linuxdebug/drivers/net/ethernet/intel/ice/ice_flow.c

2475 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_common.h"
#include "ice_flow.h"
#include <net/gre.h>
/* Describe properties of a protocol header field */
struct ice_flow_field_info {
enum ice_flow_seg_hdr hdr;
s16 off; /* Offset from start of a protocol header, in bits */
u16 size; /* Size of fields in bits */
u16 mask; /* 16-bit mask for field */
};
#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
.hdr = _hdr, \
.off = (_offset_bytes) * BITS_PER_BYTE, \
.size = (_size_bytes) * BITS_PER_BYTE, \
.mask = 0, \
}
#define ICE_FLOW_FLD_INFO_MSK(_hdr, _offset_bytes, _size_bytes, _mask) { \
.hdr = _hdr, \
.off = (_offset_bytes) * BITS_PER_BYTE, \
.size = (_size_bytes) * BITS_PER_BYTE, \
.mask = _mask, \
}
/* Table containing properties of supported protocol header fields */
static const
struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
/* Ether */
/* ICE_FLOW_FIELD_IDX_ETH_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ETH_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_S_VLAN */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_C_VLAN */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_ETH_TYPE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, sizeof(__be16)),
/* IPv4 / IPv6 */
/* ICE_FLOW_FIELD_IDX_IPV4_DSCP */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV4, 0, 1, 0x00fc),
/* ICE_FLOW_FIELD_IDX_IPV6_DSCP */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_IPV6, 0, 1, 0x0ff0),
/* ICE_FLOW_FIELD_IDX_IPV4_TTL */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0xff00),
/* ICE_FLOW_FIELD_IDX_IPV4_PROT */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 8, 1, 0x00ff),
/* ICE_FLOW_FIELD_IDX_IPV6_TTL */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0x00ff),
/* ICE_FLOW_FIELD_IDX_IPV6_PROT */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_NONE, 6, 1, 0xff00),
/* ICE_FLOW_FIELD_IDX_IPV4_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_IPV4_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_IPV6_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
/* ICE_FLOW_FIELD_IDX_IPV6_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
/* Transport */
/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, 1),
/* ARP */
/* ICE_FLOW_FIELD_IDX_ARP_SIP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_ARP_DIP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_ARP_SHA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ARP_DHA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
/* ICE_FLOW_FIELD_IDX_ARP_OP */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, sizeof(__be16)),
/* ICMP */
/* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, 1),
/* ICE_FLOW_FIELD_IDX_ICMP_CODE */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, 1),
/* GRE */
/* ICE_FLOW_FIELD_IDX_GRE_KEYID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12,
sizeof_field(struct gre_full_hdr, key)),
/* GTP */
/* ICE_FLOW_FIELD_IDX_GTPC_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPC_TEID, 12, sizeof(__be32)),
/* ICE_FLOW_FIELD_IDX_GTPU_IP_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_IP, 12, sizeof(__be32)),
/* ICE_FLOW_FIELD_IDX_GTPU_EH_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_EH, 12, sizeof(__be32)),
/* ICE_FLOW_FIELD_IDX_GTPU_EH_QFI */
ICE_FLOW_FLD_INFO_MSK(ICE_FLOW_SEG_HDR_GTPU_EH, 22, sizeof(__be16),
0x3f00),
/* ICE_FLOW_FIELD_IDX_GTPU_UP_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_UP, 12, sizeof(__be32)),
/* ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GTPU_DWN, 12, sizeof(__be32)),
/* PPPoE */
/* ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PPPOE, 2, sizeof(__be16)),
/* PFCP */
/* ICE_FLOW_FIELD_IDX_PFCP_SEID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_PFCP_SESSION, 12, sizeof(__be64)),
/* L2TPv3 */
/* ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_L2TPV3, 0, sizeof(__be32)),
/* ESP */
/* ICE_FLOW_FIELD_IDX_ESP_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ESP, 0, sizeof(__be32)),
/* AH */
/* ICE_FLOW_FIELD_IDX_AH_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_AH, 4, sizeof(__be32)),
/* NAT_T_ESP */
/* ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NAT_T_ESP, 8, sizeof(__be32)),
};
/* Bitmaps indicating relevant packet types for a particular protocol header
*
* Packet types for packets with an Outer/First/Single MAC header
*/
static const u32 ice_ptypes_mac_ofos[] = {
0xFDC00846, 0xBFBF7F7E, 0xF70001DF, 0xFEFDFDFB,
0x0000077E, 0x00000000, 0x00000000, 0x00000000,
0x00400000, 0x03FFF000, 0x7FFFFFE0, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last MAC VLAN header */
static const u32 ice_ptypes_macvlan_il[] = {
0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
0x0000077E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header, does NOT
* include IPv4 other PTYPEs
*/
static const u32 ice_ptypes_ipv4_ofos[] = {
0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
0x00000000, 0x00000155, 0x00000000, 0x00000000,
0x00000000, 0x000FC000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header, includes
* IPv4 other PTYPEs
*/
static const u32 ice_ptypes_ipv4_ofos_all[] = {
0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
0x00000000, 0x00000155, 0x00000000, 0x00000000,
0x00000000, 0x000FC000, 0x83E0F800, 0x00000101,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv4 header */
static const u32 ice_ptypes_ipv4_il[] = {
0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
0x0000000E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x001FF800, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header, does NOT
* include IPv6 other PTYPEs
*/
static const u32 ice_ptypes_ipv6_ofos[] = {
0x00000000, 0x00000000, 0x77000000, 0x10002000,
0x00000000, 0x000002AA, 0x00000000, 0x00000000,
0x00000000, 0x03F00000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header, includes
* IPv6 other PTYPEs
*/
static const u32 ice_ptypes_ipv6_ofos_all[] = {
0x00000000, 0x00000000, 0x77000000, 0x10002000,
0x00000000, 0x000002AA, 0x00000000, 0x00000000,
0x00080F00, 0x03F00000, 0x7C1F0000, 0x00000206,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv6 header */
static const u32 ice_ptypes_ipv6_il[] = {
0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
0x00000770, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x7FE00000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv4 header - no L4 */
static const u32 ice_ptypes_ipv4_ofos_no_l4[] = {
0x10C00000, 0x04000800, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First ARP header */
static const u32 ice_ptypes_arp_of[] = {
0x00000800, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv4 header - no L4 */
static const u32 ice_ptypes_ipv4_il_no_l4[] = {
0x60000000, 0x18043008, 0x80000002, 0x6010c021,
0x00000008, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header - no L4 */
static const u32 ice_ptypes_ipv6_ofos_no_l4[] = {
0x00000000, 0x00000000, 0x43000000, 0x10002000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv6 header - no L4 */
static const u32 ice_ptypes_ipv6_il_no_l4[] = {
0x00000000, 0x02180430, 0x0000010c, 0x086010c0,
0x00000430, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* UDP Packet types for non-tunneled packets or tunneled
* packets with inner UDP.
