818 lines
26 KiB
C
818 lines
26 KiB
C
/* Broadcom NetXtreme-C/E network driver.
|
||
*
|
||
* Copyright (c) 2020 Broadcom Limited
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation.
|
||
*/
|
||
|
||
#include <asm/byteorder.h>
|
||
#include <linux/dma-mapping.h>
|
||
#include <linux/dmapool.h>
|
||
#include <linux/errno.h>
|
||
#include <linux/ethtool.h>
|
||
#include <linux/if_ether.h>
|
||
#include <linux/io.h>
|
||
#include <linux/irq.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/list.h>
|
||
#include <linux/netdevice.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/skbuff.h>
|
||
|
||
#include "bnxt_hsi.h"
|
||
#include "bnxt.h"
|
||
#include "bnxt_hwrm.h"
|
||
|
||
static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
|
||
{
|
||
return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
|
||
}
|
||
|
||
/**
|
||
* __hwrm_req_init() - Initialize an HWRM request.
|
||
* @bp: The driver context.
|
||
* @req: A pointer to the request pointer to initialize.
|
||
* @req_type: The request type. This will be converted to the little endian
|
||
* before being written to the req_type field of the returned request.
|
||
* @req_len: The length of the request to be allocated.
|
||
*
|
||
* Allocate DMA resources and initialize a new HWRM request object of the
|
||
* given type. The response address field in the request is configured with
|
||
* the DMA bus address that has been mapped for the response and the passed
|
||
* request is pointed to kernel virtual memory mapped for the request (such
|
||
* that short_input indirection can be accomplished without copying). The
|
||
* request’s target and completion ring are initialized to default values and
|
||
* can be overridden by writing to the returned request object directly.
|
||
*
|
||
* The initialized request can be further customized by writing to its fields
|
||
* directly, taking care to covert such fields to little endian. The request
|
||
* object will be consumed (and all its associated resources release) upon
|
||
* passing it to hwrm_req_send() unless ownership of the request has been
|
||
* claimed by the caller via a call to hwrm_req_hold(). If the request is not
|
||
* consumed, either because it is never sent or because ownership has been
|
||
* claimed, then it must be released by a call to hwrm_req_drop().
|
||
*
|
||
* Return: zero on success, negative error code otherwise:
|
||
* E2BIG: the type of request pointer is too large to fit.
|
||
* ENOMEM: an allocation failure occurred.
|
||
*/
|
||
int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx;
|
||
dma_addr_t dma_handle;
|
||
u8 *req_addr;
|
||
|
||
if (req_len > BNXT_HWRM_CTX_OFFSET)
|
||
return -E2BIG;
|
||
|
||
req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
|
||
&dma_handle);
|
||
if (!req_addr)
|
||
return -ENOMEM;
|
||
|
||
ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
|
||
/* safety first, sentinel used to check for invalid requests */
|
||
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
|
||
ctx->req_len = req_len;
|
||
ctx->req = (struct input *)req_addr;
|
||
ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
|
||
ctx->dma_handle = dma_handle;
|
||
ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
|
||
ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
|
||
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
|
||
ctx->gfp = GFP_KERNEL;
|
||
ctx->slice_addr = NULL;
|
||
|
||
/* initialize common request fields */
|
||
ctx->req->req_type = cpu_to_le16(req_type);
|
||
ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
|
||
ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
|
||
ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
|
||
*req = ctx->req;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
|
||
{
|
||
void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
|
||
struct input *req = (struct input *)req_addr;
|
||
struct bnxt_hwrm_ctx *ctx = ctx_addr;
|
||
u64 sentinel;
|
||
|
||
if (!req) {
|
||
/* can only be due to software bug, be loud */
|
||
netdev_err(bp->dev, "null HWRM request");
|
||
dump_stack();
|
||
return NULL;
|
||
}
|
||
|
||
/* HWRM API has no type safety, verify sentinel to validate address */
|
||
sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
|
||
if (ctx->sentinel != sentinel) {
|
||
/* can only be due to software bug, be loud */
|
||
netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
|
||
(u32)le16_to_cpu(req->req_type));
|
||
dump_stack();
|
||
return NULL;
|
||
}
|
||
|
||
return ctx;
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_timeout() - Set the completion timeout for the request.
