10254 lines
335 KiB
C
10254 lines
335 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2020-2022 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include "gaudi2P.h"
|
|
#include "gaudi2_masks.h"
|
|
#include "../include/hw_ip/mmu/mmu_general.h"
|
|
#include "../include/hw_ip/mmu/mmu_v2_0.h"
|
|
#include "../include/gaudi2/gaudi2_packets.h"
|
|
#include "../include/gaudi2/gaudi2_reg_map.h"
|
|
#include "../include/gaudi2/gaudi2_async_ids_map_extended.h"
|
|
#include "../include/gaudi2/arc/gaudi2_arc_common_packets.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/iommu.h>
|
|
|
|
#define GAUDI2_DMA_POOL_BLK_SIZE SZ_256 /* 256 bytes */
|
|
|
|
#define GAUDI2_RESET_TIMEOUT_MSEC 2000 /* 2000ms */
|
|
#define GAUDI2_RESET_POLL_TIMEOUT_USEC 50000 /* 50ms */
|
|
#define GAUDI2_PLDM_HRESET_TIMEOUT_MSEC 25000 /* 25s */
|
|
#define GAUDI2_PLDM_SRESET_TIMEOUT_MSEC 25000 /* 25s */
|
|
#define GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC 3000000 /* 3s */
|
|
#define GAUDI2_RESET_POLL_CNT 3
|
|
#define GAUDI2_RESET_WAIT_MSEC 1 /* 1ms */
|
|
#define GAUDI2_CPU_RESET_WAIT_MSEC 100 /* 100ms */
|
|
#define GAUDI2_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
|
|
#define GAUDI2_CB_POOL_CB_CNT 512
|
|
#define GAUDI2_CB_POOL_CB_SIZE SZ_128K /* 128KB */
|
|
#define GAUDI2_MSG_TO_CPU_TIMEOUT_USEC 4000000 /* 4s */
|
|
#define GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC 25000000 /* 25s */
|
|
#define GAUDI2_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
|
|
#define GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC 1000000 /* 1s */
|
|
|
|
#define GAUDI2_ALLOC_CPU_MEM_RETRY_CNT 3
|
|
|
|
/*
|
|
* since the code already has built-in support for binning of up to MAX_FAULTY_TPCS TPCs
|
|
* and the code relies on that value (for array size etc..) we define another value
|
|
* for MAX faulty TPCs which reflects the cluster binning requirements
|
|
*/
|
|
#define MAX_CLUSTER_BINNING_FAULTY_TPCS 1
|
|
#define MAX_FAULTY_XBARS 1
|
|
#define MAX_FAULTY_EDMAS 1
|
|
#define MAX_FAULTY_DECODERS 1
|
|
|
|
#define GAUDI2_TPC_FULL_MASK 0x1FFFFFF
|
|
#define GAUDI2_HIF_HMMU_FULL_MASK 0xFFFF
|
|
#define GAUDI2_DECODER_FULL_MASK 0x3FF
|
|
|
|
#define GAUDI2_NUM_OF_QM_ERR_CAUSE 18
|
|
#define GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE 25
|
|
#define GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE 3
|
|
#define GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE 14
|
|
#define GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE 3
|
|
#define GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE 2
|
|
#define GAUDI2_NUM_OF_ROT_ERR_CAUSE 22
|
|
#define GAUDI2_NUM_OF_TPC_INTR_CAUSE 30
|
|
#define GAUDI2_NUM_OF_DEC_ERR_CAUSE 25
|
|
#define GAUDI2_NUM_OF_MME_ERR_CAUSE 16
|
|
#define GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE 5
|
|
#define GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE 7
|
|
#define GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE 8
|
|
#define GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE 19
|
|
#define GAUDI2_NUM_OF_HBM_SEI_CAUSE 9
|
|
#define GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE 3
|
|
#define GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE 3
|
|
#define GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE 2
|
|
#define GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE 2
|
|
#define GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE 2
|
|
#define GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE 5
|
|
|
|
#define GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 10)
|
|
#define GAUDI2_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 200)
|
|
#define GAUDI2_ARB_WDT_TIMEOUT (0x1000000)
|
|
|
|
#define GAUDI2_VDEC_TIMEOUT_USEC 10000 /* 10ms */
|
|
#define GAUDI2_PLDM_VDEC_TIMEOUT_USEC (GAUDI2_VDEC_TIMEOUT_USEC * 100)
|
|
|
|
#define KDMA_TIMEOUT_USEC USEC_PER_SEC
|
|
|
|
#define IS_DMA_IDLE(dma_core_idle_ind_mask) \
|
|
(!((dma_core_idle_ind_mask) & \
|
|
((DCORE0_EDMA0_CORE_IDLE_IND_MASK_DESC_CNT_STS_MASK) | \
|
|
(DCORE0_EDMA0_CORE_IDLE_IND_MASK_COMP_MASK))))
|
|
|
|
#define IS_MME_IDLE(mme_arch_sts) (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)
|
|
|
|
#define IS_TPC_IDLE(tpc_cfg_sts) (((tpc_cfg_sts) & (TPC_IDLE_MASK)) == (TPC_IDLE_MASK))
|
|
|
|
#define IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) \
|
|
((((qm_glbl_sts0) & (QM_IDLE_MASK)) == (QM_IDLE_MASK)) && \
|
|
(((qm_glbl_sts1) & (QM_ARC_IDLE_MASK)) == (QM_ARC_IDLE_MASK)) && \
|
|
(((qm_cgm_sts) & (CGM_IDLE_MASK)) == (CGM_IDLE_MASK)))
|
|
|
|
#define PCIE_DEC_EN_MASK 0x300
|
|
#define DEC_WORK_STATE_IDLE 0
|
|
#define DEC_WORK_STATE_PEND 3
|
|
#define IS_DEC_IDLE(dec_swreg15) \
|
|
(((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_IDLE || \
|
|
((dec_swreg15) & DCORE0_DEC0_CMD_SWREG15_SW_WORK_STATE_MASK) == DEC_WORK_STATE_PEND)
|
|
|
|
/* HBM MMU address scrambling parameters */
|
|
#define GAUDI2_HBM_MMU_SCRM_MEM_SIZE SZ_8M
|
|
#define GAUDI2_HBM_MMU_SCRM_DIV_SHIFT 26
|
|
#define GAUDI2_HBM_MMU_SCRM_MOD_SHIFT 0
|
|
#define GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK DRAM_VA_HINT_MASK
|
|
#define GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR 16
|
|
#define MMU_RANGE_INV_VA_LSB_SHIFT 12
|
|
#define MMU_RANGE_INV_VA_MSB_SHIFT 44
|
|
#define MMU_RANGE_INV_EN_SHIFT 0
|
|
#define MMU_RANGE_INV_ASID_EN_SHIFT 1
|
|
#define MMU_RANGE_INV_ASID_SHIFT 2
|
|
|
|
/* The last SPI_SEI cause bit, "burst_fifo_full", is expected to be triggered in PMMU because it has
|
|
* a 2 entries FIFO, and hence it is not enabled for it.
