2521 lines
68 KiB
C
2521 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
/* The driver transmit and receive code */
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/bpf_trace.h>
|
|
#include <net/dsfield.h>
|
|
#include <net/mpls.h>
|
|
#include <net/xdp.h>
|
|
#include "ice_txrx_lib.h"
|
|
#include "ice_lib.h"
|
|
#include "ice.h"
|
|
#include "ice_trace.h"
|
|
#include "ice_dcb_lib.h"
|
|
#include "ice_xsk.h"
|
|
#include "ice_eswitch.h"
|
|
|
|
#define ICE_RX_HDR_SIZE 256
|
|
|
|
#define FDIR_DESC_RXDID 0x40
|
|
#define ICE_FDIR_CLEAN_DELAY 10
|
|
|
|
/**
|
|
* ice_prgm_fdir_fltr - Program a Flow Director filter
|
|
* @vsi: VSI to send dummy packet
|
|
* @fdir_desc: flow director descriptor
|
|
* @raw_packet: allocated buffer for flow director
|
|
*/
|
|
int
|
|
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
|
|
u8 *raw_packet)
|
|
{
|
|
struct ice_tx_buf *tx_buf, *first;
|
|
struct ice_fltr_desc *f_desc;
|
|
struct ice_tx_desc *tx_desc;
|
|
struct ice_tx_ring *tx_ring;
|
|
struct device *dev;
|
|
dma_addr_t dma;
|
|
u32 td_cmd;
|
|
u16 i;
|
|
|
|
/* VSI and Tx ring */
|
|
if (!vsi)
|
|
return -ENOENT;
|
|
tx_ring = vsi->tx_rings[0];
|
|
if (!tx_ring || !tx_ring->desc)
|
|
return -ENOENT;
|
|
dev = tx_ring->dev;
|
|
|
|
/* we are using two descriptors to add/del a filter and we can wait */
|
|
for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
|
|
if (!i)
|
|
return -EAGAIN;
|
|
msleep_interruptible(1);
|
|
}
|
|
|
|
dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, dma))
|
|
return -EINVAL;
|
|
|
|
/* grab the next descriptor */
|
|
i = tx_ring->next_to_use;
|
|
first = &tx_ring->tx_buf[i];
|
|
f_desc = ICE_TX_FDIRDESC(tx_ring, i);
|
|
memcpy(f_desc, fdir_desc, sizeof(*f_desc));
|
|
|
|
i++;
|
|
i = (i < tx_ring->count) ? i : 0;
|
|
tx_desc = ICE_TX_DESC(tx_ring, i);
|
|
tx_buf = &tx_ring->tx_buf[i];
|
|
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
memset(tx_buf, 0, sizeof(*tx_buf));
|
|
dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
|
|
dma_unmap_addr_set(tx_buf, dma, dma);
|
|
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
|
|
ICE_TX_DESC_CMD_RE;
|
|
|
|
tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
|
|
tx_buf->raw_buf = raw_packet;
|
|
|
|
tx_desc->cmd_type_offset_bsz =
|
|
ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
|
|
|
|
/* Force memory write to complete before letting h/w know
|
|
* there are new descriptors to fetch.
|
|
*/
|
|
wmb();
|
|
|
|
/* mark the data descriptor to be watched */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
writel(tx_ring->next_to_use, tx_ring->tail);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_unmap_and_free_tx_buf - Release a Tx buffer
|
|
* @ring: the ring that owns the buffer
|
|
* @tx_buf: the buffer to free
|
|
*/
|
|
static void
|
|
ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
|
|
{
|
|
if (tx_buf->skb) {
|
|
if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
|
|
devm_kfree(ring->dev, tx_buf->raw_buf);
|
|
else if (ice_ring_is_xdp(ring))
|
|
page_frag_free(tx_buf->raw_buf);
|
|
else
|
|
dev_kfree_skb_any(tx_buf->skb);
|
|
if (dma_unmap_len(tx_buf, len))
|
|
dma_unmap_single(ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
} else if (dma_unmap_len(tx_buf, len)) {
|
|
dma_unmap_page(ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
tx_buf->next_to_watch = NULL;
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
/* tx_buf must be completely set up in the transmit path */
|
|
}
|
|
|
|
static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
|
|
{
|
|
return netdev_get_tx_queue(ring->netdev, ring->q_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clean_tx_ring - Free any empty Tx buffers
|
|
* @tx_ring: ring to be cleaned
|
|
*/
|
|
void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
|
|
{
|
|
u32 size;
|
|
u16 i;
|
|
|
|
if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
|
|
ice_xsk_clean_xdp_ring(tx_ring);
|
|
goto tx_skip_free;
|
|
}
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!tx_ring->tx_buf)
|
|
return;
|
|
|
|
/* Free all the Tx ring sk_buffs */
|
|
for (i = 0; i < tx_ring->count; i++)
|
|
ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
|
|
|
|
tx_skip_free:
|
|
memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
|
|
|
|
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
|
|
PAGE_SIZE);
|
|
/* Zero out the descriptor ring */
|
|
memset(tx_ring->desc, 0, size);
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
|
|
tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
|
|
|
|
if (!tx_ring->netdev)
|
|
return;
|
|
|
|
/* cleanup Tx queue statistics */
|
|
netdev_tx_reset_queue(txring_txq(tx_ring));
|
|
}
|
|
|
|
/**
|
|
* ice_free_tx_ring - Free Tx resources per queue
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
*/
|
|
void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
|
|
{
|
|
u32 size;
|
|
|
|
ice_clean_tx_ring(tx_ring);
|
|
devm_kfree(tx_ring->dev, tx_ring->tx_buf);
|
|
tx_ring->tx_buf = NULL;
|
|
|
|
if (tx_ring->desc) {
|
|
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
|
|
PAGE_SIZE);
|
|
dmam_free_coherent(tx_ring->dev, size,
|
|
tx_ring->desc, tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @tx_ring: Tx ring to clean
|
|
* @napi_budget: Used to determine if we are in netpoll
|
|
*
|
|
* Returns true if there's any budget left (e.g. the clean is finished)
|
|
*/
|
|
static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
|
|
{
|
|
unsigned int total_bytes = 0, total_pkts = 0;
|
|
unsigned int budget = ICE_DFLT_IRQ_WORK;
|
|
struct ice_vsi *vsi = tx_ring->vsi;
|
|
s16 i = tx_ring->next_to_clean;
|
|
struct ice_tx_desc *tx_desc;
|
|
struct ice_tx_buf *tx_buf;
|
|
|
|
/* get the bql data ready */
|
|
netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
|
|
|
|
tx_buf = &tx_ring->tx_buf[i];
|
|
tx_desc = ICE_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
prefetch(&vsi->state);
|
|
|
|
do {
|
|
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* follow the guidelines of other drivers */
|
|
prefetchw(&tx_buf->skb->users);
|
|
|
|
smp_rmb(); /* prevent any other reads prior to eop_desc */
|
|
|
|
ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
|
|
/* if the descriptor isn't done, no work yet to do */
|
|
if (!(eop_desc->cmd_type_offset_bsz &
|
|
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buf->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buf->bytecount;
|
|
total_pkts += tx_buf->gso_segs;
|
|
|
|
/* free the skb */
|
|
napi_consume_skb(tx_buf->skb, napi_budget);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear tx_buf data */
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_buf;
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buf, len)) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
}
|
|
}
|
|
ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_buf;
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
prefetch(tx_desc);
|
|
|
|
/* update budget accounting */
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
|
|
ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
|
|
netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
|
|
|
|
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
|
|
if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
|
|
(ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
|
|
!test_bit(ICE_VSI_DOWN, vsi->state)) {
|
|
netif_tx_wake_queue(txring_txq(tx_ring));
|
|
++tx_ring->tx_stats.restart_q;
|
|
}
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
/**
|
|
* ice_setup_tx_ring - Allocate the Tx descriptors
|
|
* @tx_ring: the Tx ring to set up
|
|
*
|
|
* Return 0 on success, negative on error
|
|
*/
|
|
int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
|
|
{
|
|
struct device *dev = tx_ring->dev;
|
|
u32 size;
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(tx_ring->tx_buf);
|
|
tx_ring->tx_buf =
|
|
devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
|
|
GFP_KERNEL);
|
|
if (!tx_ring->tx_buf)
|
|
return -ENOMEM;
|
|
|
|
/* round up to nearest page */
|
|
size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
|
|
PAGE_SIZE);
|
|
tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
|
|
GFP_KERNEL);
|
|
if (!tx_ring->desc) {
|
|
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
|
|
size);
|
|
goto err;
|
|
}
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
tx_ring->tx_stats.prev_pkt = -1;
|
|
return 0;
|
|
|
|
err:
|
|
devm_kfree(dev, tx_ring->tx_buf);
|
|
tx_ring->tx_buf = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ice_clean_rx_ring - Free Rx buffers
|
|
* @rx_ring: ring to be cleaned
|
|
*/
|
|
void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
u32 size;
|
|
u16 i;
|
|
|
|
/* ring already cleared, nothing to do */
|
|
if (!rx_ring->rx_buf)
|
|
return;
|
|
|
|
if (rx_ring->skb) {
|
|
dev_kfree_skb(rx_ring->skb);
|
|
rx_ring->skb = NULL;
|
|
}
|
|
|
|
if (rx_ring->xsk_pool) {
|
|
ice_xsk_clean_rx_ring(rx_ring);
|
|
goto rx_skip_free;
|
|
}
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
for (i = 0; i < rx_ring->count; i++) {
|
|
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
|
|
|
|
if (!rx_buf->page)
|
|
continue;
|
|
|
|
/* Invalidate cache lines that may have been written to by
|
|
* device so that we avoid corrupting memory.