*/
static const u32 ice_ptypes_udp_il[] = {
0x81000000, 0x20204040, 0x04000010, 0x80810102,
0x00000040, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00410000, 0x90842000, 0x00000007,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last TCP header */
static const u32 ice_ptypes_tcp_il[] = {
0x04000000, 0x80810102, 0x10000040, 0x02040408,
0x00000102, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00820000, 0x21084000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last SCTP header */
static const u32 ice_ptypes_sctp_il[] = {
0x08000000, 0x01020204, 0x20000081, 0x04080810,
0x00000204, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x01040000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First ICMP header */
static const u32 ice_ptypes_icmp_of[] = {
0x10000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last ICMP header */
static const u32 ice_ptypes_icmp_il[] = {
0x00000000, 0x02040408, 0x40000102, 0x08101020,
0x00000408, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x42108000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outermost/First GRE header */
static const u32 ice_ptypes_gre_of[] = {
0x00000000, 0xBFBF7800, 0x000001DF, 0xFEFDE000,
0x0000017E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last MAC header */
static const u32 ice_ptypes_mac_il[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPC */
static const u32 ice_ptypes_gtpc[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000180, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPC with TEID */
static const u32 ice_ptypes_gtpc_tid[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000060, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for GTPU */
static const struct ice_ptype_attributes ice_attr_gtpu_eh[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_PDU_EH },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_PDU_EH },
};
static const struct ice_ptype_attributes ice_attr_gtpu_down[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_DOWNLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_DOWNLINK },
};
static const struct ice_ptype_attributes ice_attr_gtpu_up[] = {
{ ICE_MAC_IPV4_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV4_ICMP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV4_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_FRAG, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_UDP_PAY, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_TCP, ICE_PTYPE_ATTR_GTP_UPLINK },
{ ICE_MAC_IPV6_GTPU_IPV6_ICMPV6, ICE_PTYPE_ATTR_GTP_UPLINK },
};
static const u32 ice_ptypes_gtpu[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x7FFFFE00, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for PPPoE */
static const u32 ice_ptypes_pppoe[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x03ffe000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with PFCP NODE header */
static const u32 ice_ptypes_pfcp_node[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x80000000, 0x00000002,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with PFCP SESSION header */
static const u32 ice_ptypes_pfcp_session[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000005,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for L2TPv3 */
static const u32 ice_ptypes_l2tpv3[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000300,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for ESP */
static const u32 ice_ptypes_esp[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000003, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for AH */
static const u32 ice_ptypes_ah[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x0000000C, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with NAT_T ESP header */
static const u32 ice_ptypes_nat_t_esp[] = {
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000030, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
static const u32 ice_ptypes_mac_non_ip_ofos[] = {
0x00000846, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00400000, 0x03FFF000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Manage parameters and info. used during the creation of a flow profile */
struct ice_flow_prof_params {
enum ice_block blk;
u16 entry_length; /* # of bytes formatted entry will require */
u8 es_cnt;
struct ice_flow_prof *prof;
/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
* This will give us the direction flags.
*/
struct ice_fv_word es[ICE_MAX_FV_WORDS];
/* attributes can be used to add attributes to a particular PTYPE */
const struct ice_ptype_attributes *attr;
u16 attr_cnt;
u16 mask[ICE_MAX_FV_WORDS];
DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
};
#define ICE_FLOW_RSS_HDRS_INNER_MASK \
(ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_GTPC | \
ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_GTPU | \
ICE_FLOW_SEG_HDR_PFCP_SESSION | ICE_FLOW_SEG_HDR_L2TPV3 | \
ICE_FLOW_SEG_HDR_ESP | ICE_FLOW_SEG_HDR_AH | \
ICE_FLOW_SEG_HDR_NAT_T_ESP)
#define ICE_FLOW_SEG_HDRS_L3_MASK \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
#define ICE_FLOW_SEG_HDRS_L4_MASK \
(ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
ICE_FLOW_SEG_HDR_SCTP)
/* mask for L4 protocols that are NOT part of IPv4/6 OTHER PTYPE groups */
#define ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
/**
* ice_flow_val_hdrs - validates packet segments for valid protocol headers
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
*/
static int ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
{
u8 i;
for (i = 0; i < segs_cnt; i++) {
/* Multiple L3 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
!is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
return -EINVAL;
/* Multiple L4 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
!is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
return -EINVAL;
}
return 0;
}
/* Sizes of fixed known protocol headers without header options */
#define ICE_FLOW_PROT_HDR_SZ_MAC 14
#define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN (ICE_FLOW_PROT_HDR_SZ_MAC + 2)
#define ICE_FLOW_PROT_HDR_SZ_IPV4 20
#define ICE_FLOW_PROT_HDR_SZ_IPV6 40
#define ICE_FLOW_PROT_HDR_SZ_ARP 28
#define ICE_FLOW_PROT_HDR_SZ_ICMP 8
#define ICE_FLOW_PROT_HDR_SZ_TCP 20
#define ICE_FLOW_PROT_HDR_SZ_UDP 8
#define ICE_FLOW_PROT_HDR_SZ_SCTP 12
/**
* ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
* @params: information about the flow to be processed
* @seg: index of packet segment whose header size is to be determined
*/
static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
{
u16 sz;
/* L2 headers */
sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
/* L3 headers */
if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
sz += ICE_FLOW_PROT_HDR_SZ_ARP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
/* An L3 header is required if L4 is specified */
return 0;
/* L4 headers */
if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
sz += ICE_FLOW_PROT_HDR_SZ_TCP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
sz += ICE_FLOW_PROT_HDR_SZ_UDP;
else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
return sz;
}
/**
* ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
* @params: information about the flow to be processed
*
* This function identifies the packet types associated with the protocol
* headers being present in packet segments of the specified flow profile.