|
|
*/
|
|
#define GAUDI2_PMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 2, 0)
|
|
#define GAUDI2_HMMU_SPI_SEI_ENABLE_MASK GENMASK(GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE - 1, 0)
|
|
|
|
#define GAUDI2_MAX_STRING_LEN 64
|
|
|
|
#define GAUDI2_VDEC_MSIX_ENTRIES (GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM - \
|
|
GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 1)
|
|
|
|
enum hl_pmmu_fatal_cause {
|
|
LATENCY_RD_OUT_FIFO_OVERRUN,
|
|
LATENCY_WR_OUT_FIFO_OVERRUN,
|
|
};
|
|
|
|
enum hl_pcie_drain_ind_cause {
|
|
LBW_AXI_DRAIN_IND,
|
|
HBW_AXI_DRAIN_IND
|
|
};
|
|
|
|
static const u32 cluster_hmmu_hif_enabled_mask[GAUDI2_HBM_NUM] = {
|
|
[HBM_ID0] = 0xFFFC,
|
|
[HBM_ID1] = 0xFFCF,
|
|
[HBM_ID2] = 0xF7F7,
|
|
[HBM_ID3] = 0x7F7F,
|
|
[HBM_ID4] = 0xFCFF,
|
|
[HBM_ID5] = 0xCFFF,
|
|
};
|
|
|
|
static const u8 xbar_edge_to_hbm_cluster[EDMA_ID_SIZE] = {
|
|
[0] = HBM_ID0,
|
|
[1] = HBM_ID1,
|
|
[2] = HBM_ID4,
|
|
[3] = HBM_ID5,
|
|
};
|
|
|
|
static const u8 edma_to_hbm_cluster[EDMA_ID_SIZE] = {
|
|
[EDMA_ID_DCORE0_INSTANCE0] = HBM_ID0,
|
|
[EDMA_ID_DCORE0_INSTANCE1] = HBM_ID2,
|
|
[EDMA_ID_DCORE1_INSTANCE0] = HBM_ID1,
|
|
[EDMA_ID_DCORE1_INSTANCE1] = HBM_ID3,
|
|
[EDMA_ID_DCORE2_INSTANCE0] = HBM_ID2,
|
|
[EDMA_ID_DCORE2_INSTANCE1] = HBM_ID4,
|
|
[EDMA_ID_DCORE3_INSTANCE0] = HBM_ID3,
|
|
[EDMA_ID_DCORE3_INSTANCE1] = HBM_ID5,
|
|
};
|
|
|
|
static const int gaudi2_qman_async_event_id[] = {
|
|
[GAUDI2_QUEUE_ID_PDMA_0_0] = GAUDI2_EVENT_PDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_1] = GAUDI2_EVENT_PDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_2] = GAUDI2_EVENT_PDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_3] = GAUDI2_EVENT_PDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_0] = GAUDI2_EVENT_PDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_1] = GAUDI2_EVENT_PDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_2] = GAUDI2_EVENT_PDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_3] = GAUDI2_EVENT_PDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = GAUDI2_EVENT_HDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = GAUDI2_EVENT_HDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = GAUDI2_EVENT_HDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = GAUDI2_EVENT_HDMA0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = GAUDI2_EVENT_HDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = GAUDI2_EVENT_HDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = GAUDI2_EVENT_HDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = GAUDI2_EVENT_HDMA1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = GAUDI2_EVENT_MME0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = GAUDI2_EVENT_MME0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = GAUDI2_EVENT_MME0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = GAUDI2_EVENT_MME0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = GAUDI2_EVENT_TPC0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = GAUDI2_EVENT_TPC0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = GAUDI2_EVENT_TPC0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = GAUDI2_EVENT_TPC0_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = GAUDI2_EVENT_TPC1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = GAUDI2_EVENT_TPC1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = GAUDI2_EVENT_TPC1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = GAUDI2_EVENT_TPC1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = GAUDI2_EVENT_TPC2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = GAUDI2_EVENT_TPC2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = GAUDI2_EVENT_TPC2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = GAUDI2_EVENT_TPC2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = GAUDI2_EVENT_TPC3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = GAUDI2_EVENT_TPC3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = GAUDI2_EVENT_TPC3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = GAUDI2_EVENT_TPC3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = GAUDI2_EVENT_TPC4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = GAUDI2_EVENT_TPC4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = GAUDI2_EVENT_TPC4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = GAUDI2_EVENT_TPC4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = GAUDI2_EVENT_TPC5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = GAUDI2_EVENT_TPC5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = GAUDI2_EVENT_TPC5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = GAUDI2_EVENT_TPC5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = GAUDI2_EVENT_TPC24_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = GAUDI2_EVENT_TPC24_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = GAUDI2_EVENT_TPC24_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = GAUDI2_EVENT_TPC24_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = GAUDI2_EVENT_HDMA2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = GAUDI2_EVENT_HDMA2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = GAUDI2_EVENT_HDMA2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = GAUDI2_EVENT_HDMA2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = GAUDI2_EVENT_HDMA3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = GAUDI2_EVENT_HDMA3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = GAUDI2_EVENT_HDMA3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = GAUDI2_EVENT_HDMA3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = GAUDI2_EVENT_MME1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = GAUDI2_EVENT_MME1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = GAUDI2_EVENT_MME1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = GAUDI2_EVENT_MME1_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = GAUDI2_EVENT_TPC6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = GAUDI2_EVENT_TPC6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = GAUDI2_EVENT_TPC6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = GAUDI2_EVENT_TPC6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = GAUDI2_EVENT_TPC7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = GAUDI2_EVENT_TPC7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = GAUDI2_EVENT_TPC7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = GAUDI2_EVENT_TPC7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = GAUDI2_EVENT_TPC8_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = GAUDI2_EVENT_TPC8_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = GAUDI2_EVENT_TPC8_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = GAUDI2_EVENT_TPC8_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = GAUDI2_EVENT_TPC9_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = GAUDI2_EVENT_TPC9_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = GAUDI2_EVENT_TPC9_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = GAUDI2_EVENT_TPC9_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = GAUDI2_EVENT_TPC10_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = GAUDI2_EVENT_TPC10_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = GAUDI2_EVENT_TPC10_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = GAUDI2_EVENT_TPC10_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = GAUDI2_EVENT_TPC11_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = GAUDI2_EVENT_TPC11_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = GAUDI2_EVENT_TPC11_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = GAUDI2_EVENT_TPC11_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = GAUDI2_EVENT_HDMA4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = GAUDI2_EVENT_HDMA4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = GAUDI2_EVENT_HDMA4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = GAUDI2_EVENT_HDMA4_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = GAUDI2_EVENT_HDMA5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = GAUDI2_EVENT_HDMA5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = GAUDI2_EVENT_HDMA5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = GAUDI2_EVENT_HDMA5_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = GAUDI2_EVENT_MME2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = GAUDI2_EVENT_MME2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = GAUDI2_EVENT_MME2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = GAUDI2_EVENT_MME2_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = GAUDI2_EVENT_TPC12_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = GAUDI2_EVENT_TPC12_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = GAUDI2_EVENT_TPC12_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = GAUDI2_EVENT_TPC12_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = GAUDI2_EVENT_TPC13_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = GAUDI2_EVENT_TPC13_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = GAUDI2_EVENT_TPC13_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = GAUDI2_EVENT_TPC13_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = GAUDI2_EVENT_TPC14_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = GAUDI2_EVENT_TPC14_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = GAUDI2_EVENT_TPC14_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = GAUDI2_EVENT_TPC14_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = GAUDI2_EVENT_TPC15_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = GAUDI2_EVENT_TPC15_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = GAUDI2_EVENT_TPC15_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = GAUDI2_EVENT_TPC15_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = GAUDI2_EVENT_TPC16_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = GAUDI2_EVENT_TPC16_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = GAUDI2_EVENT_TPC16_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = GAUDI2_EVENT_TPC16_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = GAUDI2_EVENT_TPC17_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = GAUDI2_EVENT_TPC17_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = GAUDI2_EVENT_TPC17_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = GAUDI2_EVENT_TPC17_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = GAUDI2_EVENT_HDMA6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = GAUDI2_EVENT_HDMA6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = GAUDI2_EVENT_HDMA6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = GAUDI2_EVENT_HDMA6_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = GAUDI2_EVENT_HDMA7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = GAUDI2_EVENT_HDMA7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = GAUDI2_EVENT_HDMA7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = GAUDI2_EVENT_HDMA7_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = GAUDI2_EVENT_MME3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = GAUDI2_EVENT_MME3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = GAUDI2_EVENT_MME3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = GAUDI2_EVENT_MME3_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = GAUDI2_EVENT_TPC18_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = GAUDI2_EVENT_TPC18_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = GAUDI2_EVENT_TPC18_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = GAUDI2_EVENT_TPC18_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = GAUDI2_EVENT_TPC19_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = GAUDI2_EVENT_TPC19_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = GAUDI2_EVENT_TPC19_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = GAUDI2_EVENT_TPC19_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = GAUDI2_EVENT_TPC20_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = GAUDI2_EVENT_TPC20_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = GAUDI2_EVENT_TPC20_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = GAUDI2_EVENT_TPC20_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = GAUDI2_EVENT_TPC21_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = GAUDI2_EVENT_TPC21_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = GAUDI2_EVENT_TPC21_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = GAUDI2_EVENT_TPC21_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = GAUDI2_EVENT_TPC22_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = GAUDI2_EVENT_TPC22_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = GAUDI2_EVENT_TPC22_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = GAUDI2_EVENT_TPC22_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = GAUDI2_EVENT_TPC23_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = GAUDI2_EVENT_TPC23_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = GAUDI2_EVENT_TPC23_QM,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = GAUDI2_EVENT_TPC23_QM,