|
|
*/
|
|
dma_sync_single_range_for_cpu(dev, rx_buf->dma,
|
|
rx_buf->page_offset,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* free resources associated with mapping */
|
|
dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
|
|
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
|
|
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
|
|
|
|
rx_buf->page = NULL;
|
|
rx_buf->page_offset = 0;
|
|
}
|
|
|
|
rx_skip_free:
|
|
if (rx_ring->xsk_pool)
|
|
memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
|
|
else
|
|
memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
|
|
|
|
/* Zero out the descriptor ring */
|
|
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
|
|
PAGE_SIZE);
|
|
memset(rx_ring->desc, 0, size);
|
|
|
|
rx_ring->next_to_alloc = 0;
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
}
|
|
|
|
/**
|
|
* ice_free_rx_ring - Free Rx resources
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
*/
|
|
void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
|
|
{
|
|
u32 size;
|
|
|
|
ice_clean_rx_ring(rx_ring);
|
|
if (rx_ring->vsi->type == ICE_VSI_PF)
|
|
if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
|
|
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
|
|
rx_ring->xdp_prog = NULL;
|
|
if (rx_ring->xsk_pool) {
|
|
kfree(rx_ring->xdp_buf);
|
|
rx_ring->xdp_buf = NULL;
|
|
} else {
|
|
kfree(rx_ring->rx_buf);
|
|
rx_ring->rx_buf = NULL;
|
|
}
|
|
|
|
if (rx_ring->desc) {
|
|
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
|
|
PAGE_SIZE);
|
|
dmam_free_coherent(rx_ring->dev, size,
|
|
rx_ring->desc, rx_ring->dma);
|
|
rx_ring->desc = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_setup_rx_ring - Allocate the Rx descriptors
|
|
* @rx_ring: the Rx ring to set up
|
|
*
|
|
* Return 0 on success, negative on error
|
|
*/
|
|
int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
u32 size;
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
/* warn if we are about to overwrite the pointer */
|
|
WARN_ON(rx_ring->rx_buf);
|
|
rx_ring->rx_buf =
|
|
kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
|
|
if (!rx_ring->rx_buf)
|
|
return -ENOMEM;
|
|
|
|
/* round up to nearest page */
|
|
size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
|
|
PAGE_SIZE);
|
|
rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
|
|
GFP_KERNEL);
|
|
if (!rx_ring->desc) {
|
|
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
|
|
size);
|
|
goto err;
|
|
}
|
|
|
|
rx_ring->next_to_use = 0;
|
|
rx_ring->next_to_clean = 0;
|
|
|
|
if (ice_is_xdp_ena_vsi(rx_ring->vsi))
|
|
WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
|
|
|
|
if (rx_ring->vsi->type == ICE_VSI_PF &&
|
|
!xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
|
|
if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
|
|
rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
|
|
goto err;
|
|
return 0;
|
|
|
|
err:
|
|
kfree(rx_ring->rx_buf);
|
|
rx_ring->rx_buf = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned int
|
|
ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
|
|
{
|
|
unsigned int truesize;
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
|
|
#else
|
|
truesize = rx_ring->rx_offset ?
|
|
SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
|
|
SKB_DATA_ALIGN(size);
|
|
#endif
|
|
return truesize;
|
|
}
|
|
|
|
/**
|
|
* ice_run_xdp - Executes an XDP program on initialized xdp_buff
|
|
* @rx_ring: Rx ring
|
|
* @xdp: xdp_buff used as input to the XDP program
|
|
* @xdp_prog: XDP program to run
|
|
* @xdp_ring: ring to be used for XDP_TX action
|
|
*
|
|
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
|
|
*/
|
|
static int
|
|
ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
|
|
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
|
|
{
|
|
int err;
|
|
u32 act;
|
|
|
|
act = bpf_prog_run_xdp(xdp_prog, xdp);
|
|
switch (act) {
|
|
case XDP_PASS:
|
|
return ICE_XDP_PASS;
|
|
case XDP_TX:
|
|
if (static_branch_unlikely(&ice_xdp_locking_key))
|
|
spin_lock(&xdp_ring->tx_lock);
|
|
err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
|
|
if (static_branch_unlikely(&ice_xdp_locking_key))
|
|
spin_unlock(&xdp_ring->tx_lock);
|
|
if (err == ICE_XDP_CONSUMED)
|
|
goto out_failure;
|
|
return err;
|
|
case XDP_REDIRECT:
|
|
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
|
|
if (err)
|
|
goto out_failure;
|
|
return ICE_XDP_REDIR;
|
|
default:
|
|
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_ABORTED:
|
|
out_failure:
|
|
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_DROP:
|
|
return ICE_XDP_CONSUMED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_xdp_xmit - submit packets to XDP ring for transmission
|
|
* @dev: netdev
|
|
* @n: number of XDP frames to be transmitted
|
|
* @frames: XDP frames to be transmitted
|
|
* @flags: transmit flags
|
|
*
|
|
* Returns number of frames successfully sent. Failed frames
|
|
* will be free'ed by XDP core.
|
|
* For error cases, a negative errno code is returned and no-frames
|
|
* are transmitted (caller must handle freeing frames).
|
|
*/
|
|
int
|
|
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
|
|
u32 flags)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(dev);
|
|
unsigned int queue_index = smp_processor_id();
|
|
struct ice_vsi *vsi = np->vsi;
|
|
struct ice_tx_ring *xdp_ring;
|
|
int nxmit = 0, i;
|
|
|
|
if (test_bit(ICE_VSI_DOWN, vsi->state))
|
|
return -ENETDOWN;
|
|
|
|
if (!ice_is_xdp_ena_vsi(vsi))
|
|
return -ENXIO;
|
|
|
|
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
|
|
return -EINVAL;
|
|
|
|
if (static_branch_unlikely(&ice_xdp_locking_key)) {
|
|
queue_index %= vsi->num_xdp_txq;
|
|
xdp_ring = vsi->xdp_rings[queue_index];
|
|
spin_lock(&xdp_ring->tx_lock);
|
|
} else {
|
|
/* Generally, should not happen */
|
|
if (unlikely(queue_index >= vsi->num_xdp_txq))
|
|
return -ENXIO;
|
|
xdp_ring = vsi->xdp_rings[queue_index];
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
struct xdp_frame *xdpf = frames[i];
|
|
int err;
|
|
|
|
err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
|
|
if (err != ICE_XDP_TX)
|
|
break;
|
|
nxmit++;
|
|
}
|
|
|
|
if (unlikely(flags & XDP_XMIT_FLUSH))
|
|
ice_xdp_ring_update_tail(xdp_ring);
|
|
|
|
if (static_branch_unlikely(&ice_xdp_locking_key))
|
|
spin_unlock(&xdp_ring->tx_lock);
|
|
|
|
return nxmit;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_mapped_page - recycle or make a new page
|
|
* @rx_ring: ring to use
|
|
* @bi: rx_buf struct to modify
|
|
*
|
|
* Returns true if the page was successfully allocated or
|
|
* reused.
|
|
*/
|
|
static bool
|
|
ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
|
|
{
|
|
struct page *page = bi->page;
|
|
dma_addr_t dma;
|
|
|
|
/* since we are recycling buffers we should seldom need to alloc */
|
|
if (likely(page))
|
|
return true;
|
|
|
|
/* alloc new page for storage */
|
|
page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
|
|
if (unlikely(!page)) {
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
return false;
|
|
}
|
|
|
|
/* map page for use */
|
|
dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
|
|
DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
|
|
|
|
/* if mapping failed free memory back to system since
|
|
* there isn't much point in holding memory we can't use
|
|
*/
|
|
if (dma_mapping_error(rx_ring->dev, dma)) {
|
|
__free_pages(page, ice_rx_pg_order(rx_ring));
|
|
rx_ring->rx_stats.alloc_page_failed++;
|
|
return false;
|
|
}
|
|
|
|
bi->dma = dma;
|
|
bi->page = page;
|
|
bi->page_offset = rx_ring->rx_offset;
|
|
page_ref_add(page, USHRT_MAX - 1);
|
|
bi->pagecnt_bias = USHRT_MAX;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_rx_bufs - Replace used receive buffers
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
*
|
|
* Returns false if all allocations were successful, true if any fail. Returning
|
|
* true signals to the caller that we didn't replace cleaned_count buffers and
|
|
* there is more work to do.
|
|
*
|
|
* First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
|
|
* buffers. Then bump tail at most one time. Grouping like this lets us avoid
|
|
* multiple tail writes per call.