*/
static int ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
{
struct ice_flow_prof *prof;
u8 i;
memset(params->ptypes, 0xff, sizeof(params->ptypes));
prof = params->prof;
for (i = 0; i < params->prof->segs_cnt; i++) {
const unsigned long *src;
u32 hdrs;
hdrs = prof->segs[i].hdrs;
if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
src = !i ? (const unsigned long *)ice_ptypes_mac_ofos :
(const unsigned long *)ice_ptypes_mac_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
src = (const unsigned long *)ice_ptypes_macvlan_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
bitmap_and(params->ptypes, params->ptypes,
(const unsigned long *)ice_ptypes_arp_of,
ICE_FLOW_PTYPE_MAX);
}
if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
(hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
src = i ? (const unsigned long *)ice_ptypes_ipv4_il :
(const unsigned long *)ice_ptypes_ipv4_ofos_all;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
(hdrs & ICE_FLOW_SEG_HDR_IPV_OTHER)) {
src = i ? (const unsigned long *)ice_ptypes_ipv6_il :
(const unsigned long *)ice_ptypes_ipv6_ofos_all;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV4) &&
!(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos_no_l4 :
(const unsigned long *)ice_ptypes_ipv4_il_no_l4;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
(const unsigned long *)ice_ptypes_ipv4_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if ((hdrs & ICE_FLOW_SEG_HDR_IPV6) &&
!(hdrs & ICE_FLOW_SEG_HDRS_L4_MASK_NO_OTHER)) {
src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos_no_l4 :
(const unsigned long *)ice_ptypes_ipv6_il_no_l4;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
(const unsigned long *)ice_ptypes_ipv6_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_ETH_NON_IP) {
src = (const unsigned long *)ice_ptypes_mac_non_ip_ofos;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_PPPOE) {
src = (const unsigned long *)ice_ptypes_pppoe;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else {
src = (const unsigned long *)ice_ptypes_pppoe;
bitmap_andnot(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
src = (const unsigned long *)ice_ptypes_udp_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
bitmap_and(params->ptypes, params->ptypes,
(const unsigned long *)ice_ptypes_tcp_il,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
src = (const unsigned long *)ice_ptypes_sctp_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
src = !i ? (const unsigned long *)ice_ptypes_icmp_of :
(const unsigned long *)ice_ptypes_icmp_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
if (!i) {
src = (const unsigned long *)ice_ptypes_gre_of;
bitmap_and(params->ptypes, params->ptypes,
src, ICE_FLOW_PTYPE_MAX);
}
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC) {
src = (const unsigned long *)ice_ptypes_gtpc;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPC_TEID) {
src = (const unsigned long *)ice_ptypes_gtpc_tid;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_DWN) {
src = (const unsigned long *)ice_ptypes_gtpu;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with downlink */
params->attr = ice_attr_gtpu_down;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_down);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_UP) {
src = (const unsigned long *)ice_ptypes_gtpu;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with uplink */
params->attr = ice_attr_gtpu_up;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_up);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_EH) {
src = (const unsigned long *)ice_ptypes_gtpu;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
/* Attributes for GTP packet with Extension Header */
params->attr = ice_attr_gtpu_eh;
params->attr_cnt = ARRAY_SIZE(ice_attr_gtpu_eh);
} else if (hdrs & ICE_FLOW_SEG_HDR_GTPU_IP) {
src = (const unsigned long *)ice_ptypes_gtpu;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_L2TPV3) {
src = (const unsigned long *)ice_ptypes_l2tpv3;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_ESP) {
src = (const unsigned long *)ice_ptypes_esp;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_AH) {
src = (const unsigned long *)ice_ptypes_ah;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_NAT_T_ESP) {
src = (const unsigned long *)ice_ptypes_nat_t_esp;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_PFCP) {
if (hdrs & ICE_FLOW_SEG_HDR_PFCP_NODE)
src = (const unsigned long *)ice_ptypes_pfcp_node;
else
src = (const unsigned long *)ice_ptypes_pfcp_session;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else {
src = (const unsigned long *)ice_ptypes_pfcp_node;
bitmap_andnot(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
src = (const unsigned long *)ice_ptypes_pfcp_session;
bitmap_andnot(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
}
return 0;
}
/**
* ice_flow_xtract_fld - Create an extraction sequence entry for the given field
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @seg: packet segment index of the field to be extracted
* @fld: ID of field to be extracted
* @match: bit field of all fields
*
* This function determines the protocol ID, offset, and size of the given
* field. It then allocates one or more extraction sequence entries for the
* given field, and fill the entries with protocol ID and offset information.
*/
static int
ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
u8 seg, enum ice_flow_field fld, u64 match)
{
enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
u8 fv_words = hw->blk[params->blk].es.fvw;
struct ice_flow_fld_info *flds;
u16 cnt, ese_bits, i;
u16 sib_mask = 0;
u16 mask;
u16 off;
flds = params->prof->segs[seg].fields;
switch (fld) {
case ICE_FLOW_FIELD_IDX_ETH_DA:
case ICE_FLOW_FIELD_IDX_ETH_SA:
case ICE_FLOW_FIELD_IDX_S_VLAN:
case ICE_FLOW_FIELD_IDX_C_VLAN:
prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
break;
case ICE_FLOW_FIELD_IDX_ETH_TYPE:
prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV4_DSCP:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV6_DSCP:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV4_TTL:
case ICE_FLOW_FIELD_IDX_IPV4_PROT:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
/* TTL and PROT share the same extraction seq. entry.
* Each is considered a sibling to the other in terms of sharing
* the same extraction sequence entry.
*/
if (fld == ICE_FLOW_FIELD_IDX_IPV4_TTL)
sib = ICE_FLOW_FIELD_IDX_IPV4_PROT;
else if (fld == ICE_FLOW_FIELD_IDX_IPV4_PROT)
sib = ICE_FLOW_FIELD_IDX_IPV4_TTL;
/* If the sibling field is also included, that field's
* mask needs to be included.
*/
if (match & BIT(sib))
sib_mask = ice_flds_info[sib].mask;
break;
case ICE_FLOW_FIELD_IDX_IPV6_TTL:
case ICE_FLOW_FIELD_IDX_IPV6_PROT:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
/* TTL and PROT share the same extraction seq. entry.
* Each is considered a sibling to the other in terms of sharing
* the same extraction sequence entry.
*/
if (fld == ICE_FLOW_FIELD_IDX_IPV6_TTL)
sib = ICE_FLOW_FIELD_IDX_IPV6_PROT;
else if (fld == ICE_FLOW_FIELD_IDX_IPV6_PROT)
sib = ICE_FLOW_FIELD_IDX_IPV6_TTL;
/* If the sibling field is also included, that field's
* mask needs to be included.