|
|
[GAUDI2_QUEUE_ID_NIC_0_0] = GAUDI2_EVENT_NIC0_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_1] = GAUDI2_EVENT_NIC0_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_2] = GAUDI2_EVENT_NIC0_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_3] = GAUDI2_EVENT_NIC0_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_1_0] = GAUDI2_EVENT_NIC0_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_1] = GAUDI2_EVENT_NIC0_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_2] = GAUDI2_EVENT_NIC0_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_3] = GAUDI2_EVENT_NIC0_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_2_0] = GAUDI2_EVENT_NIC1_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_2_1] = GAUDI2_EVENT_NIC1_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_2_2] = GAUDI2_EVENT_NIC1_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_2_3] = GAUDI2_EVENT_NIC1_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_3_0] = GAUDI2_EVENT_NIC1_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_3_1] = GAUDI2_EVENT_NIC1_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_3_2] = GAUDI2_EVENT_NIC1_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_3_3] = GAUDI2_EVENT_NIC1_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_4_0] = GAUDI2_EVENT_NIC2_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_4_1] = GAUDI2_EVENT_NIC2_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_4_2] = GAUDI2_EVENT_NIC2_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_4_3] = GAUDI2_EVENT_NIC2_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_5_0] = GAUDI2_EVENT_NIC2_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_5_1] = GAUDI2_EVENT_NIC2_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_5_2] = GAUDI2_EVENT_NIC2_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_5_3] = GAUDI2_EVENT_NIC2_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_6_0] = GAUDI2_EVENT_NIC3_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_6_1] = GAUDI2_EVENT_NIC3_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_6_2] = GAUDI2_EVENT_NIC3_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_6_3] = GAUDI2_EVENT_NIC3_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_7_0] = GAUDI2_EVENT_NIC3_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_7_1] = GAUDI2_EVENT_NIC3_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_7_2] = GAUDI2_EVENT_NIC3_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_7_3] = GAUDI2_EVENT_NIC3_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_8_0] = GAUDI2_EVENT_NIC4_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_8_1] = GAUDI2_EVENT_NIC4_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_8_2] = GAUDI2_EVENT_NIC4_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_8_3] = GAUDI2_EVENT_NIC4_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_9_0] = GAUDI2_EVENT_NIC4_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_9_1] = GAUDI2_EVENT_NIC4_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_9_2] = GAUDI2_EVENT_NIC4_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_9_3] = GAUDI2_EVENT_NIC4_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_10_0] = GAUDI2_EVENT_NIC5_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_10_1] = GAUDI2_EVENT_NIC5_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_10_2] = GAUDI2_EVENT_NIC5_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_10_3] = GAUDI2_EVENT_NIC5_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_11_0] = GAUDI2_EVENT_NIC5_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_11_1] = GAUDI2_EVENT_NIC5_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_11_2] = GAUDI2_EVENT_NIC5_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_11_3] = GAUDI2_EVENT_NIC5_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_12_0] = GAUDI2_EVENT_NIC6_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_12_1] = GAUDI2_EVENT_NIC6_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_12_2] = GAUDI2_EVENT_NIC6_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_12_3] = GAUDI2_EVENT_NIC6_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_13_0] = GAUDI2_EVENT_NIC6_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_13_1] = GAUDI2_EVENT_NIC6_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_13_2] = GAUDI2_EVENT_NIC6_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_13_3] = GAUDI2_EVENT_NIC6_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_14_0] = GAUDI2_EVENT_NIC7_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_14_1] = GAUDI2_EVENT_NIC7_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_14_2] = GAUDI2_EVENT_NIC7_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_14_3] = GAUDI2_EVENT_NIC7_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_15_0] = GAUDI2_EVENT_NIC7_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_15_1] = GAUDI2_EVENT_NIC7_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_15_2] = GAUDI2_EVENT_NIC7_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_15_3] = GAUDI2_EVENT_NIC7_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_16_0] = GAUDI2_EVENT_NIC8_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_16_1] = GAUDI2_EVENT_NIC8_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_16_2] = GAUDI2_EVENT_NIC8_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_16_3] = GAUDI2_EVENT_NIC8_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_17_0] = GAUDI2_EVENT_NIC8_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_17_1] = GAUDI2_EVENT_NIC8_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_17_2] = GAUDI2_EVENT_NIC8_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_17_3] = GAUDI2_EVENT_NIC8_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_18_0] = GAUDI2_EVENT_NIC9_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_18_1] = GAUDI2_EVENT_NIC9_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_18_2] = GAUDI2_EVENT_NIC9_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_18_3] = GAUDI2_EVENT_NIC9_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_19_0] = GAUDI2_EVENT_NIC9_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_19_1] = GAUDI2_EVENT_NIC9_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_19_2] = GAUDI2_EVENT_NIC9_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_19_3] = GAUDI2_EVENT_NIC9_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_20_0] = GAUDI2_EVENT_NIC10_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_20_1] = GAUDI2_EVENT_NIC10_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_20_2] = GAUDI2_EVENT_NIC10_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_20_3] = GAUDI2_EVENT_NIC10_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_21_0] = GAUDI2_EVENT_NIC10_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_21_1] = GAUDI2_EVENT_NIC10_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_21_2] = GAUDI2_EVENT_NIC10_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_21_3] = GAUDI2_EVENT_NIC10_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_22_0] = GAUDI2_EVENT_NIC11_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_22_1] = GAUDI2_EVENT_NIC11_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_22_2] = GAUDI2_EVENT_NIC11_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_22_3] = GAUDI2_EVENT_NIC11_QM0,
|
|
[GAUDI2_QUEUE_ID_NIC_23_0] = GAUDI2_EVENT_NIC11_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_23_1] = GAUDI2_EVENT_NIC11_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_23_2] = GAUDI2_EVENT_NIC11_QM1,
|
|
[GAUDI2_QUEUE_ID_NIC_23_3] = GAUDI2_EVENT_NIC11_QM1,
|
|
[GAUDI2_QUEUE_ID_ROT_0_0] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_0_1] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_0_2] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_0_3] = GAUDI2_EVENT_ROTATOR0_ROT0_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_1_0] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_1_1] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_1_2] = GAUDI2_EVENT_ROTATOR1_ROT1_QM,
|
|
[GAUDI2_QUEUE_ID_ROT_1_3] = GAUDI2_EVENT_ROTATOR1_ROT1_QM
|
|
};
|
|
|
|
static const int gaudi2_dma_core_async_event_id[] = {
|
|
[DMA_CORE_ID_EDMA0] = GAUDI2_EVENT_HDMA0_CORE,
|
|
[DMA_CORE_ID_EDMA1] = GAUDI2_EVENT_HDMA1_CORE,
|
|
[DMA_CORE_ID_EDMA2] = GAUDI2_EVENT_HDMA2_CORE,
|
|
[DMA_CORE_ID_EDMA3] = GAUDI2_EVENT_HDMA3_CORE,
|
|
[DMA_CORE_ID_EDMA4] = GAUDI2_EVENT_HDMA4_CORE,
|
|
[DMA_CORE_ID_EDMA5] = GAUDI2_EVENT_HDMA5_CORE,
|
|
[DMA_CORE_ID_EDMA6] = GAUDI2_EVENT_HDMA6_CORE,
|
|
[DMA_CORE_ID_EDMA7] = GAUDI2_EVENT_HDMA7_CORE,
|
|
[DMA_CORE_ID_PDMA0] = GAUDI2_EVENT_PDMA0_CORE,
|
|
[DMA_CORE_ID_PDMA1] = GAUDI2_EVENT_PDMA1_CORE,
|
|
[DMA_CORE_ID_KDMA] = GAUDI2_EVENT_KDMA0_CORE,
|
|
};
|
|
|
|
static const char * const gaudi2_qm_sei_error_cause[GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE] = {
|
|
"qman sei intr",
|
|
"arc sei intr"
|
|
};
|
|
|
|
static const char * const gaudi2_cpu_sei_error_cause[GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE] = {
|
|
"AXI_TERMINATOR WR",
|
|
"AXI_TERMINATOR RD",
|
|
"AXI SPLIT SEI Status"
|
|
};
|
|
|
|
static const char * const gaudi2_arc_sei_error_cause[GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE] = {
|
|
"cbu_bresp_sei_intr_cause",
|
|
"cbu_rresp_sei_intr_cause",
|
|
"lbu_bresp_sei_intr_cause",
|
|
"lbu_rresp_sei_intr_cause",
|
|
"cbu_axi_split_intr_cause",
|
|
"lbu_axi_split_intr_cause",
|
|
"arc_ip_excptn_sei_intr_cause",
|
|
"dmi_bresp_sei_intr_cause",
|
|
"aux2apb_err_sei_intr_cause",
|
|
"cfg_lbw_wr_terminated_intr_cause",
|
|