|
|
*/
|
|
bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
union ice_32b_rx_flex_desc *rx_desc;
|
|
u16 ntu = rx_ring->next_to_use;
|
|
struct ice_rx_buf *bi;
|
|
|
|
/* do nothing if no valid netdev defined */
|
|
if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
|
|
!cleaned_count)
|
|
return false;
|
|
|
|
/* get the Rx descriptor and buffer based on next_to_use */
|
|
rx_desc = ICE_RX_DESC(rx_ring, ntu);
|
|
bi = &rx_ring->rx_buf[ntu];
|
|
|
|
do {
|
|
/* if we fail here, we have work remaining */
|
|
if (!ice_alloc_mapped_page(rx_ring, bi))
|
|
break;
|
|
|
|
/* sync the buffer for use by the device */
|
|
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
|
|
bi->page_offset,
|
|
rx_ring->rx_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
|
* because each write-back erases this info.
|
|
*/
|
|
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
|
|
|
|
rx_desc++;
|
|
bi++;
|
|
ntu++;
|
|
if (unlikely(ntu == rx_ring->count)) {
|
|
rx_desc = ICE_RX_DESC(rx_ring, 0);
|
|
bi = rx_ring->rx_buf;
|
|
ntu = 0;
|
|
}
|
|
|
|
/* clear the status bits for the next_to_use descriptor */
|
|
rx_desc->wb.status_error0 = 0;
|
|
|
|
cleaned_count--;
|
|
} while (cleaned_count);
|
|
|
|
if (rx_ring->next_to_use != ntu)
|
|
ice_release_rx_desc(rx_ring, ntu);
|
|
|
|
return !!cleaned_count;
|
|
}
|
|
|
|
/**
|
|
* ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
|
|
* @rx_buf: Rx buffer to adjust
|
|
* @size: Size of adjustment
|
|
*
|
|
* Update the offset within page so that Rx buf will be ready to be reused.
|
|
* For systems with PAGE_SIZE < 8192 this function will flip the page offset
|
|
* so the second half of page assigned to Rx buffer will be used, otherwise
|
|
* the offset is moved by "size" bytes
|
|
*/
|
|
static void
|
|
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
|
|
{
|
|
#if (PAGE_SIZE < 8192)
|
|
/* flip page offset to other buffer */
|
|
rx_buf->page_offset ^= size;
|
|
#else
|
|
/* move offset up to the next cache line */
|
|
rx_buf->page_offset += size;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* ice_can_reuse_rx_page - Determine if page can be reused for another Rx
|
|
* @rx_buf: buffer containing the page
|
|
* @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
|
|
*
|
|
* If page is reusable, we have a green light for calling ice_reuse_rx_page,
|
|
* which will assign the current buffer to the buffer that next_to_alloc is
|
|
* pointing to; otherwise, the DMA mapping needs to be destroyed and
|
|
* page freed
|
|
*/
|
|
static bool
|
|
ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
|
|
{
|
|
unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
|
|
struct page *page = rx_buf->page;
|
|
|
|
/* avoid re-using remote and pfmemalloc pages */
|
|
if (!dev_page_is_reusable(page))
|
|
return false;
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
/* if we are only owner of page we can reuse it */
|
|
if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
|
|
return false;
|
|
#else
|
|
#define ICE_LAST_OFFSET \
|
|
(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
|
|
if (rx_buf->page_offset > ICE_LAST_OFFSET)
|
|
return false;
|
|
#endif /* PAGE_SIZE < 8192) */
|
|
|
|
/* If we have drained the page fragment pool we need to update
|
|
* the pagecnt_bias and page count so that we fully restock the
|
|
* number of references the driver holds.
|
|
*/
|
|
if (unlikely(pagecnt_bias == 1)) {
|
|
page_ref_add(page, USHRT_MAX - 1);
|
|
rx_buf->pagecnt_bias = USHRT_MAX;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @rx_buf: buffer containing page to add
|
|
* @skb: sk_buff to place the data into
|
|
* @size: packet length from rx_desc
|
|
*
|
|
* This function will add the data contained in rx_buf->page to the skb.
|
|
* It will just attach the page as a frag to the skb.
|
|
* The function will then update the page offset.
|
|
*/
|
|
static void
|
|
ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
|
|
struct sk_buff *skb, unsigned int size)
|
|
{
|
|
#if (PAGE_SIZE >= 8192)
|
|
unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
|
|
#else
|
|
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
|
|
#endif
|
|
|
|
if (!size)
|
|
return;
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
|
|
rx_buf->page_offset, size, truesize);
|
|
|
|
/* page is being used so we must update the page offset */
|
|
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
|
|
}
|
|
|
|
/**
|
|
* ice_reuse_rx_page - page flip buffer and store it back on the ring
|
|
* @rx_ring: Rx descriptor ring to store buffers on
|
|
* @old_buf: donor buffer to have page reused
|
|
*
|
|
* Synchronizes page for reuse by the adapter
|
|
*/
|
|
static void
|
|
ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
|
|
{
|
|
u16 nta = rx_ring->next_to_alloc;
|
|
struct ice_rx_buf *new_buf;
|
|
|
|
new_buf = &rx_ring->rx_buf[nta];
|
|
|
|
/* update, and store next to alloc */
|
|
nta++;
|
|
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
|
|
|
|
/* Transfer page from old buffer to new buffer.
|
|
* Move each member individually to avoid possible store
|
|
* forwarding stalls and unnecessary copy of skb.
|
|
*/
|
|
new_buf->dma = old_buf->dma;
|
|
new_buf->page = old_buf->page;
|
|
new_buf->page_offset = old_buf->page_offset;
|
|
new_buf->pagecnt_bias = old_buf->pagecnt_bias;
|
|
}
|
|
|
|
/**
|
|
* ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @size: size of buffer to add to skb
|
|
* @rx_buf_pgcnt: rx_buf page refcount
|
|
*
|
|
* This function will pull an Rx buffer from the ring and synchronize it
|
|
* for use by the CPU.
|
|
*/
|
|
static struct ice_rx_buf *
|
|
ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
|
|
int *rx_buf_pgcnt)
|
|
{
|
|
struct ice_rx_buf *rx_buf;
|
|
|
|
rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
|
|
*rx_buf_pgcnt =
|
|
#if (PAGE_SIZE < 8192)
|
|
page_count(rx_buf->page);
|
|
#else
|
|
0;
|
|
#endif
|
|
prefetchw(rx_buf->page);
|
|
|
|
if (!size)
|
|
return rx_buf;
|
|
/* we are reusing so sync this buffer for CPU use */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
|
|
rx_buf->page_offset, size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* We have pulled a buffer for use, so decrement pagecnt_bias */
|
|
rx_buf->pagecnt_bias--;
|
|
|
|
return rx_buf;
|
|
}
|
|
|
|
/**
|
|
* ice_build_skb - Build skb around an existing buffer
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @rx_buf: Rx buffer to pull data from
|
|
* @xdp: xdp_buff pointing to the data
|
|
*
|
|
* This function builds an skb around an existing Rx buffer, taking care
|
|
* to set up the skb correctly and avoid any memcpy overhead.
|
|
*/
|
|
static struct sk_buff *
|
|
ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
|
|
struct xdp_buff *xdp)
|
|
{
|
|
u8 metasize = xdp->data - xdp->data_meta;
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
|
|
#else
|
|
unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
|
|
SKB_DATA_ALIGN(xdp->data_end -
|
|
xdp->data_hard_start);
|
|
#endif
|
|
struct sk_buff *skb;
|
|
|
|
/* Prefetch first cache line of first page. If xdp->data_meta
|
|
* is unused, this points exactly as xdp->data, otherwise we
|
|
* likely have a consumer accessing first few bytes of meta
|
|
* data, and then actual data.
|
|
*/
|
|
net_prefetch(xdp->data_meta);
|
|
/* build an skb around the page buffer */
|
|
skb = napi_build_skb(xdp->data_hard_start, truesize);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* must to record Rx queue, otherwise OS features such as
|
|
* symmetric queue won't work
|
|
*/
|
|
skb_record_rx_queue(skb, rx_ring->q_index);
|
|
|
|
/* update pointers within the skb to store the data */
|
|
skb_reserve(skb, xdp->data - xdp->data_hard_start);
|
|
__skb_put(skb, xdp->data_end - xdp->data);
|
|
if (metasize)
|
|
skb_metadata_set(skb, metasize);
|
|
|
|
/* buffer is used by skb, update page_offset */
|
|
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* ice_construct_skb - Allocate skb and populate it
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @rx_buf: Rx buffer to pull data from
|
|
* @xdp: xdp_buff pointing to the data
|
|
*
|
|
* This function allocates an skb. It then populates it with the page
|
|
* data from the current receive descriptor, taking care to set up the
|
|
* skb correctly.
