page_address(page);
state->dma_addr = dma_addr;
} else {
state = page_address(page);
dma_addr = state->dma_addr;
}
dma_addr += sizeof(struct ef4_rx_page_state);
page_offset = sizeof(struct ef4_rx_page_state);
do {
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = ef4_rx_buffer(rx_queue, index);
rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
rx_buf->page = page;
rx_buf->page_offset = page_offset + efx->rx_ip_align;
rx_buf->len = efx->rx_dma_len;
rx_buf->flags = 0;
++rx_queue->added_count;
get_page(page);
dma_addr += efx->rx_page_buf_step;
page_offset += efx->rx_page_buf_step;
} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
} while (++count < efx->rx_pages_per_batch);
return 0;
}
/* Unmap a DMA-mapped page. This function is only called for the final RX
* buffer in a page.
*/
static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
struct ef4_rx_buffer *rx_buf)
{
struct page *page = rx_buf->page;
if (page) {
struct ef4_rx_page_state *state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev,
state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
}
}
static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
struct ef4_rx_buffer *rx_buf,
unsigned int num_bufs)
{
do {
if (rx_buf->page) {
put_page(rx_buf->page);
rx_buf->page = NULL;
}
rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
} while (--num_bufs);
}
/* Attempt to recycle the page if there is an RX recycle ring; the page can
* only be added if this is the final RX buffer, to prevent pages being used in
* the descriptor ring and appearing in the recycle ring simultaneously.
*/
static void ef4_recycle_rx_page(struct ef4_channel *channel,
struct ef4_rx_buffer *rx_buf)
{
struct page *page = rx_buf->page;
struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
struct ef4_nic *efx = rx_queue->efx;
unsigned index;
/* Only recycle the page after processing the final buffer. */
if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
return;
index = rx_queue->page_add & rx_queue->page_ptr_mask;
if (rx_queue->page_ring[index] == NULL) {
unsigned read_index = rx_queue->page_remove &
rx_queue->page_ptr_mask;
/* The next slot in the recycle ring is available, but
* increment page_remove if the read pointer currently
* points here.
*/
if (read_index == index)
++rx_queue->page_remove;
rx_queue->page_ring[index] = page;
++rx_queue->page_add;
return;
}
++rx_queue->page_recycle_full;
ef4_unmap_rx_buffer(efx, rx_buf);
put_page(rx_buf->page);
}
static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
struct ef4_rx_buffer *rx_buf)
{
/* Release the page reference we hold for the buffer. */
if (rx_buf->page)
put_page(rx_buf->page);
/* If this is the last buffer in a page, unmap and free it. */
if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
ef4_free_rx_buffers(rx_queue, rx_buf, 1);
}
rx_buf->page = NULL;
}
/* Recycle the pages that are used by buffers that have just been received. */
static void ef4_recycle_rx_pages(struct ef4_channel *channel,
struct ef4_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
if (unlikely(!rx_queue->page_ring))
return;
do {
ef4_recycle_rx_page(channel, rx_buf);
rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
} while (--n_frags);
}
static void ef4_discard_rx_packet(struct ef4_channel *channel,
struct ef4_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
ef4_recycle_rx_pages(channel, rx_buf, n_frags);
ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
}
/**
* ef4_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
*
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@max_fill. If there is insufficient atomic
* memory to do so, a slow fill will be scheduled.
* @atomic: control memory allocation flags
*
* The caller must provide serialisation (none is used here). In practise,
* this means this function must run from the NAPI handler, or be called
* when NAPI is disabled.