"cfg_lbw_rd_terminated_intr_cause",
|
|
"cfg_dccm_wr_terminated_intr_cause",
|
|
"cfg_dccm_rd_terminated_intr_cause",
|
|
"cfg_hbw_rd_terminated_intr_cause"
|
|
};
|
|
|
|
static const char * const gaudi2_dec_error_cause[GAUDI2_NUM_OF_DEC_ERR_CAUSE] = {
|
|
"msix_vcd_hbw_sei",
|
|
"msix_l2c_hbw_sei",
|
|
"msix_nrm_hbw_sei",
|
|
"msix_abnrm_hbw_sei",
|
|
"msix_vcd_lbw_sei",
|
|
"msix_l2c_lbw_sei",
|
|
"msix_nrm_lbw_sei",
|
|
"msix_abnrm_lbw_sei",
|
|
"apb_vcd_lbw_sei",
|
|
"apb_l2c_lbw_sei",
|
|
"apb_nrm_lbw_sei",
|
|
"apb_abnrm_lbw_sei",
|
|
"dec_sei",
|
|
"dec_apb_sei",
|
|
"trc_apb_sei",
|
|
"lbw_mstr_if_sei",
|
|
"axi_split_bresp_err_sei",
|
|
"hbw_axi_wr_viol_sei",
|
|
"hbw_axi_rd_viol_sei",
|
|
"lbw_axi_wr_viol_sei",
|
|
"lbw_axi_rd_viol_sei",
|
|
"vcd_spi",
|
|
"l2c_spi",
|
|
"nrm_spi",
|
|
"abnrm_spi",
|
|
};
|
|
|
|
static const char * const gaudi2_qman_error_cause[GAUDI2_NUM_OF_QM_ERR_CAUSE] = {
|
|
"PQ AXI HBW error",
|
|
"CQ AXI HBW error",
|
|
"CP AXI HBW error",
|
|
"CP error due to undefined OPCODE",
|
|
"CP encountered STOP OPCODE",
|
|
"CP AXI LBW error",
|
|
"CP WRREG32 or WRBULK returned error",
|
|
"N/A",
|
|
"FENCE 0 inc over max value and clipped",
|
|
"FENCE 1 inc over max value and clipped",
|
|
"FENCE 2 inc over max value and clipped",
|
|
"FENCE 3 inc over max value and clipped",
|
|
"FENCE 0 dec under min value and clipped",
|
|
"FENCE 1 dec under min value and clipped",
|
|
"FENCE 2 dec under min value and clipped",
|
|
"FENCE 3 dec under min value and clipped",
|
|
"CPDMA Up overflow",
|
|
"PQC L2H error"
|
|
};
|
|
|
|
static const char * const gaudi2_qman_lower_cp_error_cause[GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE] = {
|
|
"RSVD0",
|
|
"CQ AXI HBW error",
|
|
"CP AXI HBW error",
|
|
"CP error due to undefined OPCODE",
|
|
"CP encountered STOP OPCODE",
|
|
"CP AXI LBW error",
|
|
"CP WRREG32 or WRBULK returned error",
|
|
"N/A",
|
|
"FENCE 0 inc over max value and clipped",
|
|
"FENCE 1 inc over max value and clipped",
|
|
"FENCE 2 inc over max value and clipped",
|
|
"FENCE 3 inc over max value and clipped",
|
|
"FENCE 0 dec under min value and clipped",
|
|
"FENCE 1 dec under min value and clipped",
|
|
"FENCE 2 dec under min value and clipped",
|
|
"FENCE 3 dec under min value and clipped",
|
|
"CPDMA Up overflow",
|
|
"RSVD17",
|
|
"CQ_WR_IFIFO_CI_ERR",
|
|
"CQ_WR_CTL_CI_ERR",
|
|
"ARC_CQF_RD_ERR",
|
|
"ARC_CQ_WR_IFIFO_CI_ERR",
|
|
"ARC_CQ_WR_CTL_CI_ERR",
|
|
"ARC_AXI_ERR",
|
|
"CP_SWITCH_WDT_ERR"
|
|
};
|
|
|
|
static const char * const gaudi2_qman_arb_error_cause[GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE] = {
|
|
"Choice push while full error",
|
|
"Choice Q watchdog error",
|
|
"MSG AXI LBW returned with error"
|
|
};
|
|
|
|
static const char * const guadi2_rot_error_cause[GAUDI2_NUM_OF_ROT_ERR_CAUSE] = {
|
|
"qm_axi_err",
|
|
"qm_trace_fence_events",
|
|
"qm_sw_err",
|
|
"qm_cp_sw_stop",
|
|
"lbw_mstr_rresp_err",
|
|
"lbw_mstr_bresp_err",
|
|
"lbw_msg_slverr",
|
|
"hbw_msg_slverr",
|
|
"wbc_slverr",
|
|
"hbw_mstr_rresp_err",
|
|
"hbw_mstr_bresp_err",
|
|
"sb_resp_intr",
|
|
"mrsb_resp_intr",
|
|
"core_dw_status_0",
|
|
"core_dw_status_1",
|
|
"core_dw_status_2",
|
|
"core_dw_status_3",
|
|
"core_dw_status_4",
|
|
"core_dw_status_5",
|
|
"core_dw_status_6",
|
|
"core_dw_status_7",
|
|
"async_arc2cpu_sei_intr",
|
|
};
|
|
|
|
static const char * const gaudi2_tpc_interrupts_cause[GAUDI2_NUM_OF_TPC_INTR_CAUSE] = {
|
|
"tpc_address_exceed_slm",
|
|
"tpc_div_by_0",
|
|
"tpc_spu_mac_overflow",
|
|
"tpc_spu_addsub_overflow",
|
|
"tpc_spu_abs_overflow",
|
|
"tpc_spu_fma_fp_dst_nan",
|
|
"tpc_spu_fma_fp_dst_inf",
|
|
"tpc_spu_convert_fp_dst_nan",
|
|
"tpc_spu_convert_fp_dst_inf",
|
|
"tpc_spu_fp_dst_denorm",
|
|
"tpc_vpu_mac_overflow",
|
|
"tpc_vpu_addsub_overflow",
|
|
"tpc_vpu_abs_overflow",
|
|
"tpc_vpu_convert_fp_dst_nan",
|
|
"tpc_vpu_convert_fp_dst_inf",
|
|
"tpc_vpu_fma_fp_dst_nan",
|
|
"tpc_vpu_fma_fp_dst_inf",
|
|
"tpc_vpu_fp_dst_denorm",
|
|
"tpc_assertions",
|
|
"tpc_illegal_instruction",
|
|
"tpc_pc_wrap_around",
|
|
"tpc_qm_sw_err",
|
|
"tpc_hbw_rresp_err",
|
|
"tpc_hbw_bresp_err",
|
|
"tpc_lbw_rresp_err",
|
|
"tpc_lbw_bresp_err",
|
|
"st_unlock_already_locked",
|
|
"invalid_lock_access",
|
|
"LD_L protection violation",
|
|
"ST_L protection violation",
|
|
};
|
|
|
|
static const char * const guadi2_mme_error_cause[GAUDI2_NUM_OF_MME_ERR_CAUSE] = {
|
|
"agu_resp_intr",
|
|
"qman_axi_err",
|
|
"wap sei (wbc axi err)",
|
|
"arc sei",
|
|
"cfg access error",
|
|
"qm_sw_err",
|
|
"sbte_dbg_intr_0",
|
|
"sbte_dbg_intr_1",
|
|
"sbte_dbg_intr_2",
|
|
"sbte_dbg_intr_3",
|
|
"sbte_dbg_intr_4",
|
|
"sbte_prtn_intr_0",
|
|
"sbte_prtn_intr_1",
|
|
"sbte_prtn_intr_2",
|
|
"sbte_prtn_intr_3",
|
|
"sbte_prtn_intr_4",
|
|
};
|
|
|
|
static const char * const guadi2_mme_sbte_error_cause[GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE] = {
|
|
"i0",
|
|
"i1",
|
|
"i2",
|
|
"i3",
|
|
"i4",
|
|
};
|
|
|
|
static const char * const guadi2_mme_wap_error_cause[GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE] = {
|
|
"WBC ERR RESP_0",
|
|
"WBC ERR RESP_1",
|
|
"AP SOURCE POS INF",
|
|
"AP SOURCE NEG INF",
|
|
"AP SOURCE NAN",
|
|
"AP RESULT POS INF",
|
|
"AP RESULT NEG INF",
|
|
};
|
|
|
|
static const char * const gaudi2_dma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
|
|
"HBW Read returned with error RRESP",
|
|
"HBW write returned with error BRESP",
|
|
"LBW write returned with error BRESP",
|
|
"descriptor_fifo_overflow",
|
|
"KDMA SB LBW Read returned with error",
|
|
"KDMA WBC LBW Write returned with error",
|
|
"TRANSPOSE ENGINE DESC FIFO OVERFLOW",
|
|
"WRONG CFG FOR COMMIT IN LIN DMA"
|
|
};
|
|
|
|
static const char * const gaudi2_kdma_core_interrupts_cause[GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE] = {
|
|
"HBW/LBW Read returned with error RRESP",
|
|
"HBW/LBW write returned with error BRESP",
|
|
"LBW write returned with error BRESP",
|
|
"descriptor_fifo_overflow",
|
|
"KDMA SB LBW Read returned with error",
|
|
"KDMA WBC LBW Write returned with error",
|
|
"TRANSPOSE ENGINE DESC FIFO OVERFLOW",
|
|
"WRONG CFG FOR COMMIT IN LIN DMA"
|
|
};
|
|
|
|
struct gaudi2_sm_sei_cause_data {
|
|
const char *cause_name;
|
|
const char *log_name;
|
|
u32 log_mask;
|
|
};
|
|
|
|
static const struct gaudi2_sm_sei_cause_data
|
|
gaudi2_sm_sei_cause[GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE] = {
|
|
{"calculated SO value overflow/underflow", "SOB group ID", 0x7FF},
|
|
{"payload address of monitor is not aligned to 4B", "monitor addr", 0xFFFF},
|
|
{"armed monitor write got BRESP (SLVERR or DECERR)", "AXI id", 0xFFFF},
|
|
};
|
|
|
|
static const char * const
|
|
gaudi2_pmmu_fatal_interrupts_cause[GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE] = {
|
|
"LATENCY_RD_OUT_FIFO_OVERRUN",
|
|
"LATENCY_WR_OUT_FIFO_OVERRUN",
|
|
};
|
|
|
|
static const char * const
|
|
gaudi2_hif_fatal_interrupts_cause[GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE] = {
|
|
"LATENCY_RD_OUT_FIFO_OVERRUN",
|
|
"LATENCY_WR_OUT_FIFO_OVERRUN",
|
|
};
|
|
|
|
static const char * const
|
|
gaudi2_psoc_axi_drain_interrupts_cause[GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE] = {
|
|
"AXI drain HBW",
|
|
"AXI drain LBW",
|
|
};
|
|
|
|
static const char * const
|
|
gaudi2_pcie_addr_dec_error_cause[GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE] = {
|
|
"HBW error response",
|
|
"LBW error response",
|
|
"TLP is blocked by RR"
|
|
};
|
|
|
|
const u32 gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_SIZE] = {
|
|
[GAUDI2_QUEUE_ID_PDMA_0_0] = mmPDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_1] = mmPDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_2] = mmPDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_3] = mmPDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_0] = mmPDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_1] = mmPDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_2] = mmPDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_3] = mmPDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = mmDCORE0_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = mmDCORE0_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = mmDCORE0_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = mmDCORE0_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = mmDCORE0_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = mmDCORE0_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = mmDCORE0_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = mmDCORE0_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = mmDCORE0_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = mmDCORE0_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = mmDCORE0_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = mmDCORE0_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = mmDCORE0_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = mmDCORE0_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = mmDCORE0_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = mmDCORE0_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = mmDCORE0_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = mmDCORE0_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = mmDCORE0_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = mmDCORE0_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = mmDCORE0_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = mmDCORE0_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = mmDCORE0_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = mmDCORE0_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = mmDCORE0_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = mmDCORE0_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = mmDCORE0_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = mmDCORE0_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = mmDCORE0_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = mmDCORE0_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = mmDCORE0_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = mmDCORE0_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = mmDCORE0_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = mmDCORE0_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = mmDCORE0_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = mmDCORE0_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = mmDCORE0_TPC6_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = mmDCORE0_TPC6_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = mmDCORE0_TPC6_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = mmDCORE0_TPC6_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = mmDCORE1_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = mmDCORE1_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = mmDCORE1_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = mmDCORE1_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = mmDCORE1_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = mmDCORE1_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = mmDCORE1_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = mmDCORE1_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = mmDCORE1_