370 lines
10 KiB
C
370 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019, Intel Corporation. */
|
|
|
|
#include <linux/filter.h>
|
|
|
|
#include "ice_txrx_lib.h"
|
|
#include "ice_eswitch.h"
|
|
#include "ice_lib.h"
|
|
|
|
/**
|
|
* ice_release_rx_desc - Store the new tail and head values
|
|
* @rx_ring: ring to bump
|
|
* @val: new head index
|
|
*/
|
|
void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
|
|
{
|
|
u16 prev_ntu = rx_ring->next_to_use & ~0x7;
|
|
|
|
rx_ring->next_to_use = val;
|
|
|
|
/* update next to alloc since we have filled the ring */
|
|
rx_ring->next_to_alloc = val;
|
|
|
|
/* QRX_TAIL will be updated with any tail value, but hardware ignores
|
|
* the lower 3 bits. This makes it so we only bump tail on meaningful
|
|
* boundaries. Also, this allows us to bump tail on intervals of 8 up to
|
|
* the budget depending on the current traffic load.
|
|
*/
|
|
val &= ~0x7;
|
|
if (prev_ntu != val) {
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(val, rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ptype_to_htype - get a hash type
|
|
* @ptype: the ptype value from the descriptor
|
|
*
|
|
* Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
|
|
* skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
|
|
* Rx desc.
|
|
*/
|
|
static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
|
|
{
|
|
struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);
|
|
|
|
if (!decoded.known)
|
|
return PKT_HASH_TYPE_NONE;
|
|
if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
|
|
return PKT_HASH_TYPE_L4;
|
|
if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
|
|
return PKT_HASH_TYPE_L3;
|
|
if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
|
|
return PKT_HASH_TYPE_L2;
|
|
|
|
return PKT_HASH_TYPE_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_rx_hash - set the hash value in the skb
|
|
* @rx_ring: descriptor ring
|
|
* @rx_desc: specific descriptor
|
|
* @skb: pointer to current skb
|
|
* @rx_ptype: the ptype value from the descriptor
|
|
*/
|
|
static void
|
|
ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
|
|
struct sk_buff *skb, u16 rx_ptype)
|
|
{
|
|
struct ice_32b_rx_flex_desc_nic *nic_mdid;
|
|
u32 hash;
|
|
|
|
if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
|
|
return;
|
|
|
|
if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
|
|
return;
|
|
|
|
nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
|
|
hash = le32_to_cpu(nic_mdid->rss_hash);
|
|
skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
|
|
}
|
|
|
|
/**
|
|
* ice_rx_csum - Indicate in skb if checksum is good
|
|
* @ring: the ring we care about
|
|
* @skb: skb currently being received and modified
|
|
* @rx_desc: the receive descriptor
|
|
* @ptype: the packet type decoded by hardware
|
|
*
|
|
* skb->protocol must be set before this function is called
|
|
*/
|
|
static void
|
|
ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
|
|
union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
|
|
{
|
|
struct ice_rx_ptype_decoded decoded;
|
|
u16 rx_status0, rx_status1;
|
|
bool ipv4, ipv6;
|
|
|
|
rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
|
|
rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
|
|
|
|
decoded = ice_decode_rx_desc_ptype(ptype);
|
|
|
|
/* Start with CHECKSUM_NONE and by default csum_level = 0 */
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
skb_checksum_none_assert(skb);
|
|
|
|
/* check if Rx checksum is enabled */
|
|
if (!(ring->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* check if HW has decoded the packet and checksum */
|
|
if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
|
|
return;
|
|
|
|
if (!(decoded.known && decoded.outer_ip))
|
|
return;
|
|
|
|
ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
|
|
ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
|
|
(decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
|
|
|
|
if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
|
|
BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
|
|
goto checksum_fail;
|
|
|
|
if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
|
|
goto checksum_fail;
|
|
|
|
/* check for L4 errors and handle packets that were not able to be
|
|
* checksummed due to arrival speed
|
|
*/
|
|
if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
|
|
goto checksum_fail;
|
|
|
|
/* check for outer UDP checksum error in tunneled packets */
|
|
if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
|
|
(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
|
|
goto checksum_fail;
|
|
|
|
/* If there is an outer header present that might contain a checksum
|
|
* we need to bump the checksum level by 1 to reflect the fact that
|
|
* we are indicating we validated the inner checksum.