*/
void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
{
struct ef4_nic *efx = rx_queue->efx;
unsigned int fill_level, batch_size;
int space, rc = 0;
if (!rx_queue->refill_enabled)
return;
/* Calculate current fill level, and exit if we don't need to fill */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
if (fill_level >= rx_queue->fast_fill_trigger)
goto out;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill)) {
if (fill_level)
rx_queue->min_fill = fill_level;
}
batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
space = rx_queue->max_fill - fill_level;
EF4_BUG_ON_PARANOID(space < batch_size);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filling descriptor ring from"
" level %d to level %d\n",
ef4_rx_queue_index(rx_queue), fill_level,
rx_queue->max_fill);
do {
rc = ef4_init_rx_buffers(rx_queue, atomic);
if (unlikely(rc)) {
/* Ensure that we don't leave the rx queue empty */
if (rx_queue->added_count == rx_queue->removed_count)
ef4_schedule_slow_fill(rx_queue);
goto out;
}
} while ((space -= batch_size) >= batch_size);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filled descriptor ring "
"to level %d\n", ef4_rx_queue_index(rx_queue),
rx_queue->added_count - rx_queue->removed_count);
out:
if (rx_queue->notified_count != rx_queue->added_count)
ef4_nic_notify_rx_desc(rx_queue);
}
void ef4_rx_slow_fill(struct timer_list *t)
{
struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
/* Post an event to cause NAPI to run and refill the queue */
ef4_nic_generate_fill_event(rx_queue);
++rx_queue->slow_fill_count;
}
static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
struct ef4_rx_buffer *rx_buf,
int len)
{
struct ef4_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
if (likely(len <= max_len))
return;
/* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was
*/
rx_buf->flags |= EF4_RX_PKT_DISCARD;
if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d seriously overlength "
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
ef4_rx_queue_index(rx_queue), len, max_len,
efx->type->rx_buffer_padding);
ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d overlength RX event "
"(0x%x > 0x%x)\n",
ef4_rx_queue_index(rx_queue), len, max_len);
}
ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
}
/* Pass a received packet up through GRO. GRO can handle pages
* regardless of checksum state and skbs with a good checksum.
*/
static void
ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
unsigned int n_frags, u8 *eh)
{
struct napi_struct *napi = &channel->napi_str;
struct ef4_nic *efx = channel->efx;
struct sk_buff *skb;
skb = napi_get_frags(napi);
if (unlikely(!skb)) {
struct ef4_rx_queue *rx_queue;
rx_queue = ef4_channel_get_rx_queue(channel);
ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
return;
}
if (efx->net_dev->features & NETIF_F_RXHASH)
skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
PKT_HASH_TYPE_L3);
skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
}
skb->data_len = skb->len;
skb->truesize += n_frags * efx->rx_buffer_truesize;
skb_record_rx_queue(skb, channel->rx_queue.core_index);
napi_gro_frags(napi);
}
/* Allocate and construct an SKB around page fragments */
static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
struct ef4_rx_buffer *rx_buf,
unsigned int n_frags,
u8 *eh, int hdr_len)
{
struct ef4_nic *efx = channel->efx;
struct sk_buff *skb;
/* Allocate an SKB to store the headers */
skb = netdev_alloc_skb(efx->net_dev,
efx->rx_ip_align + efx->rx_prefix_size +
hdr_len);
if (unlikely(skb == NULL)) {
atomic_inc(&efx->n_rx_noskb_drops);
return NULL;
}
EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
efx->rx_prefix_size + hdr_len);
skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
__skb_put(skb, hdr_len);
/* Append the remaining page(s) onto the frag list */
if (rx_buf->len > hdr_len) {
rx_buf->page_offset += hdr_len;
rx_buf->len -= hdr_len;
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
skb->data_len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
}
} else {
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
n_frags = 0;
}
skb->truesize += n_frags * efx->rx_buffer_truesize;
/* Move past the ethernet header */
skb->protocol = eth_type_trans(skb, efx->net_dev);
skb_mark_napi_id(skb, &channel->napi_str);
return skb;
}
void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
unsigned int n_frags, unsigned int len, u16 flags)
{
struct ef4_nic *efx = rx_queue->efx;
struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
struct ef4_rx_buffer *rx_buf;
rx_queue->rx_packets++;
rx_buf = ef4_rx_buffer(rx_queue, index);
rx_buf->flags |= flags;
/* Validate the number of fragments and completed length */
if (n_frags == 1) {
if (!(flags & EF4_RX_PKT_PREFIX_LEN))
ef4_rx_packet__check_len(rx_queue, rx_buf, len);
} else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
unlikely(len > n_frags * efx->rx_dma_len) ||
unlikely(!efx->rx_scatter)) {
/* If this isn't an explicit discard request, either
* the hardware or the driver is broken.
*/
WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
rx_buf->flags |= EF4_RX_PKT_DISCARD;
}
netif_vdbg(efx, rx_status, efx->net_dev,
"RX queue %d received ids %x-%x len %d %s%s\n",
ef4_rx_queue_index(rx_queue), index,
(index + n_frags - 1) & rx_queue->ptr_mask, len,
(rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
(rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
/* Discard packet, if instructed to do so. Process the
* previous receive first.
*/
if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
ef4_rx_flush_packet(channel);
ef4_discard_rx_packet(channel, rx_buf, n_frags);
return;
}
if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
rx_buf->len = len;
/* Release and/or sync the DMA mapping - assumes all RX buffers
* consumed in-order per RX queue.