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = mmDCORE1_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = mmDCORE1_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = mmDCORE1_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = mmDCORE1_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = mmDCORE1_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = mmDCORE1_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = mmDCORE1_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = mmDCORE1_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = mmDCORE1_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = mmDCORE1_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = mmDCORE1_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = mmDCORE1_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = mmDCORE1_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = mmDCORE1_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = mmDCORE1_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = mmDCORE1_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = mmDCORE1_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = mmDCORE1_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = mmDCORE1_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = mmDCORE1_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = mmDCORE1_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = mmDCORE1_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = mmDCORE1_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = mmDCORE1_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = mmDCORE1_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = mmDCORE1_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = mmDCORE1_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = mmDCORE2_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = mmDCORE2_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = mmDCORE2_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = mmDCORE2_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = mmDCORE2_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = mmDCORE2_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = mmDCORE2_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = mmDCORE2_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = mmDCORE2_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = mmDCORE2_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = mmDCORE2_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = mmDCORE2_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = mmDCORE2_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = mmDCORE2_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = mmDCORE2_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = mmDCORE2_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = mmDCORE2_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = mmDCORE2_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = mmDCORE2_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = mmDCORE2_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = mmDCORE2_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = mmDCORE2_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = mmDCORE2_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = mmDCORE2_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = mmDCORE2_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = mmDCORE2_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = mmDCORE2_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = mmDCORE2_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = mmDCORE2_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = mmDCORE2_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = mmDCORE2_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = mmDCORE2_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = mmDCORE2_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = mmDCORE2_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = mmDCORE2_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = mmDCORE2_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = mmDCORE3_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = mmDCORE3_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = mmDCORE3_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = mmDCORE3_EDMA0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = mmDCORE3_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = mmDCORE3_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = mmDCORE3_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = mmDCORE3_EDMA1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = mmDCORE3_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = mmDCORE3_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = mmDCORE3_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = mmDCORE3_MME_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = mmDCORE3_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = mmDCORE3_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = mmDCORE3_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = mmDCORE3_TPC0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = mmDCORE3_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = mmDCORE3_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = mmDCORE3_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = mmDCORE3_TPC1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = mmDCORE3_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = mmDCORE3_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = mmDCORE3_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = mmDCORE3_TPC2_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = mmDCORE3_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = mmDCORE3_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = mmDCORE3_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = mmDCORE3_TPC3_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = mmDCORE3_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = mmDCORE3_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = mmDCORE3_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = mmDCORE3_TPC4_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = mmDCORE3_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = mmDCORE3_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = mmDCORE3_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = mmDCORE3_TPC5_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_0_0] = mmNIC0_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_0_1] = mmNIC0_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_0_2] = mmNIC0_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_0_3] = mmNIC0_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_1_0] = mmNIC0_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_1_1] = mmNIC0_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_1_2] = mmNIC0_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_1_3] = mmNIC0_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_2_0] = mmNIC1_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_2_1] = mmNIC1_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_2_2] = mmNIC1_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_2_3] = mmNIC1_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_3_0] = mmNIC1_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_3_1] = mmNIC1_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_3_2] = mmNIC1_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_3_3] = mmNIC1_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_4_0] = mmNIC2_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_4_1] = mmNIC2_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_4_2] = mmNIC2_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_4_3] = mmNIC2_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_5_0] = mmNIC2_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_5_1] = mmNIC2_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_5_2] = mmNIC2_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_5_3] = mmNIC2_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_6_0] = mmNIC3_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_6_1] = mmNIC3_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_6_2] = mmNIC3_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_6_3] = mmNIC3_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_7_0] = mmNIC3_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_7_1] = mmNIC3_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_7_2] = mmNIC3_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_7_3] = mmNIC3_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_8_0] = mmNIC4_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_8_1] = mmNIC4_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_8_2] = mmNIC4_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_8_3] = mmNIC4_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_9_0] = mmNIC4_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_9_1] = mmNIC4_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_9_2] = mmNIC4_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_9_3] = mmNIC4_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_10_0] = mmNIC5_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_10_1] = mmNIC5_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_10_2] = mmNIC5_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_10_3] = mmNIC5_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_11_0] = mmNIC5_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_11_1] = mmNIC5_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_11_2] = mmNIC5_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_11_3] = mmNIC5_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_12_0] = mmNIC6_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_12_1] = mmNIC6_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_12_2] = mmNIC6_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_12_3] = mmNIC6_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_13_0] = mmNIC6_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_13_1] = mmNIC6_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_13_2] = mmNIC6_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_13_3] = mmNIC6_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_14_0] = mmNIC7_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_14_1] = mmNIC7_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_14_2] = mmNIC7_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_14_3] = mmNIC7_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_15_0] = mmNIC7_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_15_1] = mmNIC7_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_15_2] = mmNIC7_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_15_3] = mmNIC7_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_16_0] = mmNIC8_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_16_1] = mmNIC8_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_16_2] = mmNIC8_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_16_3] = mmNIC8_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_17_0] = mmNIC8_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_17_1] = mmNIC8_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