|
||
* @bp: The driver context.
|
||
* @req: The request to set the timeout.
|
||
* @timeout: The timeout in milliseconds.
|
||
*
|
||
* Set the timeout associated with the request for subsequent calls to
|
||
* hwrm_req_send(). Some requests are long running and require a different
|
||
* timeout than the default.
|
||
*/
|
||
void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
|
||
if (ctx)
|
||
ctx->timeout = timeout;
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
|
||
* @bp: The driver context.
|
||
* @req: The request for which calls to hwrm_req_dma_slice() will have altered
|
||
* allocation flags.
|
||
* @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
|
||
* whenever it is used to allocate backing memory for slices. Note that
|
||
* calls to hwrm_req_dma_slice() will not always result in new allocations,
|
||
* however, memory suballocated from the request buffer is already
|
||
* __GFP_ZERO.
|
||
*
|
||
* Sets the GFP allocation flags associated with the request for subsequent
|
||
* calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
|
||
* for slice allocations.
|
||
*/
|
||
void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
|
||
if (ctx)
|
||
ctx->gfp = gfp;
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_replace() - Replace request data.
|
||
* @bp: The driver context.
|
||
* @req: The request to modify. A call to hwrm_req_replace() is conceptually
|
||
* an assignment of new_req to req. Subsequent calls to HWRM API functions,
|
||
* such as hwrm_req_send(), should thus use req and not new_req (in fact,
|
||
* calls to HWRM API functions will fail if non-managed request objects
|
||
* are passed).
|
||
* @len: The length of new_req.
|
||
* @new_req: The pre-built request to copy or reference.
|
||
*
|
||
* Replaces the request data in req with that of new_req. This is useful in
|
||
* scenarios where a request object has already been constructed by a third
|
||
* party prior to creating a resource managed request using hwrm_req_init().
|
||
* Depending on the length, hwrm_req_replace() will either copy the new
|
||
* request data into the DMA memory allocated for req, or it will simply
|
||
* reference the new request and use it in lieu of req during subsequent
|
||
* calls to hwrm_req_send(). The resource management is associated with
|
||
* req and is independent of and does not apply to new_req. The caller must
|
||
* ensure that the lifetime of new_req is least as long as req. Any slices
|
||
* that may have been associated with the original request are released.
|
||
*
|
||
* Return: zero on success, negative error code otherwise:
|
||
* E2BIG: Request is too large.
|
||
* EINVAL: Invalid request to modify.
|
||
*/
|
||
int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
struct input *internal_req = req;
|
||
u16 req_type;
|
||
|
||
if (!ctx)
|
||
return -EINVAL;
|
||
|
||
if (len > BNXT_HWRM_CTX_OFFSET)
|
||
return -E2BIG;
|
||
|
||
/* free any existing slices */
|
||
ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
|
||
if (ctx->slice_addr) {
|
||
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
|
||
ctx->slice_addr, ctx->slice_handle);
|
||
ctx->slice_addr = NULL;
|
||
}
|
||
ctx->gfp = GFP_KERNEL;
|
||
|
||
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
|
||
memcpy(internal_req, new_req, len);
|
||
} else {
|
||
internal_req->req_type = ((struct input *)new_req)->req_type;
|
||
ctx->req = new_req;
|
||
}
|
||
|
||
ctx->req_len = len;
|
||
ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
|
||
BNXT_HWRM_RESP_OFFSET);
|
||
|
||
/* update sentinel for potentially new request type */
|
||
req_type = le16_to_cpu(internal_req->req_type);
|
||
ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_flags() - Set non internal flags of the ctx
|
||
* @bp: The driver context.
|
||
* @req: The request containing the HWRM command
|
||
* @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
|
||
*
|
||
* ctx flags can be used by the callers to instruct how the subsequent
|
||
* hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
|
||
* with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
|
||
* or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
|
||
* even if FW is not responding.
|
||
* This generic function can be used to set any flag that is not an internal flag
|
||
* of the HWRM module.
|
||
*/
|
||
void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
|
||
if (ctx)
|
||
ctx->flags |= (flags & HWRM_API_FLAGS);
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_hold() - Claim ownership of the request's resources.