|
|
*/
|
|
static struct sk_buff *
|
|
ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
|
|
struct xdp_buff *xdp)
|
|
{
|
|
unsigned int metasize = xdp->data - xdp->data_meta;
|
|
unsigned int size = xdp->data_end - xdp->data;
|
|
unsigned int headlen;
|
|
struct sk_buff *skb;
|
|
|
|
/* prefetch first cache line of first page */
|
|
net_prefetch(xdp->data_meta);
|
|
|
|
/* allocate a skb to store the frags */
|
|
skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
|
|
ICE_RX_HDR_SIZE + metasize,
|
|
GFP_ATOMIC | __GFP_NOWARN);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
skb_record_rx_queue(skb, rx_ring->q_index);
|
|
/* Determine available headroom for copy */
|
|
headlen = size;
|
|
if (headlen > ICE_RX_HDR_SIZE)
|
|
headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
|
|
|
|
/* align pull length to size of long to optimize memcpy performance */
|
|
memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
|
|
ALIGN(headlen + metasize, sizeof(long)));
|
|
|
|
if (metasize) {
|
|
skb_metadata_set(skb, metasize);
|
|
__skb_pull(skb, metasize);
|
|
}
|
|
|
|
/* if we exhaust the linear part then add what is left as a frag */
|
|
size -= headlen;
|
|
if (size) {
|
|
#if (PAGE_SIZE >= 8192)
|
|
unsigned int truesize = SKB_DATA_ALIGN(size);
|
|
#else
|
|
unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
|
|
#endif
|
|
skb_add_rx_frag(skb, 0, rx_buf->page,
|
|
rx_buf->page_offset + headlen, size, truesize);
|
|
/* buffer is used by skb, update page_offset */
|
|
ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
|
|
} else {
|
|
/* buffer is unused, reset bias back to rx_buf; data was copied
|
|
* onto skb's linear part so there's no need for adjusting
|
|
* page offset and we can reuse this buffer as-is
|
|
*/
|
|
rx_buf->pagecnt_bias++;
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* ice_put_rx_buf - Clean up used buffer and either recycle or free
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @rx_buf: Rx buffer to pull data from
|
|
* @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
|
|
*
|
|
* This function will update next_to_clean and then clean up the contents
|
|
* of the rx_buf. It will either recycle the buffer or unmap it and free
|
|
* the associated resources.
|
|
*/
|
|
static void
|
|
ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
|
|
int rx_buf_pgcnt)
|
|
{
|
|
u16 ntc = rx_ring->next_to_clean + 1;
|
|
|
|
/* fetch, update, and store next to clean */
|
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
|
rx_ring->next_to_clean = ntc;
|
|
|
|
if (!rx_buf)
|
|
return;
|
|
|
|
if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
|
|
/* hand second half of page back to the ring */
|
|
ice_reuse_rx_page(rx_ring, rx_buf);
|
|
} else {
|
|
/* we are not reusing the buffer so unmap it */
|
|
dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
|
|
ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
|
|
ICE_RX_DMA_ATTR);
|
|
__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
|
|
}
|
|
|
|
/* clear contents of buffer_info */
|
|
rx_buf->page = NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_is_non_eop - process handling of non-EOP buffers
|
|
* @rx_ring: Rx ring being processed
|
|
* @rx_desc: Rx descriptor for current buffer
|
|
*
|
|
* If the buffer is an EOP buffer, this function exits returning false,
|
|
* otherwise return true indicating that this is in fact a non-EOP buffer.
|
|
*/
|
|
static bool
|
|
ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
|
|
{
|
|
/* if we are the last buffer then there is nothing else to do */
|
|
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
|
|
if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
|
|
return false;
|
|
|
|
rx_ring->rx_stats.non_eop_descs++;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
|
|
* @rx_ring: Rx descriptor ring to transact packets on
|
|
* @budget: Total limit on number of packets to process
|
|
*
|
|
* This function provides a "bounce buffer" approach to Rx interrupt
|
|
* processing. The advantage to this is that on systems that have
|
|
* expensive overhead for IOMMU access this provides a means of avoiding
|
|
* it by maintaining the mapping of the page to the system.
|
|
*
|
|
* Returns amount of work completed
|
|
*/
|
|
int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
|
|
u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
|
|
unsigned int offset = rx_ring->rx_offset;
|
|
struct ice_tx_ring *xdp_ring = NULL;
|
|
unsigned int xdp_res, xdp_xmit = 0;
|
|
struct sk_buff *skb = rx_ring->skb;
|
|
struct bpf_prog *xdp_prog = NULL;
|
|
struct xdp_buff xdp;
|
|
bool failure;
|
|
|
|
/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
|
|
#if (PAGE_SIZE < 8192)
|
|
frame_sz = ice_rx_frame_truesize(rx_ring, 0);
|
|
#endif
|
|
xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
|
|
|
|
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
|
|
if (xdp_prog)
|
|
xdp_ring = rx_ring->xdp_ring;
|
|
|
|
/* start the loop to process Rx packets bounded by 'budget' */
|
|
while (likely(total_rx_pkts < (unsigned int)budget)) {
|
|
union ice_32b_rx_flex_desc *rx_desc;
|
|
struct ice_rx_buf *rx_buf;
|
|
unsigned char *hard_start;
|
|
unsigned int size;
|
|
u16 stat_err_bits;
|
|
int rx_buf_pgcnt;
|
|
u16 vlan_tag = 0;
|
|
u16 rx_ptype;
|
|
|
|
/* get the Rx desc from Rx ring based on 'next_to_clean' */
|
|
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
|
|
/* status_error_len will always be zero for unused descriptors
|
|
* because it's cleared in cleanup, and overlaps with hdr_addr
|
|
* which is always zero because packet split isn't used, if the
|
|
* hardware wrote DD then it will be non-zero
|
|
*/
|
|
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
|
|
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* DD bit is set.
|
|
*/
|
|
dma_rmb();
|
|
|
|
ice_trace(clean_rx_irq, rx_ring, rx_desc);
|
|
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
|
|
struct ice_vsi *ctrl_vsi = rx_ring->vsi;
|
|
|
|
if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
|
|
ctrl_vsi->vf)
|
|
ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
|
|
ice_put_rx_buf(rx_ring, NULL, 0);
|
|
cleaned_count++;
|
|
continue;
|
|
}
|
|
|
|
size = le16_to_cpu(rx_desc->wb.pkt_len) &
|
|
ICE_RX_FLX_DESC_PKT_LEN_M;
|
|
|
|
/* retrieve a buffer from the ring */
|
|
rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
|
|
|
|
if (!size) {
|
|
xdp.data = NULL;
|
|
xdp.data_end = NULL;
|
|
xdp.data_hard_start = NULL;
|
|
xdp.data_meta = NULL;
|
|
goto construct_skb;
|
|
}
|
|
|
|
hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
|
|
offset;
|
|
xdp_prepare_buff(&xdp, hard_start, offset, size, true);
|
|
#if (PAGE_SIZE > 4096)
|
|
/* At larger PAGE_SIZE, frame_sz depend on len size */
|
|
xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
|
|
#endif
|
|
|
|
if (!xdp_prog)
|
|
goto construct_skb;
|
|
|
|
xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
|
|
if (!xdp_res)
|
|
goto construct_skb;
|
|
if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
|
|
xdp_xmit |= xdp_res;
|
|
ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
|
|
} else {
|
|
rx_buf->pagecnt_bias++;
|
|
}
|
|
total_rx_bytes += size;
|
|
total_rx_pkts++;
|
|
|
|
cleaned_count++;
|
|
ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
|
|
continue;
|
|
construct_skb:
|
|
if (skb) {
|
|
ice_add_rx_frag(rx_ring, rx_buf, skb, size);
|
|
} else if (likely(xdp.data)) {
|
|
if (ice_ring_uses_build_skb(rx_ring))
|
|
skb = ice_build_skb(rx_ring, rx_buf, &xdp);
|
|
else
|
|
skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
|
|
}
|
|
/* exit if we failed to retrieve a buffer */
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_buf_failed++;
|
|
if (rx_buf)
|
|
rx_buf->pagecnt_bias++;
|
|
break;
|
|
}
|
|
|
|
ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
|
|
cleaned_count++;
|
|
|
|
/* skip if it is NOP desc */
|
|
if (ice_is_non_eop(rx_ring, rx_desc))
|
|
continue;
|
|
|
|
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
|
|
if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
|
|
stat_err_bits))) {
|
|
dev_kfree_skb_any(skb);
|
|
continue;
|
|
}
|
|
|
|
vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
|
|
|
|
/* pad the skb if needed, to make a valid ethernet frame */
|
|
if (eth_skb_pad(skb)) {
|
|
skb = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
|
|
/* populate checksum, VLAN, and protocol */
|
|
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
|
|
ICE_RX_FLEX_DESC_PTYPE_M;
|
|
|
|
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
|
|
|
|
ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
|
|
/* send completed skb up the stack */
|
|
ice_receive_skb(rx_ring, skb, vlan_tag);
|
|
skb = NULL;
|
|
|
|
/* update budget accounting */
|
|
total_rx_pkts++;
|
|
}
|
|
|
|
/* return up to cleaned_count buffers to hardware */
|
|
failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
|
|
|
|
if (xdp_prog)
|
|
ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
|
|
rx_ring->skb = skb;
|
|
|
|
ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
|
|
|
|
/* guarantee a trip back through this routine if there was a failure */
|
|
return failure ? budget : (int)total_rx_pkts;
|
|
}
|
|
|
|
static void __ice_update_sample(struct ice_q_vector *q_vector,
|
|
struct ice_ring_container *rc,
|
|
struct dim_sample *sample,
|
|
bool is_tx)
|
|
{
|
|
u64 packets = 0, bytes = 0;
|
|
|
|
if (is_tx) {
|
|
struct ice_tx_ring *tx_ring;
|
|
|
|
ice_for_each_tx_ring(tx_ring, *rc) {
|
|
packets += tx_ring->stats.pkts;
|
|
bytes += tx_ring->stats.bytes;
|
|
}
|
|
} else {
|
|
struct ice_rx_ring *rx_ring;
|
|
|
|
ice_for_each_rx_ring(rx_ring, *rc) {
|
|
packets += rx_ring->stats.pkts;
|
|
bytes += rx_ring->stats.bytes;
|
|
}
|
|
}
|
|
|
|
dim_update_sample(q_vector->total_events, packets, bytes, sample);
|
|
sample->comp_ctr = 0;
|
|
|
|
/* if dim settings get stale, like when not updated for 1
|
|
* second or longer, force it to start again. This addresses the
|
|
* frequent case of an idle queue being switched to by the
|
|
* scheduler. The 1,000 here means 1,000 milliseconds.