_17_2] = mmNIC8_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_17_3] = mmNIC8_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_18_0] = mmNIC9_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_18_1] = mmNIC9_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_18_2] = mmNIC9_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_18_3] = mmNIC9_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_19_0] = mmNIC9_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_19_1] = mmNIC9_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_19_2] = mmNIC9_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_19_3] = mmNIC9_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_20_0] = mmNIC10_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_20_1] = mmNIC10_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_20_2] = mmNIC10_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_20_3] = mmNIC10_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_21_0] = mmNIC10_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_21_1] = mmNIC10_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_21_2] = mmNIC10_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_21_3] = mmNIC10_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_22_0] = mmNIC11_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_22_1] = mmNIC11_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_22_2] = mmNIC11_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_22_3] = mmNIC11_QM0_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_23_0] = mmNIC11_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_23_1] = mmNIC11_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_23_2] = mmNIC11_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_NIC_23_3] = mmNIC11_QM1_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_0_0] = mmROT0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_0_1] = mmROT0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_0_2] = mmROT0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_0_3] = mmROT0_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_1_0] = mmROT1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_1_1] = mmROT1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_1_2] = mmROT1_QM_BASE,
|
|
[GAUDI2_QUEUE_ID_ROT_1_3] = mmROT1_QM_BASE
|
|
};
|
|
|
|
static const u32 gaudi2_arc_blocks_bases[NUM_ARC_CPUS] = {
|
|
[CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_AUX_BASE,
|
|
[CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_AUX_BASE,
|
|
[CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_AUX_BASE,
|
|
[CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_AUX_BASE,
|
|
[CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_AUX_BASE,
|
|
[CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_ARC_AUX_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_ARC_AUX_BASE,
|
|
[CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_AUX_BASE,
|
|
[CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_AUX_BASE,
|
|
[CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_AUX_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_ARC_AUX1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_ARC_AUX0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_ARC_AUX1_BASE,
|
|
};
|
|
|
|
static const u32 gaudi2_arc_dccm_bases[NUM_ARC_CPUS] = {
|
|
[CPU_ID_SCHED_ARC0] = mmARC_FARM_ARC0_DCCM0_BASE,
|
|
[CPU_ID_SCHED_ARC1] = mmARC_FARM_ARC1_DCCM0_BASE,
|
|
[CPU_ID_SCHED_ARC2] = mmARC_FARM_ARC2_DCCM0_BASE,
|
|
[CPU_ID_SCHED_ARC3] = mmARC_FARM_ARC3_DCCM0_BASE,
|
|
[CPU_ID_SCHED_ARC4] = mmDCORE1_MME_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_SCHED_ARC5] = mmDCORE3_MME_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC0] = mmDCORE0_TPC0_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC1] = mmDCORE0_TPC1_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC2] = mmDCORE0_TPC2_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC3] = mmDCORE0_TPC3_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC4] = mmDCORE0_TPC4_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC5] = mmDCORE0_TPC5_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC6] = mmDCORE1_TPC0_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC7] = mmDCORE1_TPC1_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC8] = mmDCORE1_TPC2_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC9] = mmDCORE1_TPC3_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC10] = mmDCORE1_TPC4_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC11] = mmDCORE1_TPC5_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC12] = mmDCORE2_TPC0_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC13] = mmDCORE2_TPC1_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC14] = mmDCORE2_TPC2_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC15] = mmDCORE2_TPC3_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC16] = mmDCORE2_TPC4_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC17] = mmDCORE2_TPC5_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC18] = mmDCORE3_TPC0_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC19] = mmDCORE3_TPC1_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC20] = mmDCORE3_TPC2_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC21] = mmDCORE3_TPC3_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC22] = mmDCORE3_TPC4_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC23] = mmDCORE3_TPC5_QM_DCCM_BASE,
|
|
[CPU_ID_TPC_QMAN_ARC24] = mmDCORE0_TPC6_QM_DCCM_BASE,
|
|
[CPU_ID_MME_QMAN_ARC0] = mmDCORE0_MME_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_MME_QMAN_ARC1] = mmDCORE2_MME_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC0] = mmDCORE0_EDMA0_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC1] = mmDCORE0_EDMA1_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC2] = mmDCORE1_EDMA0_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC3] = mmDCORE1_EDMA1_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC4] = mmDCORE2_EDMA0_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC5] = mmDCORE2_EDMA1_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC6] = mmDCORE3_EDMA0_QM_DCCM_BASE,
|
|
[CPU_ID_EDMA_QMAN_ARC7] = mmDCORE3_EDMA1_QM_DCCM_BASE,
|
|
[CPU_ID_PDMA_QMAN_ARC0] = mmPDMA0_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_PDMA_QMAN_ARC1] = mmPDMA1_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_ROT_QMAN_ARC0] = mmROT0_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_ROT_QMAN_ARC1] = mmROT1_QM_ARC_DCCM_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC0] = mmNIC0_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC1] = mmNIC0_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC2] = mmNIC1_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC3] = mmNIC1_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC4] = mmNIC2_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC5] = mmNIC2_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC6] = mmNIC3_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC7] = mmNIC3_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC8] = mmNIC4_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC9] = mmNIC4_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC10] = mmNIC5_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC11] = mmNIC5_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC12] = mmNIC6_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC13] = mmNIC6_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC14] = mmNIC7_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC15] = mmNIC7_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC16] = mmNIC8_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC17] = mmNIC8_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC18] = mmNIC9_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC19] = mmNIC9_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC20] = mmNIC10_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC21] = mmNIC10_QM_DCCM1_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC22] = mmNIC11_QM_DCCM0_BASE,
|
|
[CPU_ID_NIC_QMAN_ARC23] = mmNIC11_QM_DCCM1_BASE,
|
|
};
|
|
|
|
const u32 gaudi2_mme_ctrl_lo_blocks_bases[MME_ID_SIZE] = {
|
|
[MME_ID_DCORE0] = mmDCORE0_MME_CTRL_LO_BASE,
|
|
[MME_ID_DCORE1] = mmDCORE1_MME_CTRL_LO_BASE,
|
|
[MME_ID_DCORE2] = mmDCORE2_MME_CTRL_LO_BASE,
|
|
[MME_ID_DCORE3] = mmDCORE3_MME_CTRL_LO_BASE,
|
|
};
|
|
|
|
static const u32 gaudi2_queue_id_to_arc_id[GAUDI2_QUEUE_ID_SIZE] = {
|
|
[GAUDI2_QUEUE_ID_PDMA_0_0] = CPU_ID_PDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_1] = CPU_ID_PDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_2] = CPU_ID_PDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_PDMA_0_3] = CPU_ID_PDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_0] = CPU_ID_PDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_1] = CPU_ID_PDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_2] = CPU_ID_PDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_PDMA_1_3] = CPU_ID_PDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_0] = CPU_ID_MME_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_1] = CPU_ID_MME_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_2] = CPU_ID_MME_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_MME_0_3] = CPU_ID_MME_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_0] = CPU_ID_TPC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_1] = CPU_ID_TPC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_2] = CPU_ID_TPC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_0_3] = CPU_ID_TPC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_0] = CPU_ID_TPC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_1] = CPU_ID_TPC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_2] = CPU_ID_TPC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_1_3] = CPU_ID_TPC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_0] = CPU_ID_TPC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_1] = CPU_ID_TPC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_2] = CPU_ID_TPC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_2_3] = CPU_ID_TPC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_0] = CPU_ID_TPC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_1] = CPU_ID_TPC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_2] = CPU_ID_TPC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_3_3] = CPU_ID_TPC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_0] = CPU_ID_TPC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_1] = CPU_ID_TPC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_2] = CPU_ID_TPC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_4_3] = CPU_ID_TPC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_0] = CPU_ID_TPC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_1] = CPU_ID_TPC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_2] = CPU_ID_TPC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_5_3] = CPU_ID_TPC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_0] = CPU_ID_TPC_QMAN_ARC24,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_1] = CPU_ID_TPC_QMAN_ARC24,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_2] = CPU_ID_TPC_QMAN_ARC24,