|
||
* @bp: The driver context.
|
||
* @req: A pointer to the request to own. The request will no longer be
|
||
* consumed by calls to hwrm_req_send().
|
||
*
|
||
* Take ownership of the request. Ownership places responsibility on the
|
||
* caller to free the resources associated with the request via a call to
|
||
* hwrm_req_drop(). The caller taking ownership implies that a subsequent
|
||
* call to hwrm_req_send() will not consume the request (ie. sending will
|
||
* not free the associated resources if the request is owned by the caller).
|
||
* Taking ownership returns a reference to the response. Retaining and
|
||
* accessing the response data is the most common reason to take ownership
|
||
* of the request. Ownership can also be acquired in order to reuse the same
|
||
* request object across multiple invocations of hwrm_req_send().
|
||
*
|
||
* Return: A pointer to the response object.
|
||
*
|
||
* The resources associated with the response will remain available to the
|
||
* caller until ownership of the request is relinquished via a call to
|
||
* hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
|
||
* a valid request is provided. A returned NULL value would imply a driver
|
||
* bug and the implementation will complain loudly in the logs to aid in
|
||
* detection. It should not be necessary to check the result for NULL.
|
||
*/
|
||
void *hwrm_req_hold(struct bnxt *bp, void *req)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
struct input *input = (struct input *)req;
|
||
|
||
if (!ctx)
|
||
return NULL;
|
||
|
||
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
|
||
/* can only be due to software bug, be loud */
|
||
netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
|
||
(u32)le16_to_cpu(input->req_type));
|
||
dump_stack();
|
||
return NULL;
|
||
}
|
||
|
||
ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
|
||
return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
|
||
}
|
||
|
||
static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
|
||
{
|
||
void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
|
||
dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
|
||
|
||
/* unmap any auxiliary DMA slice */
|
||
if (ctx->slice_addr)
|
||
dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
|
||
ctx->slice_addr, ctx->slice_handle);
|
||
|
||
/* invalidate, ensure ownership, sentinel and dma_handle are cleared */
|
||
memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
|
||
|
||
/* return the buffer to the DMA pool */
|
||
if (dma_handle)
|
||
dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_drop() - Release all resources associated with the request.
|
||
* @bp: The driver context.
|
||
* @req: The request to consume, releasing the associated resources. The
|
||
* request object, any slices, and its associated response are no
|
||
* longer valid.
|
||
*
|
||
* It is legal to call hwrm_req_drop() on an unowned request, provided it
|
||
* has not already been consumed by hwrm_req_send() (for example, to release
|
||
* an aborted request). A given request should not be dropped more than once,
|
||
* nor should it be dropped after having been consumed by hwrm_req_send(). To
|
||
* do so is an error (the context will not be found and a stack trace will be
|
||
* rendered in the kernel log).
|
||
*/
|
||
void hwrm_req_drop(struct bnxt *bp, void *req)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
|
||
if (ctx)
|
||
__hwrm_ctx_drop(bp, ctx);
|
||
}
|
||
|
||
static int __hwrm_to_stderr(u32 hwrm_err)
|
||
{
|
||
switch (hwrm_err) {
|
||
case HWRM_ERR_CODE_SUCCESS:
|
||
return 0;
|
||
case HWRM_ERR_CODE_RESOURCE_LOCKED:
|
||
return -EROFS;
|
||
case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
|
||
return -EACCES;
|
||
case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
|
||
return -ENOSPC;