|
|
*/
|
|
if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
|
|
rc->dim.state = DIM_START_MEASURE;
|
|
}
|
|
|
|
/**
|
|
* ice_net_dim - Update net DIM algorithm
|
|
* @q_vector: the vector associated with the interrupt
|
|
*
|
|
* Create a DIM sample and notify net_dim() so that it can possibly decide
|
|
* a new ITR value based on incoming packets, bytes, and interrupts.
|
|
*
|
|
* This function is a no-op if the ring is not configured to dynamic ITR.
|
|
*/
|
|
static void ice_net_dim(struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_ring_container *tx = &q_vector->tx;
|
|
struct ice_ring_container *rx = &q_vector->rx;
|
|
|
|
if (ITR_IS_DYNAMIC(tx)) {
|
|
struct dim_sample dim_sample;
|
|
|
|
__ice_update_sample(q_vector, tx, &dim_sample, true);
|
|
net_dim(&tx->dim, dim_sample);
|
|
}
|
|
|
|
if (ITR_IS_DYNAMIC(rx)) {
|
|
struct dim_sample dim_sample;
|
|
|
|
__ice_update_sample(q_vector, rx, &dim_sample, false);
|
|
net_dim(&rx->dim, dim_sample);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
|
|
* @itr_idx: interrupt throttling index
|
|
* @itr: interrupt throttling value in usecs
|
|
*/
|
|
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
|
|
{
|
|
/* The ITR value is reported in microseconds, and the register value is
|
|
* recorded in 2 microsecond units. For this reason we only need to
|
|
* shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
|
|
* granularity as a shift instead of division. The mask makes sure the
|
|
* ITR value is never odd so we don't accidentally write into the field
|
|
* prior to the ITR field.
|
|
*/
|
|
itr &= ICE_ITR_MASK;
|
|
|
|
return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
|
|
(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
|
|
(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
|
|
}
|
|
|
|
/**
|
|
* ice_enable_interrupt - re-enable MSI-X interrupt
|
|
* @q_vector: the vector associated with the interrupt to enable
|
|
*
|
|
* If the VSI is down, the interrupt will not be re-enabled. Also,
|
|
* when enabling the interrupt always reset the wb_on_itr to false
|
|
* and trigger a software interrupt to clean out internal state.
|
|
*/
|
|
static void ice_enable_interrupt(struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_vsi *vsi = q_vector->vsi;
|
|
bool wb_en = q_vector->wb_on_itr;
|
|
u32 itr_val;
|
|
|
|
if (test_bit(ICE_DOWN, vsi->state))
|
|
return;
|
|
|
|
/* trigger an ITR delayed software interrupt when exiting busy poll, to
|
|
* make sure to catch any pending cleanups that might have been missed
|
|
* due to interrupt state transition. If busy poll or poll isn't
|
|
* enabled, then don't update ITR, and just enable the interrupt.
|
|
*/
|
|
if (!wb_en) {
|
|
itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
|
|
} else {
|
|
q_vector->wb_on_itr = false;
|
|
|
|
/* do two things here with a single write. Set up the third ITR
|
|
* index to be used for software interrupt moderation, and then
|
|
* trigger a software interrupt with a rate limit of 20K on
|
|
* software interrupts, this will help avoid high interrupt
|
|
* loads due to frequently polling and exiting polling.
|
|
*/
|
|
itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
|
|
itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
|
|
ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
|
|
GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
|
|
}
|
|
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
|
|
}
|
|
|
|
/**
|
|
* ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
|
|
* @q_vector: q_vector to set WB_ON_ITR on
|
|
*
|
|
* We need to tell hardware to write-back completed descriptors even when
|
|
* interrupts are disabled. Descriptors will be written back on cache line
|
|
* boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
|
|
* descriptors may not be written back if they don't fill a cache line until
|
|
* the next interrupt.
|
|
*
|
|
* This sets the write-back frequency to whatever was set previously for the
|
|
* ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
|
|
* aren't meddling with the INTENA_M bit.
|
|
*/
|
|
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_vsi *vsi = q_vector->vsi;
|
|
|
|
/* already in wb_on_itr mode no need to change it */
|
|
if (q_vector->wb_on_itr)
|
|
return;
|
|
|
|
/* use previously set ITR values for all of the ITR indices by
|
|
* specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
|
|
* be static in non-adaptive mode (user configured)
|
|
*/
|
|
wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
|
|
((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
|
|
GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
|
|
GLINT_DYN_CTL_WB_ON_ITR_M);
|
|
|
|
q_vector->wb_on_itr = true;
|
|
}
|
|
|
|
/**
|
|
* ice_napi_poll - NAPI polling Rx/Tx cleanup routine
|
|
* @napi: napi struct with our devices info in it
|
|
* @budget: amount of work driver is allowed to do this pass, in packets
|
|
*
|
|
* This function will clean all queues associated with a q_vector.
|
|
*
|
|
* Returns the amount of work done
|
|
*/
|
|
int ice_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct ice_q_vector *q_vector =
|
|
container_of(napi, struct ice_q_vector, napi);
|
|
struct ice_tx_ring *tx_ring;
|
|
struct ice_rx_ring *rx_ring;
|
|
bool clean_complete = true;
|
|
int budget_per_ring;
|
|
int work_done = 0;
|
|
|
|
/* Since the actual Tx work is minimal, we can give the Tx a larger
|
|
* budget and be more aggressive about cleaning up the Tx descriptors.
|
|
*/
|
|
ice_for_each_tx_ring(tx_ring, q_vector->tx) {
|
|
bool wd;
|
|
|
|
if (tx_ring->xsk_pool)
|
|
wd = ice_xmit_zc(tx_ring);
|
|
else if (ice_ring_is_xdp(tx_ring))
|
|
wd = true;
|
|
else
|
|
wd = ice_clean_tx_irq(tx_ring, budget);
|
|
|
|
if (!wd)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* Handle case where we are called by netpoll with a budget of 0 */
|
|
if (unlikely(budget <= 0))
|
|
return budget;
|
|
|
|
/* normally we have 1 Rx ring per q_vector */
|
|
if (unlikely(q_vector->num_ring_rx > 1))
|
|
/* We attempt to distribute budget to each Rx queue fairly, but
|
|
* don't allow the budget to go below 1 because that would exit
|
|
* polling early.
|
|
*/
|
|
budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
|
|
else
|
|
/* Max of 1 Rx ring in this q_vector so give it the budget */
|
|
budget_per_ring = budget;
|
|
|
|
ice_for_each_rx_ring(rx_ring, q_vector->rx) {
|
|
int cleaned;
|
|
|
|
/* A dedicated path for zero-copy allows making a single
|
|
* comparison in the irq context instead of many inside the
|
|
* ice_clean_rx_irq function and makes the codebase cleaner.
|
|
*/
|
|
cleaned = rx_ring->xsk_pool ?
|
|
ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
|
|
ice_clean_rx_irq(rx_ring, budget_per_ring);
|
|
work_done += cleaned;
|
|
/* if we clean as many as budgeted, we must not be done */
|
|
if (cleaned >= budget_per_ring)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* If work not completed, return budget and polling will return */
|
|
if (!clean_complete) {
|
|
/* Set the writeback on ITR so partial completions of
|
|
* cache-lines will still continue even if we're polling.