*/
ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
/* Prefetch nice and early so data will (hopefully) be in cache by
* the time we look at it.
*/
prefetch(ef4_rx_buf_va(rx_buf));
rx_buf->page_offset += efx->rx_prefix_size;
rx_buf->len -= efx->rx_prefix_size;
if (n_frags > 1) {
/* Release/sync DMA mapping for additional fragments.
* Fix length for last fragment.
*/
unsigned int tail_frags = n_frags - 1;
for (;;) {
rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
if (--tail_frags == 0)
break;
ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
}
rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
}
/* All fragments have been DMA-synced, so recycle pages. */
rx_buf = ef4_rx_buffer(rx_queue, index);
ef4_recycle_rx_pages(channel, rx_buf, n_frags);
/* Pipeline receives so that we give time for packet headers to be
* prefetched into cache.
*/
ef4_rx_flush_packet(channel);
channel->rx_pkt_n_frags = n_frags;
channel->rx_pkt_index = index;
}
static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
struct ef4_rx_buffer *rx_buf,
unsigned int n_frags)
{
struct sk_buff *skb;
u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
if (unlikely(skb == NULL)) {
struct ef4_rx_queue *rx_queue;
rx_queue = ef4_channel_get_rx_queue(channel);
ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
return;
}
skb_record_rx_queue(skb, channel->rx_queue.core_index);
/* Set the SKB flags */
skb_checksum_none_assert(skb);
if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (channel->type->receive_skb)
if (channel->type->receive_skb(channel, skb))
return;
/* Pass the packet up */
netif_receive_skb(skb);
}
/* Handle a received packet. Second half: Touches packet payload. */
void __ef4_rx_packet(struct ef4_channel *channel)
{
struct ef4_nic *efx = channel->efx;
struct ef4_rx_buffer *rx_buf =
ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
u8 *eh = ef4_rx_buf_va(rx_buf);
/* Read length from the prefix if necessary. This already
* excludes the length of the prefix itself.
*/
if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
rx_buf->len = le16_to_cpup((__le16 *)
(eh + efx->rx_packet_len_offset));
/* If we're in loopback test, then pass the packet directly to the
* loopback layer, and free the rx_buf here
*/
if (unlikely(efx->loopback_selftest)) {
struct ef4_rx_queue *rx_queue;
ef4_loopback_rx_packet(efx, eh, rx_buf->len);
rx_queue = ef4_channel_get_rx_queue(channel);
ef4_free_rx_buffers(rx_queue, rx_buf,
channel->rx_pkt_n_frags);
goto out;
}
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
else
ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
out:
channel->rx_pkt_n_frags = 0;
}
int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
{
struct ef4_nic *efx = rx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
rx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating RX queue %d size %#x mask %#x\n",
ef4_rx_queue_index(rx_queue), efx->rxq_entries,
rx_queue->ptr_mask);
/* Allocate RX buffers */
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
GFP_KERNEL);
if (!rx_queue->buffer)
return -ENOMEM;
rc = ef4_nic_probe_rx(rx_queue);
if (rc) {
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
return rc;
}
static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
struct ef4_rx_queue *rx_queue)
{
unsigned int bufs_in_recycle_ring, page_ring_size;
struct iommu_domain __maybe_unused *domain;
/* Set the RX recycle ring size */
#ifdef CONFIG_PPC64
bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
#else
domain = iommu_get_domain_for_dev(&efx->pci_dev->dev);
if (domain && domain->type != IOMMU_DOMAIN_IDENTITY)
bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
else
bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
#endif /* CONFIG_PPC64 */
page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
efx->rx_bufs_per_page);
rx_queue->page_ring = kcalloc(page_ring_size,
sizeof(*rx_queue->page_ring), GFP_KERNEL);
if (!rx_queue->page_ring)
rx_queue->page_ptr_mask = 0;
else
rx_queue->page_ptr_mask = page_ring_size - 1;
}
void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
{
struct ef4_nic *efx = rx_queue->efx;
unsigned int max_fill, trigger, max_trigger;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
ef4_init_rx_recycle_ring(efx, rx_queue);
rx_queue->page_remove = 0;
rx_queue->page_add = rx_queue->page_ptr_mask + 1;
rx_queue->page_recycle_count = 0;
rx_queue->page_recycle_failed = 0;
rx_queue->page_recycle_full = 0;
/* Initialise limit fields */
max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
max_trigger =
max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
if (rx_refill_threshold != 0) {
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
if (trigger > max_trigger)
trigger = max_trigger;
} else {
trigger = max_trigger;
}