|
||
case HWRM_ERR_CODE_INVALID_PARAMS:
|
||
case HWRM_ERR_CODE_INVALID_FLAGS:
|
||
case HWRM_ERR_CODE_INVALID_ENABLES:
|
||
case HWRM_ERR_CODE_UNSUPPORTED_TLV:
|
||
case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
|
||
return -EINVAL;
|
||
case HWRM_ERR_CODE_NO_BUFFER:
|
||
return -ENOMEM;
|
||
case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
|
||
case HWRM_ERR_CODE_BUSY:
|
||
return -EAGAIN;
|
||
case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
|
||
return -EOPNOTSUPP;
|
||
case HWRM_ERR_CODE_PF_UNAVAILABLE:
|
||
return -ENODEV;
|
||
default:
|
||
return -EIO;
|
||
}
|
||
}
|
||
|
||
static struct bnxt_hwrm_wait_token *
|
||
__hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
|
||
{
|
||
struct bnxt_hwrm_wait_token *token;
|
||
|
||
token = kzalloc(sizeof(*token), GFP_KERNEL);
|
||
if (!token)
|
||
return NULL;
|
||
|
||
mutex_lock(&bp->hwrm_cmd_lock);
|
||
|
||
token->dst = dst;
|
||
token->state = BNXT_HWRM_PENDING;
|
||
if (dst == BNXT_HWRM_CHNL_CHIMP) {
|
||
token->seq_id = bp->hwrm_cmd_seq++;
|
||
hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
|
||
} else {
|
||
token->seq_id = bp->hwrm_cmd_kong_seq++;
|
||
}
|
||
|
||
return token;
|
||
}
|
||
|
||
static void
|
||
__hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
|
||
{
|
||
if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
|
||
hlist_del_rcu(&token->node);
|
||
kfree_rcu(token, rcu);
|
||
} else {
|
||
kfree(token);
|
||
}
|
||
mutex_unlock(&bp->hwrm_cmd_lock);
|
||
}
|
||
|
||
void
|
||
hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
|
||
{
|
||
struct bnxt_hwrm_wait_token *token;
|
||
|
||
rcu_read_lock();
|
||
hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
|
||
if (token->seq_id == seq_id) {
|
||
WRITE_ONCE(token->state, state);
|
||
rcu_read_unlock();
|
||
return;
|
||
}
|
||
}
|
||
rcu_read_unlock();
|
||
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
|
||
}
|
||
|
||
static void hwrm_req_dbg(struct bnxt *bp, struct input *req)
|
||
{
|
||
u32 ring = le16_to_cpu(req->cmpl_ring);
|
||
u32 type = le16_to_cpu(req->req_type);
|
||
u32 tgt = le16_to_cpu(req->target_id);
|
||
u32 seq = le16_to_cpu(req->seq_id);
|
||
char opt[32] = "\n";
|
||
|
||
if (unlikely(ring != (u16)BNXT_HWRM_NO_CMPL_RING))
|
||
snprintf(opt, 16, " ring %d\n", ring);
|
||
|
||
if (unlikely(tgt != BNXT_HWRM_TARGET))
|
||
snprintf(opt + strlen(opt) - 1, 16, " tgt 0x%x\n", tgt);
|
||
|
||
netdev_dbg(bp->dev, "sent hwrm req_type 0x%x seq id 0x%x%s",
|
||
type, seq, opt);
|
||
}
|
||
|
||
#define hwrm_err(bp, ctx, fmt, ...) \
|
||
do { \
|
||
if ((ctx)->flags & BNXT_HWRM_CTX_SILENT) \
|
||
netdev_dbg((bp)->dev, fmt, __VA_ARGS__); \
|
||
else \
|
||
netdev_err((bp)->dev, fmt, __VA_ARGS__); \
|
||
} while (0)
|
||
|
||
static bool hwrm_wait_must_abort(struct bnxt *bp, u32 req_type, u32 *fw_status)
|
||
{
|
||
if (req_type == HWRM_VER_GET)
|
||
return false;
|
||
|
||
if (!bp->fw_health || !bp->fw_health->status_reliable)
|
||
return false;
|
||
|
||
*fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
|
||
return *fw_status && !BNXT_FW_IS_HEALTHY(*fw_status);
|
||
}
|
||
|
||
static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
|
||
{
|
||
u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
|
||
enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
|
||
u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
|
||
struct bnxt_hwrm_wait_token *token = NULL;
|
||
struct hwrm_short_input short_input = {0};
|
||
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
|
||
unsigned int i, timeout, tmo_count;
|
||
u32 *data = (u32 *)ctx->req;
|
||
u32 msg_len = ctx->req_len;
|
||
u32 req_type, sts;
|
||
int rc = -EBUSY;
|
||
u16 len = 0;
|
||
u8 *valid;
|
||
|
||
if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
|
||
memset(ctx->resp, 0, PAGE_SIZE);
|
||
|
||