|
|
*/
|
|
ice_set_wb_on_itr(q_vector);
|
|
return budget;
|
|
}
|
|
|
|
/* Exit the polling mode, but don't re-enable interrupts if stack might
|
|
* poll us due to busy-polling
|
|
*/
|
|
if (napi_complete_done(napi, work_done)) {
|
|
ice_net_dim(q_vector);
|
|
ice_enable_interrupt(q_vector);
|
|
} else {
|
|
ice_set_wb_on_itr(q_vector);
|
|
}
|
|
|
|
return min_t(int, work_done, budget - 1);
|
|
}
|
|
|
|
/**
|
|
* __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
|
|
* @tx_ring: the ring to be checked
|
|
* @size: the size buffer we want to assure is available
|
|
*
|
|
* Returns -EBUSY if a stop is needed, else 0
|
|
*/
|
|
static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
|
|
{
|
|
netif_tx_stop_queue(txring_txq(tx_ring));
|
|
/* Memory barrier before checking head and tail */
|
|
smp_mb();
|
|
|
|
/* Check again in a case another CPU has just made room available. */
|
|
if (likely(ICE_DESC_UNUSED(tx_ring) < size))
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
|
netif_tx_start_queue(txring_txq(tx_ring));
|
|
++tx_ring->tx_stats.restart_q;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_maybe_stop_tx - 1st level check for Tx stop conditions
|
|
* @tx_ring: the ring to be checked
|
|
* @size: the size buffer we want to assure is available
|
|
*
|
|
* Returns 0 if stop is not needed
|
|
*/
|
|
static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
|
|
{
|
|
if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
|
|
return 0;
|
|
|
|
return __ice_maybe_stop_tx(tx_ring, size);
|
|
}
|
|
|
|
/**
|
|
* ice_tx_map - Build the Tx descriptor
|
|
* @tx_ring: ring to send buffer on
|
|
* @first: first buffer info buffer to use
|
|
* @off: pointer to struct that holds offload parameters
|
|
*
|
|
* This function loops over the skb data pointed to by *first
|
|
* and gets a physical address for each memory location and programs
|
|
* it and the length into the transmit descriptor.
|
|
*/
|
|
static void
|
|
ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
|
|
struct ice_tx_offload_params *off)
|
|
{
|
|
u64 td_offset, td_tag, td_cmd;
|
|
u16 i = tx_ring->next_to_use;
|
|
unsigned int data_len, size;
|
|
struct ice_tx_desc *tx_desc;
|
|
struct ice_tx_buf *tx_buf;
|
|
struct sk_buff *skb;
|
|
skb_frag_t *frag;
|
|
dma_addr_t dma;
|
|
bool kick;
|
|
|
|
td_tag = off->td_l2tag1;
|
|
td_cmd = off->td_cmd;
|
|
td_offset = off->td_offset;
|
|
skb = first->skb;
|
|
|
|
data_len = skb->data_len;
|
|
size = skb_headlen(skb);
|
|
|
|
tx_desc = ICE_TX_DESC(tx_ring, i);
|
|
|
|
if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
|
|
td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
|
|
td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
|
|
ICE_TX_FLAGS_VLAN_S;
|
|
}
|
|
|
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
|
|
|
tx_buf = first;
|
|
|
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
|
unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
|
|
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_buf, len, size);
|
|
dma_unmap_addr_set(tx_buf, dma, dma);
|
|
|
|
/* align size to end of page */
|
|
max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
|
|
/* account for data chunks larger than the hardware
|
|
* can handle
|
|
*/
|
|
while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
|
|
tx_desc->cmd_type_offset_bsz =
|
|
ice_build_ctob(td_cmd, td_offset, max_data,
|
|
td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
dma += max_data;
|
|
size -= max_data;
|
|
|
|
max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
|
|
size, td_tag);
|
|
|
|
tx_desc++;
|
|
i++;
|
|
|
|
if (i == tx_ring->count) {
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
size = skb_frag_size(frag);
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
|
DMA_TO_DEVICE);
|
|
|
|
tx_buf = &tx_ring->tx_buf[i];
|
|
}
|
|
|
|
/* record SW timestamp if HW timestamp is not available */
|
|
skb_tx_timestamp(first->skb);
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
|
|
/* write last descriptor with RS and EOP bits */
|
|
td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
|
|
tx_desc->cmd_type_offset_bsz =
|
|
ice_build_ctob(td_cmd, td_offset, size, td_tag);
|
|
|
|
/* Force memory writes to complete before letting h/w know there
|
|
* are new descriptors to fetch.
|
|
*
|
|
* We also use this memory barrier to make certain all of the
|
|
* status bits have been updated before next_to_watch is written.
|
|
*/
|
|
wmb();
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
|
/* notify HW of packet */
|
|
kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
|
|
netdev_xmit_more());
|
|
if (kick)
|
|
/* notify HW of packet */
|
|
writel(i, tx_ring->tail);
|
|
|
|
return;
|
|
|
|
dma_error:
|
|
/* clear DMA mappings for failed tx_buf map */
|
|
for (;;) {
|
|
tx_buf = &tx_ring->tx_buf[i];
|
|
ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
|
|
if (tx_buf == first)
|
|
break;
|
|
if (i == 0)
|
|
i = tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
/**
|
|
* ice_tx_csum - Enable Tx checksum offloads
|
|
* @first: pointer to the first descriptor
|
|
* @off: pointer to struct that holds offload parameters
|
|
*
|
|
* Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
|
|
*/
|
|
static
|
|
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
|
|
{
|
|
u32 l4_len = 0, l3_len = 0, l2_len = 0;
|
|
struct sk_buff *skb = first->skb;
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
__be16 frag_off, protocol;
|
|
unsigned char *exthdr;
|
|
u32 offset, cmd = 0;
|
|
u8 l4_proto = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
protocol = vlan_get_protocol(skb);
|
|
|
|
if (eth_p_mpls(protocol)) {
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
l4.hdr = skb_checksum_start(skb);
|
|
} else {
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_transport_header(skb);
|
|
}
|
|
|
|
/* compute outer L2 header size */
|
|
l2_len = ip.hdr - skb->data;
|
|
offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
|
|
|
|
/* set the tx_flags to indicate the IP protocol type. this is
|
|
* required so that checksum header computation below is accurate.
|
|
*/
|
|
if (ip.v4->version == 4)
|
|
first->tx_flags |= ICE_TX_FLAGS_IPV4;
|
|
else if (ip.v6->version == 6)
|
|
first->tx_flags |= ICE_TX_FLAGS_IPV6;
|
|
|
|
if (skb->encapsulation) {
|
|
bool gso_ena = false;
|
|
u32 tunnel = 0;
|
|
|
|
/* define outer network header type */
|
|
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
|
|
tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
|
|
ICE_TX_CTX_EIPT_IPV4 :
|
|
ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
|
|
l4_proto = ip.v4->protocol;
|
|
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
|
|
int ret;
|
|
|
|
tunnel |= ICE_TX_CTX_EIPT_IPV6;
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
|
|
&l4_proto, &frag_off);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
|
|
/* define outer transport */
|
|
switch (l4_proto) {
|
|
case IPPROTO_UDP:
|
|
tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
|
|
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
|
|
break;
|
|
case IPPROTO_GRE:
|
|
tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
|
|
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
|
|
break;
|
|
case IPPROTO_IPIP:
|
|
case IPPROTO_IPV6:
|
|
first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
|
|
l4.hdr = skb_inner_network_header(skb);
|
|
break;
|
|
default:
|
|
if (first->tx_flags & ICE_TX_FLAGS_TSO)
|
|
return -1;
|
|
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
/* compute outer L3 header size */
|
|
tunnel |= ((l4.hdr - ip.hdr) / 4) <<
|
|
ICE_TXD_CTX_QW0_EIPLEN_S;
|
|
|
|
/* switch IP header pointer from outer to inner header */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
|
|
/* compute tunnel header size */
|
|
tunnel |= ((ip.hdr - l4.hdr) / 2) <<
|
|
ICE_TXD_CTX_QW0_NATLEN_S;
|
|
|
|
gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
|
|
/* indicate if we need to offload outer UDP header */
|
|
if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
|
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
|
|
tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
|
|
|
|
/* record tunnel offload values */
|
|
off->cd_tunnel_params |= tunnel;
|
|
|
|
/* set DTYP=1 to indicate that it's an Tx context descriptor
|
|
* in IPsec tunnel mode with Tx offloads in Quad word 1
|
|
*/
|
|
off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
|
|
|
|
/* switch L4 header pointer from outer to inner */
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
l4_proto = 0;
|
|
|
|
/* reset type as we transition from outer to inner headers */
|
|
first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
|
|
if (ip.v4->version == 4)
|
|
first->tx_flags |= ICE_TX_FLAGS_IPV4;
|
|
if (ip.v6->version == 6)
|
|
first->tx_flags |= ICE_TX_FLAGS_IPV6;
|
|
}
|
|
|
|
/* Enable IP checksum offloads */
|
|
if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
|
|
l4_proto = ip.v4->protocol;
|
|
/* the stack computes the IP header already, the only time we
|
|
* need the hardware to recompute it is in the case of TSO.