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
rx_queue->refill_enabled = true;
/* Set up RX descriptor ring */
ef4_nic_init_rx(rx_queue);
}
void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
{
int i;
struct ef4_nic *efx = rx_queue->efx;
struct ef4_rx_buffer *rx_buf;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
del_timer_sync(&rx_queue->slow_fill);
/* Release RX buffers from the current read ptr to the write ptr */
if (rx_queue->buffer) {
for (i = rx_queue->removed_count; i < rx_queue->added_count;
i++) {
unsigned index = i & rx_queue->ptr_mask;
rx_buf = ef4_rx_buffer(rx_queue, index);
ef4_fini_rx_buffer(rx_queue, rx_buf);
}
}
/* Unmap and release the pages in the recycle ring. Remove the ring. */
for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
struct page *page = rx_queue->page_ring[i];
struct ef4_rx_page_state *state;
if (page == NULL)
continue;
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
}
kfree(rx_queue->page_ring);
rx_queue->page_ring = NULL;
}
void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
{
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
ef4_nic_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
"RX descriptor ring refill threshold (%)");
#ifdef CONFIG_RFS_ACCEL
int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct ef4_nic *efx = netdev_priv(net_dev);
struct ef4_channel *channel;
struct ef4_filter_spec spec;
struct flow_keys fk;
int rc;
if (flow_id == RPS_FLOW_ID_INVALID)
return -EINVAL;
if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
return -EPROTONOSUPPORT;
if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
return -EPROTONOSUPPORT;
if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
return -EPROTONOSUPPORT;
ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
rxq_index);
spec.match_flags =
EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
spec.ether_type = fk.basic.n_proto;
spec.ip_proto = fk.basic.ip_proto;
if (fk.basic.n_proto == htons(ETH_P_IP)) {
spec.rem_host[0] = fk.addrs.v4addrs.src;
spec.loc_host[0] = fk.addrs.v4addrs.dst;
} else {
memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
}
spec.rem_port = fk.ports.src;
spec.loc_port = fk.ports.dst;
rc = efx->type->filter_rfs_insert(efx, &spec);
if (rc < 0)
return rc;
/* Remember this so we can check whether to expire the filter later */
channel = ef4_get_channel(efx, rxq_index);
channel->rps_flow_id[rc] = flow_id;
++channel->rfs_filters_added;
if (spec.ether_type == htons(ETH_P_IP))
netif_info(efx, rx_status, efx->net_dev,
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
(spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
ntohs(spec.loc_port), rxq_index, flow_id, rc);
else
netif_info(efx, rx_status, efx->net_dev,
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
(spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
ntohs(spec.loc_port), rxq_index, flow_id, rc);
return rc;
}
bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
{
bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
unsigned int channel_idx, index, size;
u32 flow_id;
if (!spin_trylock_bh(&efx->filter_lock))
return false;
expire_one = efx->type->filter_rfs_expire_one;
channel_idx = efx->rps_expire_channel;
index = efx->rps_expire_index;
size = efx->type->max_rx_ip_filters;
while (quota--) {
struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
flow_id = channel->rps_flow_id[index];
if (flow_id != RPS_FLOW_ID_INVALID &&
expire_one(efx, flow_id, index)) {
netif_info(efx, rx_status, efx->net_dev,
"expired filter %d [queue %u flow %u]\n",
index, channel_idx, flow_id);
channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
}
if (++index == size) {
if (++channel_idx == efx->n_channels)
channel_idx = 0;
index = 0;
}
}
efx->rps_expire_channel = channel_idx;
efx->rps_expire_index = index;
spin_unlock_bh(&efx->filter_lock);
return true;
}
#endif /* CONFIG_RFS_ACCEL */
/**
* ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
* @spec: Specification to test
*
* Return: %true if the specification is a non-drop RX filter that
* matches a local MAC address I/G bit value of 1 or matches a local
* IPv4 or IPv6 address value in the respective multicast address
* range. Otherwise %false.
*/
bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
{
if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
return false;
if (spec->match_flags &
(EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
is_multicast_ether_addr(spec->loc_mac))
return true;
if ((spec->match_flags &
(EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
(EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
if (spec->ether_type == htons(ETH_P_IP) &&
ipv4_is_multicast(spec->loc_host[0]))
return true;
if (spec->ether_type == htons(ETH_P_IPV6) &&
((const u8 *)spec->loc_host)[0] == 0xff)
return true;
}
return false;
}