linuxdebug/drivers/net/ethernet/marvell/octeon_ep/octep_rx.c

507 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Marvell Octeon EP (EndPoint) Ethernet Driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/pci.h>
#include <linux/etherdevice.h>
#include <linux/vmalloc.h>
#include "octep_config.h"
#include "octep_main.h"
static void octep_oq_reset_indices(struct octep_oq *oq)
{
oq->host_read_idx = 0;
oq->host_refill_idx = 0;
oq->refill_count = 0;
oq->last_pkt_count = 0;
oq->pkts_pending = 0;
}
/**
* octep_oq_fill_ring_buffers() - fill initial receive buffers for Rx ring.
*
* @oq: Octeon Rx queue data structure.
*
* Return: 0, if successfully filled receive buffers for all descriptors.
* -1, if failed to allocate a buffer or failed to map for DMA.
*/
static int octep_oq_fill_ring_buffers(struct octep_oq *oq)
{
struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
struct page *page;
u32 i;
for (i = 0; i < oq->max_count; i++) {
page = dev_alloc_page();
if (unlikely(!page)) {
dev_err(oq->dev, "Rx buffer alloc failed\n");
goto rx_buf_alloc_err;
}
desc_ring[i].buffer_ptr = dma_map_page(oq->dev, page, 0,
PAGE_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(oq->dev, desc_ring[i].buffer_ptr)) {
dev_err(oq->dev,
"OQ-%d buffer alloc: DMA mapping error!\n",
oq->q_no);
put_page(page);
goto dma_map_err;
}
oq->buff_info[i].page = page;
}
return 0;
dma_map_err:
rx_buf_alloc_err:
while (i) {
i--;
dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE);
put_page(oq->buff_info[i].page);
oq->buff_info[i].page = NULL;
}
return -1;
}
/**
* octep_oq_refill() - refill buffers for used Rx ring descriptors.
*
* @oct: Octeon device private data structure.
* @oq: Octeon Rx queue data structure.
*
* Return: number of descriptors successfully refilled with receive buffers.
*/
static int octep_oq_refill(struct octep_device *oct, struct octep_oq *oq)
{
struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
struct page *page;
u32 refill_idx, i;
refill_idx = oq->host_refill_idx;
for (i = 0; i < oq->refill_count; i++) {
page = dev_alloc_page();
if (unlikely(!page)) {
dev_err(oq->dev, "refill: rx buffer alloc failed\n");
oq->stats.alloc_failures++;
break;
}
desc_ring[refill_idx].buffer_ptr = dma_map_page(oq->dev, page, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(oq->dev, desc_ring[refill_idx].buffer_ptr)) {
dev_err(oq->dev,
"OQ-%d buffer refill: DMA mapping error!\n",
oq->q_no);
put_page(page);
oq->stats.alloc_failures++;
break;
}
oq->buff_info[refill_idx].page = page;
refill_idx++;
if (refill_idx == oq->max_count)
refill_idx = 0;
}
oq->host_refill_idx = refill_idx;
oq->refill_count -= i;
return i;
}
/**
* octep_setup_oq() - Setup a Rx queue.
*
* @oct: Octeon device private data structure.
* @q_no: Rx queue number to be setup.
*
* Allocate resources for a Rx queue.
*/
static int octep_setup_oq(struct octep_device *oct, int q_no)
{
struct octep_oq *oq;
u32 desc_ring_size;
oq = vzalloc(sizeof(*oq));
if (!oq)
goto create_oq_fail;
oct->oq[q_no] = oq;
oq->octep_dev = oct;
oq->netdev = oct->netdev;
oq->dev = &oct->pdev->dev;
oq->q_no = q_no;
oq->max_count = CFG_GET_OQ_NUM_DESC(oct->conf);
oq->ring_size_mask = oq->max_count - 1;
oq->buffer_size = CFG_GET_OQ_BUF_SIZE(oct->conf);
oq->max_single_buffer_size = oq->buffer_size - OCTEP_OQ_RESP_HW_SIZE;
/* When the hardware/firmware supports additional capabilities,
* additional header is filled-in by Octeon after length field in
* Rx packets. this header contains additional packet information.
*/
if (oct->caps_enabled)
oq->max_single_buffer_size -= OCTEP_OQ_RESP_HW_EXT_SIZE;
oq->refill_threshold = CFG_GET_OQ_REFILL_THRESHOLD(oct->conf);
desc_ring_size = oq->max_count * OCTEP_OQ_DESC_SIZE;
oq->desc_ring = dma_alloc_coherent(oq->dev, desc_ring_size,
&oq->desc_ring_dma, GFP_KERNEL);
if (unlikely(!oq->desc_ring)) {
dev_err(oq->dev,
"Failed to allocate DMA memory for OQ-%d !!\n", q_no);
goto desc_dma_alloc_err;
}
oq->buff_info = vzalloc(oq->max_count * OCTEP_OQ_RECVBUF_SIZE);
if (unlikely(!oq->buff_info)) {
dev_err(&oct->pdev->dev,
"Failed to allocate buffer info for OQ-%d\n", q_no);
goto buf_list_err;
}
if (octep_oq_fill_ring_buffers(oq))
goto oq_fill_buff_err;
octep_oq_reset_indices(oq);
oct->hw_ops.setup_oq_regs(oct, q_no);
oct->num_oqs++;
return 0;
oq_fill_buff_err:
vfree(oq->buff_info);
oq->buff_info = NULL;
buf_list_err:
dma_free_coherent(oq->dev, desc_ring_size,
oq->desc_ring, oq->desc_ring_dma);
oq->desc_ring = NULL;
desc_dma_alloc_err:
vfree(oq);
oct->oq[q_no] = NULL;
create_oq_fail:
return -1;
}
/**
* octep_oq_free_ring_buffers() - Free ring buffers.