|
|
*/
|
|
if (first->tx_flags & ICE_TX_FLAGS_TSO)
|
|
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
else
|
|
cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
|
|
|
|
} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
|
|
cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
|
|
exthdr = ip.hdr + sizeof(*ip.v6);
|
|
l4_proto = ip.v6->nexthdr;
|
|
if (l4.hdr != exthdr)
|
|
ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
|
|
&frag_off);
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
/* compute inner L3 header size */
|
|
l3_len = l4.hdr - ip.hdr;
|
|
offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
|
|
|
|
/* Enable L4 checksum offloads */
|
|
switch (l4_proto) {
|
|
case IPPROTO_TCP:
|
|
/* enable checksum offloads */
|
|
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
l4_len = l4.tcp->doff;
|
|
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* enable UDP checksum offload */
|
|
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
l4_len = (sizeof(struct udphdr) >> 2);
|
|
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
/* enable SCTP checksum offload */
|
|
cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
l4_len = sizeof(struct sctphdr) >> 2;
|
|
offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
|
|
break;
|
|
|
|
default:
|
|
if (first->tx_flags & ICE_TX_FLAGS_TSO)
|
|
return -1;
|
|
skb_checksum_help(skb);
|
|
return 0;
|
|
}
|
|
|
|
off->td_cmd |= cmd;
|
|
off->td_offset |= offset;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
|
|
* @tx_ring: ring to send buffer on
|
|
* @first: pointer to struct ice_tx_buf
|
|
*
|
|
* Checks the skb and set up correspondingly several generic transmit flags
|
|
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
|
|
*/
|
|
static void
|
|
ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
|
|
/* nothing left to do, software offloaded VLAN */
|
|
if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
|
|
return;
|
|
|
|
/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
|
|
* feature flags, which the driver only allows either 802.1Q or 802.1ad
|
|
* VLAN offloads exclusively so we only care about the VLAN ID here
|
|
*/
|
|
if (skb_vlan_tag_present(skb)) {
|
|
first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
|
|
if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
|
|
first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
|
|
else
|
|
first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
|
|
}
|
|
|
|
ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
|
|
}
|
|
|
|
/**
|
|
* ice_tso - computes mss and TSO length to prepare for TSO
|
|
* @first: pointer to struct ice_tx_buf
|
|
* @off: pointer to struct that holds offload parameters
|
|
*
|
|
* Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
|
|
*/
|
|
static
|
|
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
union {
|
|
struct iphdr *v4;
|
|
struct ipv6hdr *v6;
|
|
unsigned char *hdr;
|
|
} ip;
|
|
union {
|
|
struct tcphdr *tcp;
|
|
struct udphdr *udp;
|
|
unsigned char *hdr;
|
|
} l4;
|
|
u64 cd_mss, cd_tso_len;
|
|
__be16 protocol;
|
|
u32 paylen;
|
|
u8 l4_start;
|
|
int err;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
err = skb_cow_head(skb, 0);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* cppcheck-suppress unreadVariable */
|
|
protocol = vlan_get_protocol(skb);
|
|
|
|
if (eth_p_mpls(protocol))
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
else
|
|
ip.hdr = skb_network_header(skb);
|
|
l4.hdr = skb_checksum_start(skb);
|
|
|
|
/* initialize outer IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
|
|
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
|
|
SKB_GSO_GRE_CSUM |
|
|
SKB_GSO_IPXIP4 |
|
|
SKB_GSO_IPXIP6 |
|
|
SKB_GSO_UDP_TUNNEL |
|
|
SKB_GSO_UDP_TUNNEL_CSUM)) {
|
|
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
|
|
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
|
|
l4.udp->len = 0;
|
|
|
|
/* determine offset of outer transport header */
|
|
l4_start = (u8)(l4.hdr - skb->data);
|
|
|
|
/* remove payload length from outer checksum */
|
|
paylen = skb->len - l4_start;
|
|
csum_replace_by_diff(&l4.udp->check,
|
|
(__force __wsum)htonl(paylen));
|
|
}
|
|
|
|
/* reset pointers to inner headers */
|
|
|
|
/* cppcheck-suppress unreadVariable */
|
|
ip.hdr = skb_inner_network_header(skb);
|
|
l4.hdr = skb_inner_transport_header(skb);
|
|
|
|
/* initialize inner IP header fields */
|
|
if (ip.v4->version == 4) {
|
|
ip.v4->tot_len = 0;
|
|
ip.v4->check = 0;
|
|
} else {
|
|
ip.v6->payload_len = 0;
|
|
}
|
|
}
|
|
|
|
/* determine offset of transport header */
|
|
l4_start = (u8)(l4.hdr - skb->data);
|
|
|
|
/* remove payload length from checksum */
|
|
paylen = skb->len - l4_start;
|
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
|
|
csum_replace_by_diff(&l4.udp->check,
|
|
(__force __wsum)htonl(paylen));
|
|
/* compute length of UDP segmentation header */
|
|
off->header_len = (u8)sizeof(l4.udp) + l4_start;
|
|
} else {
|
|
csum_replace_by_diff(&l4.tcp->check,
|
|
(__force __wsum)htonl(paylen));
|
|
/* compute length of TCP segmentation header */
|
|
off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
|
|
}
|
|
|
|
/* update gso_segs and bytecount */
|
|
first->gso_segs = skb_shinfo(skb)->gso_segs;
|
|
first->bytecount += (first->gso_segs - 1) * off->header_len;
|
|
|
|
cd_tso_len = skb->len - off->header_len;
|
|
cd_mss = skb_shinfo(skb)->gso_size;
|
|
|
|
/* record cdesc_qw1 with TSO parameters */
|
|
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
|
|
(ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
|
|
(cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
|
|
(cd_mss << ICE_TXD_CTX_QW1_MSS_S));
|
|
first->tx_flags |= ICE_TX_FLAGS_TSO;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ice_txd_use_count - estimate the number of descriptors needed for Tx
|
|
* @size: transmit request size in bytes
|
|
*
|
|
* Due to hardware alignment restrictions (4K alignment), we need to
|
|
* assume that we can have no more than 12K of data per descriptor, even
|
|
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
|
|
* Thus, we need to divide by 12K. But division is slow! Instead,
|
|
* we decompose the operation into shifts and one relatively cheap
|
|
* multiply operation.
|
|
*
|
|
* To divide by 12K, we first divide by 4K, then divide by 3:
|
|
* To divide by 4K, shift right by 12 bits
|
|
* To divide by 3, multiply by 85, then divide by 256
|
|
* (Divide by 256 is done by shifting right by 8 bits)
|
|
* Finally, we add one to round up. Because 256 isn't an exact multiple of
|
|
* 3, we'll underestimate near each multiple of 12K. This is actually more
|
|
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
|
|
* segment. For our purposes this is accurate out to 1M which is orders of
|
|
* magnitude greater than our largest possible GSO size.
|
|
*
|
|
* This would then be implemented as:
|
|
* return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
|
|
*
|
|
* Since multiplication and division are commutative, we can reorder
|
|
* operations into:
|
|
* return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
|
|
*/
|
|
static unsigned int ice_txd_use_count(unsigned int size)
|
|
{
|
|
return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_desc_count - calculate number of Tx descriptors needed
|
|
* @skb: send buffer
|
|
*
|
|
* Returns number of data descriptors needed for this skb.
|
|
*/
|
|
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
|
|
{
|
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
|
|
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
unsigned int count = 0, size = skb_headlen(skb);
|
|
|
|
for (;;) {
|
|
count += ice_txd_use_count(size);
|
|
|
|
if (!nr_frags--)
|
|
break;
|
|
|
|
size = skb_frag_size(frag++);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* __ice_chk_linearize - Check if there are more than 8 buffers per packet
|
|
* @skb: send buffer
|
|
*
|
|
* Note: This HW can't DMA more than 8 buffers to build a packet on the wire
|
|
* and so we need to figure out the cases where we need to linearize the skb.
|
|
*
|
|
* For TSO we need to count the TSO header and segment payload separately.
|
|
* As such we need to check cases where we have 7 fragments or more as we
|
|
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
|
|
* the segment payload in the first descriptor, and another 7 for the
|
|
* fragments.
|
|
*/
|
|
static bool __ice_chk_linearize(struct sk_buff *skb)
|
|
{
|
|
const skb_frag_t *frag, *stale;
|
|
int nr_frags, sum;
|
|
|
|
/* no need to check if number of frags is less than 7 */
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
if (nr_frags < (ICE_MAX_BUF_TXD - 1))
|
|
return false;
|
|
|
|
/* We need to walk through the list and validate that each group
|
|
* of 6 fragments totals at least gso_size.
|
|
*/
|
|
nr_frags -= ICE_MAX_BUF_TXD - 2;
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
|
|
/* Initialize size to the negative value of gso_size minus 1. We
|
|
* use this as the worst case scenario in which the frag ahead
|
|
* of us only provides one byte which is why we are limited to 6
|
|
* descriptors for a single transmit as the header and previous
|
|
* fragment are already consuming 2 descriptors.
|
|
*/
|
|
sum = 1 - skb_shinfo(skb)->gso_size;
|
|
|
|
/* Add size of frags 0 through 4 to create our initial sum */
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* Walk through fragments adding latest fragment, testing it, and
|
|
* then removing stale fragments from the sum.
|
|
*/
|
|
for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
|
|
int stale_size = skb_frag_size(stale);
|
|
|
|
sum += skb_frag_size(frag++);
|
|
|
|
/* The stale fragment may present us with a smaller
|
|
* descriptor than the actual fragment size. To account
|
|
* for that we need to remove all the data on the front and
|
|
* figure out what the remainder would be in the last
|
|
* descriptor associated with the fragment.