|
|
[GAUDI2_QUEUE_ID_DCORE0_TPC_6_3] = CPU_ID_TPC_QMAN_ARC24,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_0] = CPU_ID_SCHED_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_1] = CPU_ID_SCHED_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_2] = CPU_ID_SCHED_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE1_MME_0_3] = CPU_ID_SCHED_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_0] = CPU_ID_TPC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_1] = CPU_ID_TPC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_2] = CPU_ID_TPC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_0_3] = CPU_ID_TPC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_0] = CPU_ID_TPC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_1] = CPU_ID_TPC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_2] = CPU_ID_TPC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_1_3] = CPU_ID_TPC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_0] = CPU_ID_TPC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_1] = CPU_ID_TPC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_2] = CPU_ID_TPC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_2_3] = CPU_ID_TPC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_0] = CPU_ID_TPC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_1] = CPU_ID_TPC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_2] = CPU_ID_TPC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_3_3] = CPU_ID_TPC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_0] = CPU_ID_TPC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_1] = CPU_ID_TPC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_2] = CPU_ID_TPC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_4_3] = CPU_ID_TPC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_0] = CPU_ID_TPC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_1] = CPU_ID_TPC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_2] = CPU_ID_TPC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_DCORE1_TPC_5_3] = CPU_ID_TPC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_0] = CPU_ID_MME_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_1] = CPU_ID_MME_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_2] = CPU_ID_MME_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE2_MME_0_3] = CPU_ID_MME_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_0] = CPU_ID_TPC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_1] = CPU_ID_TPC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_2] = CPU_ID_TPC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_0_3] = CPU_ID_TPC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_0] = CPU_ID_TPC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_1] = CPU_ID_TPC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_2] = CPU_ID_TPC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_1_3] = CPU_ID_TPC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_0] = CPU_ID_TPC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_1] = CPU_ID_TPC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_2] = CPU_ID_TPC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_2_3] = CPU_ID_TPC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_0] = CPU_ID_TPC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_1] = CPU_ID_TPC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_2] = CPU_ID_TPC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_3_3] = CPU_ID_TPC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_0] = CPU_ID_TPC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_1] = CPU_ID_TPC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_2] = CPU_ID_TPC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_4_3] = CPU_ID_TPC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_0] = CPU_ID_TPC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_1] = CPU_ID_TPC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_2] = CPU_ID_TPC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_DCORE2_TPC_5_3] = CPU_ID_TPC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0] = CPU_ID_EDMA_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1] = CPU_ID_EDMA_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2] = CPU_ID_EDMA_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3] = CPU_ID_EDMA_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0] = CPU_ID_EDMA_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1] = CPU_ID_EDMA_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2] = CPU_ID_EDMA_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3] = CPU_ID_EDMA_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_0] = CPU_ID_SCHED_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_1] = CPU_ID_SCHED_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_2] = CPU_ID_SCHED_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE3_MME_0_3] = CPU_ID_SCHED_ARC5,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_0] = CPU_ID_TPC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_1] = CPU_ID_TPC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_2] = CPU_ID_TPC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_0_3] = CPU_ID_TPC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_0] = CPU_ID_TPC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_1] = CPU_ID_TPC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_2] = CPU_ID_TPC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_1_3] = CPU_ID_TPC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_0] = CPU_ID_TPC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_1] = CPU_ID_TPC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_2] = CPU_ID_TPC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_2_3] = CPU_ID_TPC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_0] = CPU_ID_TPC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_1] = CPU_ID_TPC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_2] = CPU_ID_TPC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_3_3] = CPU_ID_TPC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_0] = CPU_ID_TPC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_1] = CPU_ID_TPC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_2] = CPU_ID_TPC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_4_3] = CPU_ID_TPC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_0] = CPU_ID_TPC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_1] = CPU_ID_TPC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_2] = CPU_ID_TPC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_DCORE3_TPC_5_3] = CPU_ID_TPC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_NIC_0_0] = CPU_ID_NIC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_1] = CPU_ID_NIC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_2] = CPU_ID_NIC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_NIC_0_3] = CPU_ID_NIC_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_NIC_1_0] = CPU_ID_NIC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_1] = CPU_ID_NIC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_2] = CPU_ID_NIC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_NIC_1_3] = CPU_ID_NIC_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_NIC_2_0] = CPU_ID_NIC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_NIC_2_1] = CPU_ID_NIC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_NIC_2_2] = CPU_ID_NIC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_NIC_2_3] = CPU_ID_NIC_QMAN_ARC2,
|
|
[GAUDI2_QUEUE_ID_NIC_3_0] = CPU_ID_NIC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_NIC_3_1] = CPU_ID_NIC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_NIC_3_2] = CPU_ID_NIC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_NIC_3_3] = CPU_ID_NIC_QMAN_ARC3,
|
|
[GAUDI2_QUEUE_ID_NIC_4_0] = CPU_ID_NIC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_NIC_4_1] = CPU_ID_NIC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_NIC_4_2] = CPU_ID_NIC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_NIC_4_3] = CPU_ID_NIC_QMAN_ARC4,
|
|
[GAUDI2_QUEUE_ID_NIC_5_0] = CPU_ID_NIC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_NIC_5_1] = CPU_ID_NIC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_NIC_5_2] = CPU_ID_NIC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_NIC_5_3] = CPU_ID_NIC_QMAN_ARC5,
|
|
[GAUDI2_QUEUE_ID_NIC_6_0] = CPU_ID_NIC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_NIC_6_1] = CPU_ID_NIC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_NIC_6_2] = CPU_ID_NIC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_NIC_6_3] = CPU_ID_NIC_QMAN_ARC6,
|
|
[GAUDI2_QUEUE_ID_NIC_7_0] = CPU_ID_NIC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_NIC_7_1] = CPU_ID_NIC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_NIC_7_2] = CPU_ID_NIC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_NIC_7_3] = CPU_ID_NIC_QMAN_ARC7,
|
|
[GAUDI2_QUEUE_ID_NIC_8_0] = CPU_ID_NIC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_NIC_8_1] = CPU_ID_NIC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_NIC_8_2] = CPU_ID_NIC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_NIC_8_3] = CPU_ID_NIC_QMAN_ARC8,
|
|
[GAUDI2_QUEUE_ID_NIC_9_0] = CPU_ID_NIC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_NIC_9_1] = CPU_ID_NIC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_NIC_9_2] = CPU_ID_NIC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_NIC_9_3] = CPU_ID_NIC_QMAN_ARC9,
|
|
[GAUDI2_QUEUE_ID_NIC_10_0] = CPU_ID_NIC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_NIC_10_1] = CPU_ID_NIC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_NIC_10_2] = CPU_ID_NIC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_NIC_10_3] = CPU_ID_NIC_QMAN_ARC10,
|
|
[GAUDI2_QUEUE_ID_NIC_11_0] = CPU_ID_NIC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_NIC_11_1] = CPU_ID_NIC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_NIC_11_2] = CPU_ID_NIC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_NIC_11_3] = CPU_ID_NIC_QMAN_ARC11,
|
|
[GAUDI2_QUEUE_ID_NIC_12_0] = CPU_ID_NIC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_NIC_12_1] = CPU_ID_NIC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_NIC_12_2] = CPU_ID_NIC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_NIC_12_3] = CPU_ID_NIC_QMAN_ARC12,
|
|
[GAUDI2_QUEUE_ID_NIC_13_0] = CPU_ID_NIC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_NIC_13_1] = CPU_ID_NIC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_NIC_13_2] = CPU_ID_NIC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_NIC_13_3] = CPU_ID_NIC_QMAN_ARC13,
|
|
[GAUDI2_QUEUE_ID_NIC_14_0] = CPU_ID_NIC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_NIC_14_1] = CPU_ID_NIC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_NIC_14_2] = CPU_ID_NIC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_NIC_14_3] = CPU_ID_NIC_QMAN_ARC14,
|
|
[GAUDI2_QUEUE_ID_NIC_15_0] = CPU_ID_NIC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_NIC_15_1] = CPU_ID_NIC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_NIC_15_2] = CPU_ID_NIC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_NIC_15_3] = CPU_ID_NIC_QMAN_ARC15,
|
|