req_type = le16_to_cpu(ctx->req->req_type);
|
||
if (BNXT_NO_FW_ACCESS(bp) &&
|
||
(req_type != HWRM_FUNC_RESET && req_type != HWRM_VER_GET)) {
|
||
netdev_dbg(bp->dev, "hwrm req_type 0x%x skipped, FW channel down\n",
|
||
req_type);
|
||
goto exit;
|
||
}
|
||
|
||
if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
|
||
msg_len > bp->hwrm_max_ext_req_len) {
|
||
rc = -E2BIG;
|
||
goto exit;
|
||
}
|
||
|
||
if (bnxt_kong_hwrm_message(bp, ctx->req)) {
|
||
dst = BNXT_HWRM_CHNL_KONG;
|
||
bar_offset = BNXT_GRCPF_REG_KONG_COMM;
|
||
doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
|
||
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
|
||
netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
|
||
req_type);
|
||
rc = -EINVAL;
|
||
goto exit;
|
||
}
|
||
}
|
||
|
||
token = __hwrm_acquire_token(bp, dst);
|
||
if (!token) {
|
||
rc = -ENOMEM;
|
||
goto exit;
|
||
}
|
||
ctx->req->seq_id = cpu_to_le16(token->seq_id);
|
||
|
||
if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
|
||
msg_len > BNXT_HWRM_MAX_REQ_LEN) {
|
||
short_input.req_type = ctx->req->req_type;
|
||
short_input.signature =
|
||
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
|
||
short_input.size = cpu_to_le16(msg_len);
|
||
short_input.req_addr = cpu_to_le64(ctx->dma_handle);
|
||
|
||
data = (u32 *)&short_input;
|
||
msg_len = sizeof(short_input);
|
||
|
||
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
|
||
}
|
||
|
||
/* Ensure any associated DMA buffers are written before doorbell */
|
||
wmb();
|
||
|
||
/* Write request msg to hwrm channel */
|
||
__iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
|
||
|
||
for (i = msg_len; i < max_req_len; i += 4)
|
||
writel(0, bp->bar0 + bar_offset + i);
|
||
|
||
/* Ring channel doorbell */
|
||
writel(1, bp->bar0 + doorbell_offset);
|
||
|
||
hwrm_req_dbg(bp, ctx->req);
|
||
|
||
if (!pci_is_enabled(bp->pdev)) {
|
||
rc = -ENODEV;
|
||
goto exit;
|
||
}
|
||
|
||
/* Limit timeout to an upper limit */
|
||
timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT);
|
||
/* convert timeout to usec */
|
||
timeout *= 1000;
|
||
|
||
i = 0;
|
||
/* Short timeout for the first few iterations:
|
||
* number of loops = number of loops for short timeout +
|
||
* number of loops for standard timeout.
|
||
*/
|
||
tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
|
||
timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
|
||
tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
|
||
|
||
if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
|
||
/* Wait until hwrm response cmpl interrupt is processed */
|
||
while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
|
||
i++ < tmo_count) {
|
||
/* Abort the wait for completion if the FW health
|
||
* check has failed.
|
||
*/
|
||
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
||
goto exit;
|
||
/* on first few passes, just barely sleep */
|
||
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
|
||
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
|
||
HWRM_SHORT_MAX_TIMEOUT);
|
||
} else {
|
||
if (hwrm_wait_must_abort(bp, req_type, &sts)) {
|
||
hwrm_err(bp, ctx, "Resp cmpl intr abandoning msg: 0x%x due to firmware status: 0x%x\n",
|
||
req_type, sts);
|
||
goto exit;
|
||
}
|
||
usleep_range(HWRM_MIN_TIMEOUT,
|
||
HWRM_MAX_TIMEOUT);
|
||
}
|
||
}
|
||
|
||
if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
|
||
hwrm_err(bp, ctx, "Resp cmpl intr err msg: 0x%x\n",
|
||
req_type);
|
||
goto exit;
|
||
}
|
||
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
|
||
valid = ((u8 *)ctx->resp) + len - 1;
|
||
} else {
|
||
__le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
|
||
int j;
|
||
|
||
/* Check if response len is updated */
|
||
for (i = 0; i < tmo_count; i++) {
|
||
/* Abort the wait for completion if the FW health
|
||
* check has failed.