*/
if (match & BIT(sib))
sib_mask = ice_flds_info[sib].mask;
break;
case ICE_FLOW_FIELD_IDX_IPV4_SA:
case ICE_FLOW_FIELD_IDX_IPV4_DA:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV6_SA:
case ICE_FLOW_FIELD_IDX_IPV6_DA:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
break;
case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
prot_id = ICE_PROT_TCP_IL;
break;
case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
prot_id = ICE_PROT_SCTP_IL;
break;
case ICE_FLOW_FIELD_IDX_GTPC_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_IP_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_UP_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_DWN_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_EH_TEID:
case ICE_FLOW_FIELD_IDX_GTPU_EH_QFI:
/* GTP is accessed through UDP OF protocol */
prot_id = ICE_PROT_UDP_OF;
break;
case ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID:
prot_id = ICE_PROT_PPPOE;
break;
case ICE_FLOW_FIELD_IDX_PFCP_SEID:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID:
prot_id = ICE_PROT_L2TPV3;
break;
case ICE_FLOW_FIELD_IDX_ESP_SPI:
prot_id = ICE_PROT_ESP_F;
break;
case ICE_FLOW_FIELD_IDX_AH_SPI:
prot_id = ICE_PROT_ESP_2;
break;
case ICE_FLOW_FIELD_IDX_NAT_T_ESP_SPI:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
case ICE_FLOW_FIELD_IDX_ARP_SIP:
case ICE_FLOW_FIELD_IDX_ARP_DIP:
case ICE_FLOW_FIELD_IDX_ARP_SHA:
case ICE_FLOW_FIELD_IDX_ARP_DHA:
case ICE_FLOW_FIELD_IDX_ARP_OP:
prot_id = ICE_PROT_ARP_OF;
break;
case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
case ICE_FLOW_FIELD_IDX_ICMP_CODE:
/* ICMP type and code share the same extraction seq. entry */
prot_id = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) ?
ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
ICE_FLOW_FIELD_IDX_ICMP_CODE :
ICE_FLOW_FIELD_IDX_ICMP_TYPE;
break;
case ICE_FLOW_FIELD_IDX_GRE_KEYID:
prot_id = ICE_PROT_GRE_OF;
break;
default:
return -EOPNOTSUPP;
}
/* Each extraction sequence entry is a word in size, and extracts a
* word-aligned offset from a protocol header.
*/
ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
flds[fld].xtrct.prot_id = prot_id;
flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
ICE_FLOW_FV_EXTRACT_SZ;
flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
flds[fld].xtrct.idx = params->es_cnt;
flds[fld].xtrct.mask = ice_flds_info[fld].mask;
/* Adjust the next field-entry index after accommodating the number of
* entries this field consumes
*/
cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
ese_bits);
/* Fill in the extraction sequence entries needed for this field */
off = flds[fld].xtrct.off;
mask = flds[fld].xtrct.mask;
for (i = 0; i < cnt; i++) {
/* Only consume an extraction sequence entry if there is no
* sibling field associated with this field or the sibling entry
* already extracts the word shared with this field.
*/
if (sib == ICE_FLOW_FIELD_IDX_MAX ||
flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
flds[sib].xtrct.off != off) {
u8 idx;
/* Make sure the number of extraction sequence required
* does not exceed the block's capability
*/
if (params->es_cnt >= fv_words)
return -ENOSPC;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = prot_id;
params->es[idx].off = off;
params->mask[idx] = mask | sib_mask;
params->es_cnt++;
}
off += ICE_FLOW_FV_EXTRACT_SZ;
}
return 0;
}
/**
* ice_flow_xtract_raws - Create extract sequence entries for raw bytes
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @seg: index of packet segment whose raw fields are to be extracted
*/
static int
ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
u8 seg)
{
u16 fv_words;
u16 hdrs_sz;
u8 i;
if (!params->prof->segs[seg].raws_cnt)
return 0;
if (params->prof->segs[seg].raws_cnt >
ARRAY_SIZE(params->prof->segs[seg].raws))
return -ENOSPC;
/* Offsets within the segment headers are not supported */
hdrs_sz = ice_flow_calc_seg_sz(params, seg);
if (!hdrs_sz)
return -EINVAL;
fv_words = hw->blk[params->blk].es.fvw;
for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
struct ice_flow_seg_fld_raw *raw;
u16 off, cnt, j;
raw = &params->prof->segs[seg].raws[i];
/* Storing extraction information */
raw->info.xtrct.prot_id = ICE_PROT_MAC_OF_OR_S;
raw->info.xtrct.off = (raw->off / ICE_FLOW_FV_EXTRACT_SZ) *
ICE_FLOW_FV_EXTRACT_SZ;
raw->info.xtrct.disp = (raw->off % ICE_FLOW_FV_EXTRACT_SZ) *
BITS_PER_BYTE;
raw->info.xtrct.idx = params->es_cnt;
/* Determine the number of field vector entries this raw field
* consumes.
*/
cnt = DIV_ROUND_UP(raw->info.xtrct.disp +
(raw->info.src.last * BITS_PER_BYTE),
(ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE));
off = raw->info.xtrct.off;
for (j = 0; j < cnt; j++) {
u16 idx;
/* Make sure the number of extraction sequence required
* does not exceed the block's capability
*/
if (params->es_cnt >= hw->blk[params->blk].es.count ||
params->es_cnt >= ICE_MAX_FV_WORDS)
return -ENOSPC;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = raw->info.xtrct.prot_id;
params->es[idx].off = off;
params->es_cnt++;
off += ICE_FLOW_FV_EXTRACT_SZ;
}
}
return 0;
}
/**
* ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*
* This function iterates through all matched fields in the given segments, and
* creates an extraction sequence for the fields.
*/
static int
ice_flow_create_xtrct_seq(struct ice_hw *hw,
struct ice_flow_prof_params *params)
{
struct ice_flow_prof *prof = params->prof;
int status = 0;
u8 i;
for (i = 0; i < prof->segs_cnt; i++) {
u64 match = params->prof->segs[i].match;
enum ice_flow_field j;
for_each_set_bit(j, (unsigned long *)&match,
ICE_FLOW_FIELD_IDX_MAX) {
status = ice_flow_xtract_fld(hw, params, i, j, match);
if (status)
return status;
clear_bit(j, (unsigned long *)&match);
}
/* Process raw matching bytes */
status = ice_flow_xtract_raws(hw, params, i);
if (status)
return status;
}
return status;
}
/**
* ice_flow_proc_segs - process all packet segments associated with a profile
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*/
static int
ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
{
int status;
status = ice_flow_proc_seg_hdrs(params);
if (status)
return status;
status = ice_flow_create_xtrct_seq(hw, params);
if (status)
return status;
switch (params->blk) {
case ICE_BLK_FD:
case ICE_BLK_RSS:
status = 0;
break;
default:
return -EOPNOTSUPP;
}
return status;
}
#define ICE_FLOW_FIND_PROF_CHK_FLDS 0x00000001
#define ICE_FLOW_FIND_PROF_CHK_VSI 0x00000002
#define ICE_FLOW_FIND_PROF_NOT_CHK_DIR 0x00000004
/**
* ice_flow_find_prof_conds - Find a profile matching headers and conditions
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
* @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
*/
static struct ice_flow_prof *
ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
u8 segs_cnt, u16 vsi_handle, u32 conds)
{
struct ice_flow_prof *p, *prof = NULL;
mutex_lock(&hw->fl_profs_locks[blk]);
list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
segs_cnt && segs_cnt == p->segs_cnt) {
u8 i;
/* Check for profile-VSI association if specified */
if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
ice_is_vsi_valid(hw, vsi_handle) &&
!test_bit(vsi_handle, p->vsis))
continue;
/* Protocol headers must be checked. Matched fields are
* checked if specified.