*
* @oq: Octeon Rx queue data structure.
*
* Free receive buffers in unused Rx queue descriptors.
*/
static void octep_oq_free_ring_buffers(struct octep_oq *oq)
{
struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
int i;
if (!oq->desc_ring || !oq->buff_info)
return;
for (i = 0; i < oq->max_count; i++) {
if (oq->buff_info[i].page) {
dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr,
PAGE_SIZE, DMA_FROM_DEVICE);
put_page(oq->buff_info[i].page);
oq->buff_info[i].page = NULL;
desc_ring[i].buffer_ptr = 0;
}
}
octep_oq_reset_indices(oq);
}
/**
* octep_free_oq() - Free Rx queue resources.
*
* @oq: Octeon Rx queue data structure.
*
* Free all resources of a Rx queue.
*/
static int octep_free_oq(struct octep_oq *oq)
{
struct octep_device *oct = oq->octep_dev;
int q_no = oq->q_no;
octep_oq_free_ring_buffers(oq);
vfree(oq->buff_info);
if (oq->desc_ring)
dma_free_coherent(oq->dev,
oq->max_count * OCTEP_OQ_DESC_SIZE,
oq->desc_ring, oq->desc_ring_dma);
vfree(oq);
oct->oq[q_no] = NULL;
oct->num_oqs--;
return 0;
}
/**
* octep_setup_oqs() - setup resources for all Rx queues.
*
* @oct: Octeon device private data structure.
*/
int octep_setup_oqs(struct octep_device *oct)
{
int i, retval = 0;
oct->num_oqs = 0;
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
retval = octep_setup_oq(oct, i);
if (retval) {
dev_err(&oct->pdev->dev,
"Failed to setup OQ(RxQ)-%d.\n", i);
goto oq_setup_err;
}
dev_dbg(&oct->pdev->dev, "Successfully setup OQ(RxQ)-%d.\n", i);
}
return 0;
oq_setup_err:
while (i) {
i--;
octep_free_oq(oct->oq[i]);
}
return -1;
}
/**
* octep_oq_dbell_init() - Initialize Rx queue doorbell.
*
* @oct: Octeon device private data structure.
*
* Write number of descriptors to Rx queue doorbell register.
*/
void octep_oq_dbell_init(struct octep_device *oct)
{
int i;
for (i = 0; i < oct->num_oqs; i++)
writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
}
/**
* octep_free_oqs() - Free resources of all Rx queues.
*
* @oct: Octeon device private data structure.
*/
void octep_free_oqs(struct octep_device *oct)
{
int i;
for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
if (!oct->oq[i])
continue;
octep_free_oq(oct->oq[i]);
dev_dbg(&oct->pdev->dev,
"Successfully freed OQ(RxQ)-%d.\n", i);
}
}
/**
* octep_oq_check_hw_for_pkts() - Check for new Rx packets.
*
* @oct: Octeon device private data structure.
* @oq: Octeon Rx queue data structure.
*
* Return: packets received after previous check.
*/
static int octep_oq_check_hw_for_pkts(struct octep_device *oct,
struct octep_oq *oq)
{
u32 pkt_count, new_pkts;
pkt_count = readl(oq->pkts_sent_reg);
new_pkts = pkt_count - oq->last_pkt_count;
/* Clear the hardware packets counter register if the rx queue is
* being processed continuously with-in a single interrupt and
* reached half its max value.
* this counter is not cleared every time read, to save write cycles.
*/
if (unlikely(pkt_count > 0xF0000000U)) {
writel(pkt_count, oq->pkts_sent_reg);
pkt_count = readl(oq->pkts_sent_reg);
new_pkts += pkt_count;
}
oq->last_pkt_count = pkt_count;
oq->pkts_pending += new_pkts;
return new_pkts;
}
/**
* __octep_oq_process_rx() - Process hardware Rx queue and push to stack.
*
* @oct: Octeon device private data structure.
* @oq: Octeon Rx queue data structure.
* @pkts_to_process: number of packets to be processed.
*
* Process the new packets in Rx queue.
* Packets larger than single Rx buffer arrive in consecutive descriptors.
* But, count returned by the API only accounts full packets, not fragments.