|
||
*/
|
||
if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
|
||
goto exit;
|
||
|
||
if (token &&
|
||
READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
|
||
__hwrm_release_token(bp, token);
|
||
token = NULL;
|
||
}
|
||
|
||
len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
|
||
if (len) {
|
||
__le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
|
||
|
||
if (resp_seq == ctx->req->seq_id)
|
||
break;
|
||
if (resp_seq != seen_out_of_seq) {
|
||
netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
|
||
le16_to_cpu(resp_seq),
|
||
req_type,
|
||
le16_to_cpu(ctx->req->seq_id));
|
||
seen_out_of_seq = resp_seq;
|
||
}
|
||
}
|
||
|
||
/* on first few passes, just barely sleep */
|
||
if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
|
||
usleep_range(HWRM_SHORT_MIN_TIMEOUT,
|
||
HWRM_SHORT_MAX_TIMEOUT);
|
||
} else {
|
||
if (hwrm_wait_must_abort(bp, req_type, &sts)) {
|
||
hwrm_err(bp, ctx, "Abandoning msg {0x%x 0x%x} len: %d due to firmware status: 0x%x\n",
|
||
req_type,
|
||
le16_to_cpu(ctx->req->seq_id),
|
||
len, sts);
|
||
goto exit;
|
||
}
|
||
usleep_range(HWRM_MIN_TIMEOUT,
|
||
HWRM_MAX_TIMEOUT);
|
||
}
|
||
}
|
||
|
||
if (i >= tmo_count) {
|
||
hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
|
||
hwrm_total_timeout(i), req_type,
|
||
le16_to_cpu(ctx->req->seq_id), len);
|
||
goto exit;
|
||
}
|
||
|
||
/* Last byte of resp contains valid bit */
|
||
valid = ((u8 *)ctx->resp) + len - 1;
|
||
for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) {
|
||
/* make sure we read from updated DMA memory */
|
||
dma_rmb();
|
||
if (*valid)
|
||
break;
|
||
if (j < 10) {
|
||
udelay(1);
|
||
j++;
|
||
} else {
|
||
usleep_range(20, 30);
|
||
j += 20;
|
||
}
|
||
}
|
||
|
||
if (j >= HWRM_VALID_BIT_DELAY_USEC) {
|
||
hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
|
||
hwrm_total_timeout(i) + j, req_type,
|
||
le16_to_cpu(ctx->req->seq_id), len, *valid);
|
||
goto exit;
|
||
}
|
||
}
|
||
|
||
/* Zero valid bit for compatibility. Valid bit in an older spec
|
||
* may become a new field in a newer spec. We must make sure that
|
||
* a new field not implemented by old spec will read zero.
|
||
*/
|
||
*valid = 0;
|
||
rc = le16_to_cpu(ctx->resp->error_code);
|
||
if (rc == HWRM_ERR_CODE_BUSY && !(ctx->flags & BNXT_HWRM_CTX_SILENT))
|
||
netdev_warn(bp->dev, "FW returned busy, hwrm req_type 0x%x\n",
|
||
req_type);
|
||
else if (rc && rc != HWRM_ERR_CODE_PF_UNAVAILABLE)
|
||
hwrm_err(bp, ctx, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
|
||
req_type, token->seq_id, rc);
|
||
rc = __hwrm_to_stderr(rc);
|
||
exit:
|
||
if (token)
|
||
__hwrm_release_token(bp, token);
|
||
if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
|
||
ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
|
||
else
|
||
__hwrm_ctx_drop(bp, ctx);
|
||
return rc;
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_send() - Execute an HWRM command.
|
||
* @bp: The driver context.
|
||
* @req: A pointer to the request to send. The DMA resources associated with
|
||
* the request will be released (ie. the request will be consumed) unless
|
||
* ownership of the request has been assumed by the caller via a call to
|
||
* hwrm_req_hold().
|
||
*
|
||
* Send an HWRM request to the device and wait for a response. The request is
|
||
* consumed if it is not owned by the caller. This function will block until
|
||
* the request has either completed or times out due to an error.
|
||
*
|
||
* Return: A result code.