*/
for (i = 0; i < segs_cnt; i++)
if (segs[i].hdrs != p->segs[i].hdrs ||
((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
segs[i].match != p->segs[i].match))
break;
/* A match is found if all segments are matched */
if (i == segs_cnt) {
prof = p;
break;
}
}
mutex_unlock(&hw->fl_profs_locks[blk]);
return prof;
}
/**
* ice_flow_find_prof_id - Look up a profile with given profile ID
* @hw: pointer to the HW struct
* @blk: classification stage
* @prof_id: unique ID to identify this flow profile
*/
static struct ice_flow_prof *
ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
{
struct ice_flow_prof *p;
list_for_each_entry(p, &hw->fl_profs[blk], l_entry)
if (p->id == prof_id)
return p;
return NULL;
}
/**
* ice_dealloc_flow_entry - Deallocate flow entry memory
* @hw: pointer to the HW struct
* @entry: flow entry to be removed
*/
static void
ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
{
if (!entry)
return;
if (entry->entry)
devm_kfree(ice_hw_to_dev(hw), entry->entry);
devm_kfree(ice_hw_to_dev(hw), entry);
}
/**
* ice_flow_rem_entry_sync - Remove a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @entry: flow entry to be removed
*/
static int
ice_flow_rem_entry_sync(struct ice_hw *hw, enum ice_block __always_unused blk,
struct ice_flow_entry *entry)
{
if (!entry)
return -EINVAL;
list_del(&entry->l_entry);
ice_dealloc_flow_entry(hw, entry);
return 0;
}
/**
* ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @prof: stores the returned flow profile added
*
* Assumption: the caller has acquired the lock to the profile list
*/
static int
ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
enum ice_flow_dir dir, u64 prof_id,
struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_prof **prof)
{
struct ice_flow_prof_params *params;
int status;
u8 i;
if (!prof)
return -EINVAL;
params = kzalloc(sizeof(*params), GFP_KERNEL);
if (!params)
return -ENOMEM;
params->prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params->prof),
GFP_KERNEL);
if (!params->prof) {
status = -ENOMEM;
goto free_params;
}
/* initialize extraction sequence to all invalid (0xff) */
for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
params->es[i].prot_id = ICE_PROT_INVALID;
params->es[i].off = ICE_FV_OFFSET_INVAL;
}
params->blk = blk;
params->prof->id = prof_id;
params->prof->dir = dir;
params->prof->segs_cnt = segs_cnt;
/* Make a copy of the segments that need to be persistent in the flow
* profile instance
*/
for (i = 0; i < segs_cnt; i++)
memcpy(&params->prof->segs[i], &segs[i], sizeof(*segs));
status = ice_flow_proc_segs(hw, params);
if (status) {
ice_debug(hw, ICE_DBG_FLOW, "Error processing a flow's packet segments\n");
goto out;
}
/* Add a HW profile for this flow profile */
status = ice_add_prof(hw, blk, prof_id, (u8 *)params->ptypes,
params->attr, params->attr_cnt, params->es,
params->mask);
if (status) {
ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
goto out;
}
INIT_LIST_HEAD(&params->prof->entries);
mutex_init(&params->prof->entries_lock);
*prof = params->prof;
out:
if (status)
devm_kfree(ice_hw_to_dev(hw), params->prof);
free_params:
kfree(params);
return status;
}
/**
* ice_flow_rem_prof_sync - remove a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile to remove
*
* Assumption: the caller has acquired the lock to the profile list
*/
static int
ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof)
{
int status;
/* Remove all remaining flow entries before removing the flow profile */
if (!list_empty(&prof->entries)) {
struct ice_flow_entry *e, *t;
mutex_lock(&prof->entries_lock);
list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
status = ice_flow_rem_entry_sync(hw, blk, e);
if (status)
break;
}
mutex_unlock(&prof->entries_lock);
}
/* Remove all hardware profiles associated with this flow profile */
status = ice_rem_prof(hw, blk, prof->id);
if (!status) {
list_del(&prof->l_entry);
mutex_destroy(&prof->entries_lock);
devm_kfree(ice_hw_to_dev(hw), prof);
}
return status;
}
/**
* ice_flow_assoc_prof - associate a VSI with a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
static int
ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, u16 vsi_handle)
{
int status = 0;
if (!test_bit(vsi_handle, prof->vsis)) {
status = ice_add_prof_id_flow(hw, blk,
ice_get_hw_vsi_num(hw,
vsi_handle),
prof->id);
if (!status)
set_bit(vsi_handle, prof->vsis);
else
ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed, %d\n",
status);
}
return status;
}
/**
* ice_flow_disassoc_prof - disassociate a VSI from a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
static int
ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, u16 vsi_handle)
{
int status = 0;
if (test_bit(vsi_handle, prof->vsis)) {
status = ice_rem_prof_id_flow(hw, blk,
ice_get_hw_vsi_num(hw,
vsi_handle),
prof->id);
if (!status)
clear_bit(vsi_handle, prof->vsis);
else
ice_debug(hw, ICE_DBG_FLOW, "HW profile remove failed, %d\n",
status);
}
return status;
}
/**
* ice_flow_add_prof - Add a flow profile for packet segments and matched fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @prof: stores the returned flow profile added
*/
int
ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_prof **prof)
{
int status;
if (segs_cnt > ICE_FLOW_SEG_MAX)
return -ENOSPC;
if (!segs_cnt)
return -EINVAL;
if (!segs)
return -EINVAL;
status = ice_flow_val_hdrs(segs, segs_cnt);
if (status)
return status;
mutex_lock(&hw->fl_profs_locks[blk]);
status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
prof);
if (!status)
list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
mutex_unlock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_rem_prof - Remove a flow profile and all entries associated with it
* @hw: pointer to the HW struct
* @blk: the block for which the flow profile is to be removed
* @prof_id: unique ID of the flow profile to be removed
*/
int ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
{
struct ice_flow_prof *prof;
int status;
mutex_lock(&hw->fl_profs_locks[blk]);
prof = ice_flow_find_prof_id(hw, blk, prof_id);
if (!prof) {
status = -ENOENT;
goto out;
}
/* prof becomes invalid after the call */
status = ice_flow_rem_prof_sync(hw, blk, prof);
out:
mutex_unlock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_add_entry - Add a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @prof_id: ID of the profile to add a new flow entry to
* @entry_id: unique ID to identify this flow entry
* @vsi_handle: software VSI handle for the flow entry
* @prio: priority of the flow entry
* @data: pointer to a data buffer containing flow entry's match values/masks
* @entry_h: pointer to buffer that receives the new flow entry's handle
*/
int
ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
void *data, u64 *entry_h)
{
struct ice_flow_entry *e = NULL;
struct ice_flow_prof *prof;
int status;
/* No flow entry data is expected for RSS */
if (!entry_h || (!data && blk != ICE_BLK_RSS))
return -EINVAL;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
mutex_lock(&hw->fl_profs_locks[blk]);
prof = ice_flow_find_prof_id(hw, blk, prof_id);
if (!prof) {
status = -ENOENT;
} else {
/* Allocate memory for the entry being added and associate
* the VSI to the found flow profile
*/
e = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*e), GFP_KERNEL);
if (!e)
status = -ENOMEM;
else
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
}
mutex_unlock(&hw->fl_profs_locks[blk]);
if (status)
goto out;
e->id = entry_id;
e->vsi_handle = vsi_handle;
e->prof = prof;
e->priority = prio;
switch (blk) {
case ICE_BLK_FD:
case ICE_BLK_RSS:
break;
default:
status = -EOPNOTSUPP;
goto out;
}
mutex_lock(&prof->entries_lock);
list_add(&e->l_entry, &prof->entries);
mutex_unlock(&prof->entries_lock);
*entry_h = ICE_FLOW_ENTRY_HNDL(e);
out:
if (status && e) {
if (e->entry)
devm_kfree(ice_hw_to_dev(hw), e->entry);
devm_kfree(ice_hw_to_dev(hw), e);
}
return status;
}
/**
* ice_flow_rem_entry - Remove a flow entry
* @hw: pointer to the HW struct
* @blk: classification stage
* @entry_h: handle to the flow entry to be removed
*/
int ice_flow_rem_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_h)
{
struct ice_flow_entry *entry;
struct ice_flow_prof *prof;
int status = 0;
if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
return -EINVAL;
entry = ICE_FLOW_ENTRY_PTR(entry_h);
/* Retain the pointer to the flow profile as the entry will be freed */
prof = entry->prof;
if (prof) {
mutex_lock(&prof->entries_lock);
status = ice_flow_rem_entry_sync(hw, blk, entry);
mutex_unlock(&prof->entries_lock);
}
return status;
}
/**
* ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @field_type: type of the field
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
*
* This helper function stores information of a field being matched, including
* the type of the field and the locations of the value to match, the mask, and
* the upper-bound value in the start of the input buffer for a flow entry.
* This function should only be used for fixed-size data structures.
*
* This function also opportunistically determines the protocol headers to be
* present based on the fields being set. Some fields cannot be used alone to
* determine the protocol headers present. Sometimes, fields for particular
* protocol headers are not matched. In those cases, the protocol headers
* must be explicitly set.
*/
static void
ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
enum ice_flow_fld_match_type field_type, u16 val_loc,
u16 mask_loc, u16 last_loc)
{
u64 bit = BIT_ULL(fld);
seg->match |= bit;
if (field_type == ICE_FLOW_FLD_TYPE_RANGE)
seg->range |= bit;
seg->fields[fld].type = field_type;
seg->fields[fld].src.val = val_loc;
seg->fields[fld].src.mask = mask_loc;
seg->fields[fld].src.last = last_loc;
ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
}
/**
* ice_flow_set_fld - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
* @range: indicate if field being matched is to be in a range
*
* This function specifies the locations, in the form of byte offsets from the
* start of the input buffer for a flow entry, from where the value to match,
* the mask value, and upper value can be extracted. These locations are then
* stored in the flow profile. When adding a flow entry associated with the
* flow profile, these locations will be used to quickly extract the values and
* create the content of a match entry. This function should only be used for
* fixed-size data structures.
*/
void
ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
{
enum ice_flow_fld_match_type t = range ?
ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
}
/**
* ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
* @seg: packet segment the field being set belongs to
* @off: offset of the raw field from the beginning of the segment in bytes
* @len: length of the raw pattern to be matched
* @val_loc: location of the value to match from entry's input buffer
* @mask_loc: location of mask value from entry's input buffer
*
* This function specifies the offset of the raw field to be match from the
* beginning of the specified packet segment, and the locations, in the form of
* byte offsets from the start of the input buffer for a flow entry, from where
* the value to match and the mask value to be extracted. These locations are
* then stored in the flow profile. When adding flow entries to the associated
* flow profile, these locations can be used to quickly extract the values to
* create the content of a match entry. This function should only be used for
* fixed-size data structures.
*/
void
ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
u16 val_loc, u16 mask_loc)
{
if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
seg->raws[seg->raws_cnt].off = off;
seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
seg->raws[seg->raws_cnt].info.src.val = val_loc;
seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
/* The "last" field is used to store the length of the field */
seg->raws[seg->raws_cnt].info.src.last = len;
}
/* Overflows of "raws" will be handled as an error condition later in
* the flow when this information is processed.
*/
seg->raws_cnt++;
}
/**
* ice_flow_rem_vsi_prof - remove VSI from flow profile
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @prof_id: unique ID to identify this flow profile
*
* This function removes the flow entries associated to the input
* VSI handle and disassociate the VSI from the flow profile.