*
* Return: number of packets processed and pushed to stack.
*/
static int __octep_oq_process_rx(struct octep_device *oct,
struct octep_oq *oq, u16 pkts_to_process)
{
struct octep_oq_resp_hw_ext *resp_hw_ext = NULL;
struct octep_rx_buffer *buff_info;
struct octep_oq_resp_hw *resp_hw;
u32 pkt, rx_bytes, desc_used;
struct sk_buff *skb;
u16 data_offset;
u32 read_idx;
read_idx = oq->host_read_idx;
rx_bytes = 0;
desc_used = 0;
for (pkt = 0; pkt < pkts_to_process; pkt++) {
buff_info = (struct octep_rx_buffer *)&oq->buff_info[read_idx];
dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
PAGE_SIZE, DMA_FROM_DEVICE);
resp_hw = page_address(buff_info->page);
buff_info->page = NULL;
/* Swap the length field that is in Big-Endian to CPU */
buff_info->len = be64_to_cpu(resp_hw->length);
if (oct->caps_enabled & OCTEP_CAP_RX_CHECKSUM) {
/* Extended response header is immediately after
* response header (resp_hw)
*/
resp_hw_ext = (struct octep_oq_resp_hw_ext *)
(resp_hw + 1);
buff_info->len -= OCTEP_OQ_RESP_HW_EXT_SIZE;
/* Packet Data is immediately after
* extended response header.
*/
data_offset = OCTEP_OQ_RESP_HW_SIZE +
OCTEP_OQ_RESP_HW_EXT_SIZE;
} else {
/* Data is immediately after
* Hardware Rx response header.
*/
data_offset = OCTEP_OQ_RESP_HW_SIZE;
}
rx_bytes += buff_info->len;
if (buff_info->len <= oq->max_single_buffer_size) {
skb = build_skb((void *)resp_hw, PAGE_SIZE);
skb_reserve(skb, data_offset);
skb_put(skb, buff_info->len);
read_idx++;
desc_used++;
if (read_idx == oq->max_count)
read_idx = 0;
} else {
struct skb_shared_info *shinfo;
u16 data_len;
skb = build_skb((void *)resp_hw, PAGE_SIZE);
skb_reserve(skb, data_offset);
/* Head fragment includes response header(s);
* subsequent fragments contains only data.
*/
skb_put(skb, oq->max_single_buffer_size);
read_idx++;
desc_used++;
if (read_idx == oq->max_count)
read_idx = 0;
shinfo = skb_shinfo(skb);
data_len = buff_info->len - oq->max_single_buffer_size;
while (data_len) {
dma_unmap_page(oq->dev, oq->desc_ring[read_idx].buffer_ptr,
PAGE_SIZE, DMA_FROM_DEVICE);
buff_info = (struct octep_rx_buffer *)
&oq->buff_info[read_idx];
if (data_len < oq->buffer_size) {
buff_info->len = data_len;
data_len = 0;
} else {
buff_info->len = oq->buffer_size;
data_len -= oq->buffer_size;
}
skb_add_rx_frag(skb, shinfo->nr_frags,
buff_info->page, 0,
buff_info->len,
buff_info->len);
buff_info->page = NULL;
read_idx++;
desc_used++;
if (read_idx == oq->max_count)
read_idx = 0;
}
}
skb->dev = oq->netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
if (resp_hw_ext &&
resp_hw_ext->csum_verified == OCTEP_CSUM_VERIFIED)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
napi_gro_receive(oq->napi, skb);
}
oq->host_read_idx = read_idx;
oq->refill_count += desc_used;
oq->stats.packets += pkt;
oq->stats.bytes += rx_bytes;
return pkt;
}
/**
* octep_oq_process_rx() - Process Rx queue.
*
* @oq: Octeon Rx queue data structure.
* @budget: max number of packets can be processed in one invocation.
*
* Check for newly received packets and process them.
* Keeps checking for new packets until budget is used or no new packets seen.
*
* Return: number of packets processed.
*/
int octep_oq_process_rx(struct octep_oq *oq, int budget)
{
u32 pkts_available, pkts_processed, total_pkts_processed;
struct octep_device *oct = oq->octep_dev;
pkts_available = 0;
pkts_processed = 0;
total_pkts_processed = 0;
while (total_pkts_processed < budget) {
/* update pending count only when current one exhausted */
if (oq->pkts_pending == 0)
octep_oq_check_hw_for_pkts(oct, oq);
pkts_available = min(budget - total_pkts_processed,
oq->pkts_pending);
if (!pkts_available)
break;
pkts_processed = __octep_oq_process_rx(oct, oq,
pkts_available);
oq->pkts_pending -= pkts_processed;
total_pkts_processed += pkts_processed;
}
if (oq->refill_count >= oq->refill_threshold) {
u32 desc_refilled = octep_oq_refill(oct, oq);
/* flush pending writes before updating credits */
wmb();
writel(desc_refilled, oq->pkts_credit_reg);
}
return total_pkts_processed;
}