|
||
*
|
||
* The result is zero on success, otherwise the negative error code indicates
|
||
* one of the following errors:
|
||
* E2BIG: The request was too large.
|
||
* EBUSY: The firmware is in a fatal state or the request timed out
|
||
* EACCESS: HWRM access denied.
|
||
* ENOSPC: HWRM resource allocation error.
|
||
* EINVAL: Request parameters are invalid.
|
||
* ENOMEM: HWRM has no buffers.
|
||
* EAGAIN: HWRM busy or reset in progress.
|
||
* EOPNOTSUPP: Invalid request type.
|
||
* EIO: Any other error.
|
||
* Error handling is orthogonal to request ownership. An unowned request will
|
||
* still be consumed on error. If the caller owns the request, then the caller
|
||
* is responsible for releasing the resources. Otherwise, hwrm_req_send() will
|
||
* always consume the request.
|
||
*/
|
||
int hwrm_req_send(struct bnxt *bp, void *req)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
|
||
if (!ctx)
|
||
return -EINVAL;
|
||
|
||
return __hwrm_send(bp, ctx);
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_send_silent() - A silent version of hwrm_req_send().
|
||
* @bp: The driver context.
|
||
* @req: The request to send without logging.
|
||
*
|
||
* The same as hwrm_req_send(), except that the request is silenced using
|
||
* hwrm_req_silence() prior the call. This version of the function is
|
||
* provided solely to preserve the legacy API’s flavor for this functionality.
|
||
*
|
||
* Return: A result code, see hwrm_req_send().
|
||
*/
|
||
int hwrm_req_send_silent(struct bnxt *bp, void *req)
|
||
{
|
||
hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
|
||
return hwrm_req_send(bp, req);
|
||
}
|
||
|
||
/**
|
||
* hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
|
||
* @bp: The driver context.
|
||
* @req: The request for which indirect data will be associated.
|
||
* @size: The size of the allocation.
|
||
* @dma_handle: The bus address associated with the allocation. The HWRM API has
|
||
* no knowledge about the type of the request and so cannot infer how the
|
||
* caller intends to use the indirect data. Thus, the caller is
|
||
* responsible for configuring the request object appropriately to
|
||
* point to the associated indirect memory. Note, DMA handle has the
|
||
* same definition as it does in dma_alloc_coherent(), the caller is
|
||
* responsible for endian conversions via cpu_to_le64() before assigning
|
||
* this address.
|
||
*
|
||
* Allocates DMA mapped memory for indirect data related to a request. The
|
||
* lifetime of the DMA resources will be bound to that of the request (ie.
|
||
* they will be automatically released when the request is either consumed by
|
||
* hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
|
||
* efficiently suballocated out of the request buffer space, hence the name
|
||
* slice, while larger requests are satisfied via an underlying call to
|
||
* dma_alloc_coherent(). Multiple suballocations are supported, however, only
|
||
* one externally mapped region is.
|
||
*
|
||
* Return: The kernel virtual address of the DMA mapping.
|
||
*/
|
||
void *
|
||
hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
|
||
{
|
||
struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
|
||
u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
|
||
struct input *input = req;
|
||
u8 *addr, *req_addr = req;
|
||
u32 max_offset, offset;
|
||
|
||
if (!ctx)
|
||
return NULL;
|
||
|
||
max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
|
||
offset = max_offset - size;
|
||
offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
|
||
addr = req_addr + offset;
|
||
|
||
if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
|
||
ctx->allocated = end - addr;
|
||
*dma_handle = ctx->dma_handle + offset;
|
||
return addr;
|
||
}
|
||
|
||
/* could not suballocate from ctx buffer, try create a new mapping */
|
||
if (ctx->slice_addr) {
|
||
/* if one exists, can only be due to software bug, be loud */
|
||
netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
|
||
(u32)le16_to_cpu(input->req_type));
|
||
dump_stack();
|
||
return NULL;
|
||
}
|
||
|
||
addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
|
||
|
||
if (!addr)
|
||
return NULL;
|
||
|
||
ctx->slice_addr = addr;
|
||
ctx->slice_size = size;
|
||
ctx->slice_handle = *dma_handle;
|
||
|
||
return addr;
|
||
}
|