*/
int ice_flow_rem_vsi_prof(struct ice_hw *hw, u16 vsi_handle, u64 prof_id)
{
struct ice_flow_prof *prof;
int status = 0;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
/* find flow profile pointer with input package block and profile ID */
prof = ice_flow_find_prof_id(hw, ICE_BLK_FD, prof_id);
if (!prof) {
ice_debug(hw, ICE_DBG_PKG, "Cannot find flow profile id=%llu\n",
prof_id);
return -ENOENT;
}
/* Remove all remaining flow entries before removing the flow profile */
if (!list_empty(&prof->entries)) {
struct ice_flow_entry *e, *t;
mutex_lock(&prof->entries_lock);
list_for_each_entry_safe(e, t, &prof->entries, l_entry) {
if (e->vsi_handle != vsi_handle)
continue;
status = ice_flow_rem_entry_sync(hw, ICE_BLK_FD, e);
if (status)
break;
}
mutex_unlock(&prof->entries_lock);
}
if (status)
return status;
/* disassociate the flow profile from sw VSI handle */
status = ice_flow_disassoc_prof(hw, ICE_BLK_FD, prof, vsi_handle);
if (status)
ice_debug(hw, ICE_DBG_PKG, "ice_flow_disassoc_prof() failed with status=%d\n",
status);
return status;
}
#define ICE_FLOW_RSS_SEG_HDR_L2_MASKS \
(ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
(ICE_FLOW_RSS_SEG_HDR_L2_MASKS | \
ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
/**
* ice_flow_set_rss_seg_info - setup packet segments for RSS
* @segs: pointer to the flow field segment(s)
* @hash_fields: fields to be hashed on for the segment(s)
* @flow_hdr: protocol header fields within a packet segment
*
* Helper function to extract fields from hash bitmap and use flow
* header value to set flow field segment for further use in flow
* profile entry or removal.
*/
static int
ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
u32 flow_hdr)
{
u64 val;
u8 i;
for_each_set_bit(i, (unsigned long *)&hash_fields,
ICE_FLOW_FIELD_IDX_MAX)
ice_flow_set_fld(segs, (enum ice_flow_field)i,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
ICE_FLOW_SET_HDRS(segs, flow_hdr);
if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS &
~ICE_FLOW_RSS_HDRS_INNER_MASK & ~ICE_FLOW_SEG_HDR_IPV_OTHER)
return -EINVAL;
val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
if (val && !is_power_of_2(val))
return -EIO;
val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
if (val && !is_power_of_2(val))
return -EIO;
return 0;
}
/**
* ice_rem_vsi_rss_list - remove VSI from RSS list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* Remove the VSI from all RSS configurations in the list.
*/
void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_rss_cfg *r, *tmp;
if (list_empty(&hw->rss_list_head))
return;
mutex_lock(&hw->rss_locks);
list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
if (test_and_clear_bit(vsi_handle, r->vsis))
if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
list_del(&r->l_entry);
devm_kfree(ice_hw_to_dev(hw), r);
}
mutex_unlock(&hw->rss_locks);
}
/**
* ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*
* This function will iterate through all flow profiles and disassociate
* the VSI from that profile. If the flow profile has no VSIs it will
* be removed.
*/
int ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *p, *t;
int status = 0;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
if (list_empty(&hw->fl_profs[blk]))
return 0;
mutex_lock(&hw->rss_locks);
list_for_each_entry_safe(p, t, &hw->fl_profs[blk], l_entry)
if (test_bit(vsi_handle, p->vsis)) {
status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
if (status)
break;
if (bitmap_empty(p->vsis, ICE_MAX_VSI)) {
status = ice_flow_rem_prof(hw, blk, p->id);
if (status)
break;
}
}
mutex_unlock(&hw->rss_locks);
return status;
}
/**
* ice_rem_rss_list - remove RSS configuration from list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @prof: pointer to flow profile
*
* Assumption: lock has already been acquired for RSS list
*/
static void
ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
{
struct ice_rss_cfg *r, *tmp;
/* Search for RSS hash fields associated to the VSI that match the
* hash configurations associated to the flow profile. If found
* remove from the RSS entry list of the VSI context and delete entry.
*/
list_for_each_entry_safe(r, tmp, &hw->rss_list_head, l_entry)
if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
clear_bit(vsi_handle, r->vsis);
if (bitmap_empty(r->vsis, ICE_MAX_VSI)) {
list_del(&r->l_entry);
devm_kfree(ice_hw_to_dev(hw), r);
}
return;
}
}
/**
* ice_add_rss_list - add RSS configuration to list
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @prof: pointer to flow profile
*
* Assumption: lock has already been acquired for RSS list
*/
static int
ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
{
struct ice_rss_cfg *r, *rss_cfg;
list_for_each_entry(r, &hw->rss_list_head, l_entry)
if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
set_bit(vsi_handle, r->vsis);
return 0;
}
rss_cfg = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rss_cfg),
GFP_KERNEL);
if (!rss_cfg)
return -ENOMEM;
rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
set_bit(vsi_handle, rss_cfg->vsis);
list_add_tail(&rss_cfg->l_entry, &hw->rss_list_head);
return 0;
}
#define ICE_FLOW_PROF_HASH_S 0
#define ICE_FLOW_PROF_HASH_M (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
#define ICE_FLOW_PROF_HDR_S 32
#define ICE_FLOW_PROF_HDR_M (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
#define ICE_FLOW_PROF_ENCAP_S 63
#define ICE_FLOW_PROF_ENCAP_M (BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
#define ICE_RSS_OUTER_HEADERS 1
#define ICE_RSS_INNER_HEADERS 2
/* Flow profile ID format:
* [0:31] - Packet match fields
* [32:62] - Protocol header
* [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
*/
#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
((u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
(((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0)))
/**
* ice_add_rss_cfg_sync - add an RSS configuration
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
* @addl_hdrs: protocol header fields
* @segs_cnt: packet segment count
*
* Assumption: lock has already been acquired for RSS list
*/
static int
ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs, u8 segs_cnt)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *prof = NULL;
struct ice_flow_seg_info *segs;
int status;
if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
return -EINVAL;
segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
if (!segs)
return -ENOMEM;
/* Construct the packet segment info from the hashed fields */
status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
addl_hdrs);
if (status)
goto exit;
/* Search for a flow profile that has matching headers, hash fields
* and has the input VSI associated to it. If found, no further
* operations required and exit.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS |
ICE_FLOW_FIND_PROF_CHK_VSI);
if (prof)
goto exit;
/* Check if a flow profile exists with the same protocol headers and
* associated with the input VSI. If so disassociate the VSI from
* this profile. The VSI will be added to a new profile created with
* the protocol header and new hash field configuration.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
if (prof) {
status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
if (!status)
ice_rem_rss_list(hw, vsi_handle, prof);
else
goto exit;
/* Remove profile if it has no VSIs associated */
if (bitmap_empty(prof->vsis, ICE_MAX_VSI)) {
status = ice_flow_rem_prof(hw, blk, prof->id);
if (status)
goto exit;
}
}
/* Search for a profile that has same match fields only. If this
* exists then associate the VSI to this profile.