|
|
*/
|
|
if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
|
|
skb->csum_level = 1;
|
|
|
|
/* Only report checksum unnecessary for TCP, UDP, or SCTP */
|
|
switch (decoded.inner_prot) {
|
|
case ICE_RX_PTYPE_INNER_PROT_TCP:
|
|
case ICE_RX_PTYPE_INNER_PROT_UDP:
|
|
case ICE_RX_PTYPE_INNER_PROT_SCTP:
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
|
|
checksum_fail:
|
|
ring->vsi->back->hw_csum_rx_error++;
|
|
}
|
|
|
|
/**
|
|
* ice_process_skb_fields - Populate skb header fields from Rx descriptor
|
|
* @rx_ring: Rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being populated
|
|
* @ptype: the packet type decoded by hardware
|
|
*
|
|
* This function checks the ring, descriptor, and packet information in
|
|
* order to populate the hash, checksum, VLAN, protocol, and
|
|
* other fields within the skb.
|
|
*/
|
|
void
|
|
ice_process_skb_fields(struct ice_rx_ring *rx_ring,
|
|
union ice_32b_rx_flex_desc *rx_desc,
|
|
struct sk_buff *skb, u16 ptype)
|
|
{
|
|
ice_rx_hash(rx_ring, rx_desc, skb, ptype);
|
|
|
|
/* modifies the skb - consumes the enet header */
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
|
|
ice_rx_csum(rx_ring, skb, rx_desc, ptype);
|
|
|
|
if (rx_ring->ptp_rx)
|
|
ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
|
|
}
|
|
|
|
/**
|
|
* ice_receive_skb - Send a completed packet up the stack
|
|
* @rx_ring: Rx ring in play
|
|
* @skb: packet to send up
|
|
* @vlan_tag: VLAN tag for packet
|
|
*
|
|
* This function sends the completed packet (via. skb) up the stack using
|
|
* gro receive functions (with/without VLAN tag)
|
|
*/
|
|
void
|
|
ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
|
|
{
|
|
netdev_features_t features = rx_ring->netdev->features;
|
|
bool non_zero_vlan = !!(vlan_tag & VLAN_VID_MASK);
|
|
|
|
if ((features & NETIF_F_HW_VLAN_CTAG_RX) && non_zero_vlan)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
|
|
else if ((features & NETIF_F_HW_VLAN_STAG_RX) && non_zero_vlan)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
|
|
|
|
napi_gro_receive(&rx_ring->q_vector->napi, skb);
|
|
}
|
|
|
|
/**
|
|
* ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
|
|
* @xdp_ring: XDP ring to clean
|
|
*/
|
|
static void ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
|
|
{
|
|
unsigned int total_bytes = 0, total_pkts = 0;
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
u16 ntc = xdp_ring->next_to_clean;
|
|
struct ice_tx_desc *next_dd_desc;
|
|
u16 next_dd = xdp_ring->next_dd;
|
|
struct ice_tx_buf *tx_buf;
|
|
int i;
|
|
|
|
next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd);
|
|
if (!(next_dd_desc->cmd_type_offset_bsz &
|
|
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
|
|
return;
|
|
|
|
for (i = 0; i < tx_thresh; i++) {
|
|
tx_buf = &xdp_ring->tx_buf[ntc];
|
|
|
|
total_bytes += tx_buf->bytecount;
|
|
/* normally tx_buf->gso_segs was taken but at this point
|
|
* it's always 1 for us
|
|
*/
|
|
total_pkts++;
|
|
|
|
page_frag_free(tx_buf->raw_buf);
|
|
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
tx_buf->raw_buf = NULL;
|
|
|
|
ntc++;
|
|
if (ntc >= xdp_ring->count)