|
|
*/
|
|
if (stale_size > ICE_MAX_DATA_PER_TXD) {
|
|
int align_pad = -(skb_frag_off(stale)) &
|
|
(ICE_MAX_READ_REQ_SIZE - 1);
|
|
|
|
sum -= align_pad;
|
|
stale_size -= align_pad;
|
|
|
|
do {
|
|
sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
|
|
stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
|
|
} while (stale_size > ICE_MAX_DATA_PER_TXD);
|
|
}
|
|
|
|
/* if sum is negative we failed to make sufficient progress */
|
|
if (sum < 0)
|
|
return true;
|
|
|
|
if (!nr_frags--)
|
|
break;
|
|
|
|
sum -= stale_size;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_chk_linearize - Check if there are more than 8 fragments per packet
|
|
* @skb: send buffer
|
|
* @count: number of buffers used
|
|
*
|
|
* Note: Our HW can't scatter-gather more than 8 fragments to build
|
|
* a packet on the wire and so we need to figure out the cases where we
|
|
* need to linearize the skb.
|
|
*/
|
|
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
|
|
{
|
|
/* Both TSO and single send will work if count is less than 8 */
|
|
if (likely(count < ICE_MAX_BUF_TXD))
|
|
return false;
|
|
|
|
if (skb_is_gso(skb))
|
|
return __ice_chk_linearize(skb);
|
|
|
|
/* we can support up to 8 data buffers for a single send */
|
|
return count != ICE_MAX_BUF_TXD;
|
|
}
|
|
|
|
/**
|
|
* ice_tstamp - set up context descriptor for hardware timestamp
|
|
* @tx_ring: pointer to the Tx ring to send buffer on
|
|
* @skb: pointer to the SKB we're sending
|
|
* @first: Tx buffer
|
|
* @off: Tx offload parameters
|
|
*/
|
|
static void
|
|
ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
|
|
struct ice_tx_buf *first, struct ice_tx_offload_params *off)
|
|
{
|
|
s8 idx;
|
|
|
|
/* only timestamp the outbound packet if the user has requested it */
|
|
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
|
|
return;
|
|
|
|
if (!tx_ring->ptp_tx)
|
|
return;
|
|
|
|
/* Tx timestamps cannot be sampled when doing TSO */
|
|
if (first->tx_flags & ICE_TX_FLAGS_TSO)
|
|
return;
|
|
|
|
/* Grab an open timestamp slot */
|
|
idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
|
|
if (idx < 0) {
|
|
tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
|
|
return;
|
|
}
|
|
|
|
off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
|
|
(ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
|
|
((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
|
|
first->tx_flags |= ICE_TX_FLAGS_TSYN;
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_frame_ring - Sends buffer on Tx ring
|
|
* @skb: send buffer
|
|
* @tx_ring: ring to send buffer on
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
*/
|
|
static netdev_tx_t
|
|
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
|
|
{
|
|
struct ice_tx_offload_params offload = { 0 };
|
|
struct ice_vsi *vsi = tx_ring->vsi;
|
|
struct ice_tx_buf *first;
|
|
struct ethhdr *eth;
|
|
unsigned int count;
|
|
int tso, csum;
|
|
|
|
ice_trace(xmit_frame_ring, tx_ring, skb);
|
|
|
|
count = ice_xmit_desc_count(skb);
|
|
if (ice_chk_linearize(skb, count)) {
|
|
if (__skb_linearize(skb))
|
|
goto out_drop;
|
|
count = ice_txd_use_count(skb->len);
|
|
tx_ring->tx_stats.tx_linearize++;
|
|
}
|
|
|
|
/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
|
|
* + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
|
|
* + 4 desc gap to avoid the cache line where head is,
|
|
* + 1 desc for context descriptor,
|
|
* otherwise try next time
|
|
*/
|
|
if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
|
|
ICE_DESCS_FOR_CTX_DESC)) {
|
|
tx_ring->tx_stats.tx_busy++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* prefetch for bql data which is infrequently used */
|
|
netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
|
|
|
|
offload.tx_ring = tx_ring;
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_buf[tx_ring->next_to_use];
|
|
first->skb = skb;
|
|
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
|
|
first->gso_segs = 1;
|
|
first->tx_flags = 0;
|
|
|
|
/* prepare the VLAN tagging flags for Tx */
|
|
ice_tx_prepare_vlan_flags(tx_ring, first);
|
|
if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
|
|
offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
|
|
(ICE_TX_CTX_DESC_IL2TAG2 <<
|
|
ICE_TXD_CTX_QW1_CMD_S));
|
|
offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
|
|
ICE_TX_FLAGS_VLAN_S;
|
|
}
|
|
|
|
/* set up TSO offload */
|
|
tso = ice_tso(first, &offload);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
|
|
/* always set up Tx checksum offload */
|
|
csum = ice_tx_csum(first, &offload);
|
|
if (csum < 0)
|
|
goto out_drop;
|
|
|
|
/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
|
|
eth = (struct ethhdr *)skb_mac_header(skb);
|
|
if (unlikely((skb->priority == TC_PRIO_CONTROL ||
|
|
eth->h_proto == htons(ETH_P_LLDP)) &&
|
|
vsi->type == ICE_VSI_PF &&
|
|
vsi->port_info->qos_cfg.is_sw_lldp))
|
|
offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
|
|
ICE_TX_CTX_DESC_SWTCH_UPLINK <<
|
|
ICE_TXD_CTX_QW1_CMD_S);
|
|
|
|
ice_tstamp(tx_ring, skb, first, &offload);
|
|
if (ice_is_switchdev_running(vsi->back))
|
|
ice_eswitch_set_target_vsi(skb, &offload);
|
|
|
|
if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
|
|
struct ice_tx_ctx_desc *cdesc;
|
|
u16 i = tx_ring->next_to_use;
|
|
|
|
/* grab the next descriptor */
|
|
cdesc = ICE_TX_CTX_DESC(tx_ring, i);
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
/* setup context descriptor */
|
|
cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
|
|
cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
|
|
cdesc->rsvd = cpu_to_le16(0);
|
|
cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
|
|
}
|
|
|
|
ice_tx_map(tx_ring, first, &offload);
|
|
return NETDEV_TX_OK;
|
|
|
|
out_drop:
|
|
ice_trace(xmit_frame_ring_drop, tx_ring, skb);
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
|
|
* @skb: send buffer
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Returns NETDEV_TX_OK if sent, else an error code
|
|
*/
|
|
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_vsi *vsi = np->vsi;
|
|
struct ice_tx_ring *tx_ring;
|
|
|
|
tx_ring = vsi->tx_rings[skb->queue_mapping];
|
|
|
|
/* hardware can't handle really short frames, hardware padding works
|
|
* beyond this point
|
|
*/
|
|
if (skb_put_padto(skb, ICE_MIN_TX_LEN))
|
|
return NETDEV_TX_OK;
|
|
|
|
return ice_xmit_frame_ring(skb, tx_ring);
|
|
}
|
|
|
|
/**
|
|
* ice_get_dscp_up - return the UP/TC value for a SKB
|
|
* @dcbcfg: DCB config that contains DSCP to UP/TC mapping
|
|
* @skb: SKB to query for info to determine UP/TC
|
|
*
|
|
* This function is to only be called when the PF is in L3 DSCP PFC mode
|
|
*/
|
|
static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
|
|
{
|
|
u8 dscp = 0;
|
|
|
|
if (skb->protocol == htons(ETH_P_IP))
|
|
dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
|
|
else if (skb->protocol == htons(ETH_P_IPV6))
|
|
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
|
|
|
|
return dcbcfg->dscp_map[dscp];
|
|
}
|
|
|
|
u16
|
|
ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
|
|
struct net_device *sb_dev)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_dcbx_cfg *dcbcfg;
|
|
|
|
dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
|
|
if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
|
|
skb->priority = ice_get_dscp_up(dcbcfg, skb);
|
|
|
|
return netdev_pick_tx(netdev, skb, sb_dev);
|
|
}
|
|
|
|
/**
|
|
* ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
|
|
* @tx_ring: tx_ring to clean
|
|
*/
|
|
void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
|
|
{
|
|
struct ice_vsi *vsi = tx_ring->vsi;
|
|
s16 i = tx_ring->next_to_clean;
|
|
int budget = ICE_DFLT_IRQ_WORK;
|
|
struct ice_tx_desc *tx_desc;
|
|
struct ice_tx_buf *tx_buf;
|
|
|
|
tx_buf = &tx_ring->tx_buf[i];
|
|
tx_desc = ICE_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
do {
|
|
struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no pending work */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
smp_rmb();
|
|
|
|
/* if the descriptor isn't done, no work to do */
|
|
if (!(eop_desc->cmd_type_offset_bsz &
|
|
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buf->next_to_watch = NULL;
|
|
tx_desc->buf_addr = 0;
|
|
tx_desc->cmd_type_offset_bsz = 0;
|
|
|
|
/* move past filter desc */
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_buf;
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap the data header */
|
|
if (dma_unmap_len(tx_buf, len))
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len),
|
|
DMA_TO_DEVICE);
|
|
if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
|
|
devm_kfree(tx_ring->dev, tx_buf->raw_buf);
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buf->raw_buf = NULL;
|
|
tx_buf->tx_flags = 0;
|
|
tx_buf->next_to_watch = NULL;
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
tx_desc->buf_addr = 0;
|
|
tx_desc->cmd_type_offset_bsz = 0;
|
|
|
|
/* move past eop_desc for start of next FD desc */
|
|
tx_buf++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buf = tx_ring->tx_buf;
|
|
tx_desc = ICE_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
|
|
/* re-enable interrupt if needed */
|
|
ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
|
|
}
|