*/
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS);
if (prof) {
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
if (!status)
status = ice_add_rss_list(hw, vsi_handle, prof);
goto exit;
}
/* Create a new flow profile with generated profile and packet
* segment information.
*/
status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
ICE_FLOW_GEN_PROFID(hashed_flds,
segs[segs_cnt - 1].hdrs,
segs_cnt),
segs, segs_cnt, &prof);
if (status)
goto exit;
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
/* If association to a new flow profile failed then this profile can
* be removed.
*/
if (status) {
ice_flow_rem_prof(hw, blk, prof->id);
goto exit;
}
status = ice_add_rss_list(hw, vsi_handle, prof);
exit:
kfree(segs);
return status;
}
/**
* ice_add_rss_cfg - add an RSS configuration with specified hashed fields
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
* @addl_hdrs: protocol header fields
*
* This function will generate a flow profile based on fields associated with
* the input fields to hash on, the flow type and use the VSI number to add
* a flow entry to the profile.
*/
int
ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs)
{
int status;
if (hashed_flds == ICE_HASH_INVALID ||
!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
mutex_lock(&hw->rss_locks);
status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
ICE_RSS_OUTER_HEADERS);
if (!status)
status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds,
addl_hdrs, ICE_RSS_INNER_HEADERS);
mutex_unlock(&hw->rss_locks);
return status;
}
/**
* ice_rem_rss_cfg_sync - remove an existing RSS configuration
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
* @addl_hdrs: Protocol header fields within a packet segment
* @segs_cnt: packet segment count
*
* Assumption: lock has already been acquired for RSS list
*/
static int
ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs, u8 segs_cnt)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_seg_info *segs;
struct ice_flow_prof *prof;
int status;
segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
if (!segs)
return -ENOMEM;
/* Construct the packet segment info from the hashed fields */
status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
addl_hdrs);
if (status)
goto out;
prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, segs_cnt,
vsi_handle,
ICE_FLOW_FIND_PROF_CHK_FLDS);
if (!prof) {
status = -ENOENT;
goto out;
}
status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
if (status)
goto out;
/* Remove RSS configuration from VSI context before deleting
* the flow profile.
*/
ice_rem_rss_list(hw, vsi_handle, prof);
if (bitmap_empty(prof->vsis, ICE_MAX_VSI))
status = ice_flow_rem_prof(hw, blk, prof->id);
out:
kfree(segs);
return status;
}
/**
* ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
* @addl_hdrs: Protocol header fields within a packet segment
*
* This function will lookup the flow profile based on the input
* hash field bitmap, iterate through the profile entry list of
* that profile and find entry associated with input VSI to be
* removed. Calls are made to underlying flow s which will APIs
* turn build or update buffers for RSS XLT1 section.
*/
int __maybe_unused
ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs)
{
int status;
if (hashed_flds == ICE_HASH_INVALID ||
!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
mutex_lock(&hw->rss_locks);
status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
ICE_RSS_OUTER_HEADERS);
if (!status)
status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds,
addl_hdrs, ICE_RSS_INNER_HEADERS);
mutex_unlock(&hw->rss_locks);
return status;
}
/* Mapping of AVF hash bit fields to an L3-L4 hash combination.
* As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
* convert its values to their appropriate flow L3, L4 values.
*/
#define ICE_FLOW_AVF_RSS_IPV4_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
#define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
#define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
#define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
(ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
#define ICE_FLOW_AVF_RSS_IPV6_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
#define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
#define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
(BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
#define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
(ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
/**
* ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
*
* This function will take the hash bitmap provided by the AVF driver via a
* message, convert it to ICE-compatible values, and configure RSS flow
* profiles.
*/
int ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
{
int status = 0;
u64 hash_flds;
if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
/* Make sure no unsupported bits are specified */
if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
return -EIO;
hash_flds = avf_hash;
/* Always create an L3 RSS configuration for any L4 RSS configuration */
if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
/* Create the corresponding RSS configuration for each valid hash bit */
while (hash_flds) {
u64 rss_hash = ICE_HASH_INVALID;
if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV4;
hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
} else if (hash_flds &
ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV4 |
ICE_FLOW_HASH_TCP_PORT;
hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
} else if (hash_flds &
ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV4 |
ICE_FLOW_HASH_UDP_PORT;
hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
} else if (hash_flds &
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
rss_hash = ICE_FLOW_HASH_IPV4 |
ICE_FLOW_HASH_SCTP_PORT;
hash_flds &=
~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
}
} else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV6;
hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
} else if (hash_flds &
ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV6 |
ICE_FLOW_HASH_TCP_PORT;
hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
} else if (hash_flds &
ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
rss_hash = ICE_FLOW_HASH_IPV6 |
ICE_FLOW_HASH_UDP_PORT;
hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
} else if (hash_flds &
BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
rss_hash = ICE_FLOW_HASH_IPV6 |
ICE_FLOW_HASH_SCTP_PORT;
hash_flds &=
~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
}
}
if (rss_hash == ICE_HASH_INVALID)
return -EIO;
status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
ICE_FLOW_SEG_HDR_NONE);
if (status)
break;
}
return status;
}
/**
* ice_replay_rss_cfg - replay RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*/
int ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_rss_cfg *r;
int status = 0;
if (!ice_is_vsi_valid(hw, vsi_handle))
return -EINVAL;
mutex_lock(&hw->rss_locks);
list_for_each_entry(r, &hw->rss_list_head, l_entry) {
if (test_bit(vsi_handle, r->vsis)) {
status = ice_add_rss_cfg_sync(hw, vsi_handle,
r->hashed_flds,
r->packet_hdr,
ICE_RSS_OUTER_HEADERS);
if (status)
break;
status = ice_add_rss_cfg_sync(hw, vsi_handle,
r->hashed_flds,
r->packet_hdr,
ICE_RSS_INNER_HEADERS);
if (status)
break;
}
}
mutex_unlock(&hw->rss_locks);
return status;
}
/**
* ice_get_rss_cfg - returns hashed fields for the given header types
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hdrs: protocol header type
*
* This function will return the match fields of the first instance of flow
* profile having the given header types and containing input VSI
*/
u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
{
u64 rss_hash = ICE_HASH_INVALID;
struct ice_rss_cfg *r;
/* verify if the protocol header is non zero and VSI is valid */
if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
return ICE_HASH_INVALID;
mutex_lock(&hw->rss_locks);
list_for_each_entry(r, &hw->rss_list_head, l_entry)
if (test_bit(vsi_handle, r->vsis) &&
r->packet_hdr == hdrs) {
rss_hash = r->hashed_flds;
break;
}
mutex_unlock(&hw->rss_locks);
return rss_hash;
}