|
|
ntc = 0;
|
|
}
|
|
|
|
next_dd_desc->cmd_type_offset_bsz = 0;
|
|
xdp_ring->next_dd = xdp_ring->next_dd + tx_thresh;
|
|
if (xdp_ring->next_dd > xdp_ring->count)
|
|
xdp_ring->next_dd = tx_thresh - 1;
|
|
xdp_ring->next_to_clean = ntc;
|
|
ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_xdp_ring - submit single packet to XDP ring for transmission
|
|
* @data: packet data pointer
|
|
* @size: packet data size
|
|
* @xdp_ring: XDP ring for transmission
|
|
*/
|
|
int ice_xmit_xdp_ring(void *data, u16 size, struct ice_tx_ring *xdp_ring)
|
|
{
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
u16 i = xdp_ring->next_to_use;
|
|
struct ice_tx_desc *tx_desc;
|
|
struct ice_tx_buf *tx_buf;
|
|
dma_addr_t dma;
|
|
|
|
if (ICE_DESC_UNUSED(xdp_ring) < tx_thresh)
|
|
ice_clean_xdp_irq(xdp_ring);
|
|
|
|
if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) {
|
|
xdp_ring->tx_stats.tx_busy++;
|
|
return ICE_XDP_CONSUMED;
|
|
}
|
|
|
|
dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(xdp_ring->dev, dma))
|
|
return ICE_XDP_CONSUMED;
|
|
|
|
tx_buf = &xdp_ring->tx_buf[i];
|
|
tx_buf->bytecount = size;
|
|
tx_buf->gso_segs = 1;
|
|
tx_buf->raw_buf = data;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_buf, len, size);
|
|
dma_unmap_addr_set(tx_buf, dma, dma);
|
|
|
|
tx_desc = ICE_TX_DESC(xdp_ring, i);
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 0,
|
|
size, 0);
|
|
|
|
xdp_ring->xdp_tx_active++;
|
|
i++;
|
|
if (i == xdp_ring->count) {
|
|
i = 0;
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
|
|
tx_desc->cmd_type_offset_bsz |=
|
|
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
|
|
xdp_ring->next_rs = tx_thresh - 1;
|
|
}
|
|
xdp_ring->next_to_use = i;
|
|
|
|
if (i > xdp_ring->next_rs) {
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
|
|
tx_desc->cmd_type_offset_bsz |=
|
|
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
|
|
xdp_ring->next_rs += tx_thresh;
|
|
}
|
|
|
|
return ICE_XDP_TX;
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it
|
|
* @xdp: XDP buffer
|
|
* @xdp_ring: XDP Tx ring
|
|
*
|
|
* Returns negative on failure, 0 on success.
|
|
*/
|
|
int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring)
|
|
{
|
|
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
|
|
|
|
if (unlikely(!xdpf))
|
|
return ICE_XDP_CONSUMED;
|
|
|
|
return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
|
|
}
|
|
|
|
/**
|
|
* ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
|
|
* @xdp_ring: XDP ring
|
|
* @xdp_res: Result of the receive batch
|
|
*
|
|
* This function bumps XDP Tx tail and/or flush redirect map, and
|
|
* should be called when a batch of packets has been processed in the
|
|
* napi loop.
|
|
*/
|
|
void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res)
|
|
{
|
|
if (xdp_res & ICE_XDP_REDIR)
|
|
xdp_do_flush_map();
|
|
|
|
if (xdp_res & ICE_XDP_TX) {
|
|
if (static_branch_unlikely(&ice_xdp_locking_key))
|
|
spin_lock(&xdp_ring->tx_lock);
|
|
ice_xdp_ring_update_tail(xdp_ring);
|
|
if (static_branch_unlikely(&ice_xdp_locking_key))
|
|
spin_unlock(&xdp_ring->tx_lock);
|
|
}
|
|
}
|