[GAUDI2_QUEUE_ID_NIC_16_0] = CPU_ID_NIC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_NIC_16_1] = CPU_ID_NIC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_NIC_16_2] = CPU_ID_NIC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_NIC_16_3] = CPU_ID_NIC_QMAN_ARC16,
|
|
[GAUDI2_QUEUE_ID_NIC_17_0] = CPU_ID_NIC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_NIC_17_1] = CPU_ID_NIC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_NIC_17_2] = CPU_ID_NIC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_NIC_17_3] = CPU_ID_NIC_QMAN_ARC17,
|
|
[GAUDI2_QUEUE_ID_NIC_18_0] = CPU_ID_NIC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_NIC_18_1] = CPU_ID_NIC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_NIC_18_2] = CPU_ID_NIC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_NIC_18_3] = CPU_ID_NIC_QMAN_ARC18,
|
|
[GAUDI2_QUEUE_ID_NIC_19_0] = CPU_ID_NIC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_NIC_19_1] = CPU_ID_NIC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_NIC_19_2] = CPU_ID_NIC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_NIC_19_3] = CPU_ID_NIC_QMAN_ARC19,
|
|
[GAUDI2_QUEUE_ID_NIC_20_0] = CPU_ID_NIC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_NIC_20_1] = CPU_ID_NIC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_NIC_20_2] = CPU_ID_NIC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_NIC_20_3] = CPU_ID_NIC_QMAN_ARC20,
|
|
[GAUDI2_QUEUE_ID_NIC_21_0] = CPU_ID_NIC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_NIC_21_1] = CPU_ID_NIC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_NIC_21_2] = CPU_ID_NIC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_NIC_21_3] = CPU_ID_NIC_QMAN_ARC21,
|
|
[GAUDI2_QUEUE_ID_NIC_22_0] = CPU_ID_NIC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_NIC_22_1] = CPU_ID_NIC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_NIC_22_2] = CPU_ID_NIC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_NIC_22_3] = CPU_ID_NIC_QMAN_ARC22,
|
|
[GAUDI2_QUEUE_ID_NIC_23_0] = CPU_ID_NIC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_NIC_23_1] = CPU_ID_NIC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_NIC_23_2] = CPU_ID_NIC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_NIC_23_3] = CPU_ID_NIC_QMAN_ARC23,
|
|
[GAUDI2_QUEUE_ID_ROT_0_0] = CPU_ID_ROT_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_ROT_0_1] = CPU_ID_ROT_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_ROT_0_2] = CPU_ID_ROT_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_ROT_0_3] = CPU_ID_ROT_QMAN_ARC0,
|
|
[GAUDI2_QUEUE_ID_ROT_1_0] = CPU_ID_ROT_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_ROT_1_1] = CPU_ID_ROT_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_ROT_1_2] = CPU_ID_ROT_QMAN_ARC1,
|
|
[GAUDI2_QUEUE_ID_ROT_1_3] = CPU_ID_ROT_QMAN_ARC1
|
|
};
|
|
|
|
const u32 gaudi2_dma_core_blocks_bases[DMA_CORE_ID_SIZE] = {
|
|
[DMA_CORE_ID_PDMA0] = mmPDMA0_CORE_BASE,
|
|
[DMA_CORE_ID_PDMA1] = mmPDMA1_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA0] = mmDCORE0_EDMA0_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA1] = mmDCORE0_EDMA1_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA2] = mmDCORE1_EDMA0_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA3] = mmDCORE1_EDMA1_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA4] = mmDCORE2_EDMA0_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA5] = mmDCORE2_EDMA1_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA6] = mmDCORE3_EDMA0_CORE_BASE,
|
|
[DMA_CORE_ID_EDMA7] = mmDCORE3_EDMA1_CORE_BASE,
|
|
[DMA_CORE_ID_KDMA] = mmARC_FARM_KDMA_BASE
|
|
};
|
|
|
|
const u32 gaudi2_mme_acc_blocks_bases[MME_ID_SIZE] = {
|
|
[MME_ID_DCORE0] = mmDCORE0_MME_ACC_BASE,
|
|
[MME_ID_DCORE1] = mmDCORE1_MME_ACC_BASE,
|
|
[MME_ID_DCORE2] = mmDCORE2_MME_ACC_BASE,
|
|
[MME_ID_DCORE3] = mmDCORE3_MME_ACC_BASE
|
|
};
|
|
|
|
static const u32 gaudi2_tpc_cfg_blocks_bases[TPC_ID_SIZE] = {
|
|
[TPC_ID_DCORE0_TPC0] = mmDCORE0_TPC0_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC1] = mmDCORE0_TPC1_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC2] = mmDCORE0_TPC2_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC3] = mmDCORE0_TPC3_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC4] = mmDCORE0_TPC4_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC5] = mmDCORE0_TPC5_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC0] = mmDCORE1_TPC0_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC1] = mmDCORE1_TPC1_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC2] = mmDCORE1_TPC2_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC3] = mmDCORE1_TPC3_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC4] = mmDCORE1_TPC4_CFG_BASE,
|
|
[TPC_ID_DCORE1_TPC5] = mmDCORE1_TPC5_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC0] = mmDCORE2_TPC0_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC1] = mmDCORE2_TPC1_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC2] = mmDCORE2_TPC2_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC3] = mmDCORE2_TPC3_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC4] = mmDCORE2_TPC4_CFG_BASE,
|
|
[TPC_ID_DCORE2_TPC5] = mmDCORE2_TPC5_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC0] = mmDCORE3_TPC0_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC1] = mmDCORE3_TPC1_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC2] = mmDCORE3_TPC2_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC3] = mmDCORE3_TPC3_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC4] = mmDCORE3_TPC4_CFG_BASE,
|
|
[TPC_ID_DCORE3_TPC5] = mmDCORE3_TPC5_CFG_BASE,
|
|
[TPC_ID_DCORE0_TPC6] = mmDCORE0_TPC6_CFG_BASE,
|
|
};
|
|
|
|
const u32 gaudi2_rot_blocks_bases[ROTATOR_ID_SIZE] = {
|
|
[ROTATOR_ID_0] = mmROT0_BASE,
|
|
[ROTATOR_ID_1] = mmROT1_BASE
|
|
};
|
|
|
|
static const u32 gaudi2_tpc_id_to_queue_id[TPC_ID_SIZE] = {
|
|
[TPC_ID_DCORE0_TPC0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0,
|
|
[TPC_ID_DCORE0_TPC1] = GAUDI2_QUEUE_ID_DCORE0_TPC_1_0,
|
|
[TPC_ID_DCORE0_TPC2] = GAUDI2_QUEUE_ID_DCORE0_TPC_2_0,
|
|
[TPC_ID_DCORE0_TPC3] = GAUDI2_QUEUE_ID_DCORE0_TPC_3_0,
|
|
[TPC_ID_DCORE0_TPC4] = GAUDI2_QUEUE_ID_DCORE0_TPC_4_0,
|
|
[TPC_ID_DCORE0_TPC5] = GAUDI2_QUEUE_ID_DCORE0_TPC_5_0,
|
|
[TPC_ID_DCORE1_TPC0] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0,
|
|
[TPC_ID_DCORE1_TPC1] = GAUDI2_QUEUE_ID_DCORE1_TPC_1_0,
|
|
[TPC_ID_DCORE1_TPC2] = GAUDI2_QUEUE_ID_DCORE1_TPC_2_0,
|
|
[TPC_ID_DCORE1_TPC3] = GAUDI2_QUEUE_ID_DCORE1_TPC_3_0,
|
|
[TPC_ID_DCORE1_TPC4] = GAUDI2_QUEUE_ID_DCORE1_TPC_4_0,
|
|
[TPC_ID_DCORE1_TPC5] = GAUDI2_QUEUE_ID_DCORE1_TPC_5_0,
|
|
[TPC_ID_DCORE2_TPC0] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0,
|
|
[TPC_ID_DCORE2_TPC1] = GAUDI2_QUEUE_ID_DCORE2_TPC_1_0,
|
|
[TPC_ID_DCORE2_TPC2] = GAUDI2_QUEUE_ID_DCORE2_TPC_2_0,
|
|
[TPC_ID_DCORE2_TPC3] = GAUDI2_QUEUE_ID_DCORE2_TPC_3_0,
|
|
[TPC_ID_DCORE2_TPC4] = GAUDI2_QUEUE_ID_DCORE2_TPC_4_0,
|
|
[TPC_ID_DCORE2_TPC5] = GAUDI2_QUEUE_ID_DCORE2_TPC_5_0,
|
|
[TPC_ID_DCORE3_TPC0] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0,
|
|
[TPC_ID_DCORE3_TPC1] = GAUDI2_QUEUE_ID_DCORE3_TPC_1_0,
|
|
[TPC_ID_DCORE3_TPC2] = GAUDI2_QUEUE_ID_DCORE3_TPC_2_0,
|
|
[TPC_ID_DCORE3_TPC3] = GAUDI2_QUEUE_ID_DCORE3_TPC_3_0,
|
|
[TPC_ID_DCORE3_TPC4] = GAUDI2_QUEUE_ID_DCORE3_TPC_4_0,
|
|
[TPC_ID_DCORE3_TPC5] = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0,
|
|
[TPC_ID_DCORE0_TPC6] = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0,
|
|
};
|
|
|
|
static const u32 gaudi2_rot_id_to_queue_id[ROTATOR_ID_SIZE] = {
|
|
[ROTATOR_ID_0] = GAUDI2_QUEUE_ID_ROT_0_0,
|
|
[ROTATOR_ID_1] = GAUDI2_QUEUE_ID_ROT_1_0,
|
|
};
|
|
|
|
const u32 edma_stream_base[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
|
|
GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0,
|
|
GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0,
|
|
GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0,
|
|
GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0,
|
|
GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0,
|
|
GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0,
|
|
GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0,
|
|
GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0,
|
|
};
|
|
|
|
static const char gaudi2_vdec_irq_name[GAUDI2_VDEC_MSIX_ENTRIES][GAUDI2_MAX_STRING_LEN] = {
|
|
"gaudi2 vdec 0_0", "gaudi2 vdec 0_0 abnormal",
|
|
"gaudi2 vdec 0_1", "gaudi2 vdec 0_1 abnormal",
|
|
"gaudi2 vdec 1_0", "gaudi2 vdec 1_0 abnormal",
|
|
"gaudi2 vdec 1_1", "gaudi2 vdec 1_1 abnormal",
|
|
"gaudi2 vdec 2_0", "gaudi2 vdec 2_0 abnormal",
|
|
"gaudi2 vdec 2_1", "gaudi2 vdec 2_1 abnormal",
|
|
"gaudi2 vdec 3_0", "gaudi2 vdec 3_0 abnormal",
|
|
"gaudi2 vdec 3_1", "gaudi2 vdec 3_1 abnormal",
|
|
"gaudi2 vdec s_0", "gaudi2 vdec s_0 abnormal",
|
|
"gaudi2 vdec s_1", "gaudi2 vdec s_1 abnormal"
|
|
};
|
|
|
|
static const u32 rtr_coordinates_to_rtr_id[NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES] = {
|
|
RTR_ID_X_Y(2, 4),
|
|
RTR_ID_X_Y(3, 4),
|
|
RTR_ID_X_Y(4, 4),
|
|
RTR_ID_X_Y(5, 4),
|
|
RTR_ID_X_Y(6, 4),
|
|
RTR_ID_X_Y(7, 4),
|
|
RTR_ID_X_Y(8, 4),
|
|
RTR_ID_X_Y(9, 4),
|
|
RTR_ID_X_Y(10, 4),
|
|
RTR_ID_X_Y(11, 4),
|
|
RTR_ID_X_Y(12, 4),
|
|
RTR_ID_X_Y(13, 4),
|
|
RTR_ID_X_Y(14, 4),
|
|
RTR_ID_X_Y(15, 4),
|
|
RTR_ID_X_Y(16, 4),
|
|
RTR_ID_X_Y(17, 4),
|
|
RTR_ID_X_Y(2, 11),
|
|
RTR_ID_X_Y(3, 11),
|
|
RTR_ID_X_Y(4, 11),
|
|
RTR_ID_X_Y(5, 11),
|
|
RTR_ID_X_Y(6, 11),
|
|
RTR_ID_X_Y(7, 11),
|
|
RTR_ID_X_Y(8, 11),
|
|
RTR_ID_X_Y(9, 11),
|
|
RTR_ID_X_Y(0, 0),/* 24 no id */
|
|
RTR_ID_X_Y(0, 0),/* 25 no id */
|
|
RTR_ID_X_Y(0, 0),/* 26 no id */
|
|
RTR_ID_X_Y(0, 0),/* 27 no id */
|
|
RTR_ID_X_Y(14, 11),
|
|
RTR_ID_X_Y(15, 11),
|
|
RTR_ID_X_Y(16, 11),
|
|
RTR_ID_X_Y(17, 11)
|
|
};
|
|
|
|
enum rtr_id {
|
|
DCORE0_RTR0,
|
|
DCORE0_RTR1,
|
|
DCORE0_RTR2,
|
|
DCORE0_RTR3,
|
|
DCORE0_RTR4,
|
|
DCORE0_RTR5,
|
|
DCORE0_RTR6,
|
|
DCORE0_RTR7,
|
|
DCORE1_RTR0,
|
|
DCORE1_RTR1,
|
|
DCORE1_RTR2,
|
|
DCORE1_RTR3,
|
|
DCORE1_RTR4,
|
|
DCORE1_RTR5,
|
|
DCORE1_RTR6,
|
|
DCORE1_RTR7,
|
|
DCORE2_RTR0,
|
|
DCORE2_RTR1,
|
|
DCORE2_RTR2,
|
|
DCORE2_RTR3,
|
|
DCORE2_RTR4,
|
|
DCORE2_RTR5,
|
|
DCORE2_RTR6,
|
|
DCORE2_RTR7,
|
|
DCORE3_RTR0,
|
|
DCORE3_RTR1,
|
|
DCORE3_RTR2,
|
|
DCORE3_RTR3,
|
|
DCORE3_RTR4,
|
|
DCORE3_RTR5,
|
|
DCORE3_RTR6,
|
|
DCORE3_RTR7,
|
|
};
|
|
|
|
static const u32 gaudi2_tpc_initiator_rtr_id[NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1] = {
|
|
DCORE0_RTR1, DCORE0_RTR1, DCORE0_RTR2, DCORE0_RTR2, DCORE0_RTR3, DCORE0_RTR3,
|
|
DCORE1_RTR6, DCORE1_RTR6, DCORE1_RTR5, DCORE1_RTR5, DCORE1_RTR4, DCORE1_RTR4,
|
|
DCORE2_RTR3, DCORE2_RTR3, DCORE2_RTR2, DCORE2_RTR2, DCORE2_RTR1, DCORE2_RTR1,
|
|
DCORE3_RTR4, DCORE3_RTR4, DCORE3_RTR5, DCORE3_RTR5, DCORE3_RTR6, DCORE3_RTR6,
|
|
DCORE0_RTR0
|
|
};
|
|
|
|
static const u32 gaudi2_dec_initiator_rtr_id[NUMBER_OF_DEC] = {
|
|
DCORE0_RTR0, DCORE0_RTR0, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0, DCORE2_RTR0,
|
|
DCORE3_RTR7, DCORE3_RTR7, DCORE0_RTR0, DCORE0_RTR0
|
|
};
|
|
|
|
static const u32 gaudi2_nic_initiator_rtr_id[NIC_NUMBER_OF_MACROS] = {
|
|
DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE1_RTR7, DCORE2_RTR0,
|
|
DCORE2_RTR0, DCORE2_RTR0, DCORE2_RTR0, DCORE3_RTR7, DCORE3_RTR7, DCORE3_RTR7
|
|
};
|
|
|
|
struct sft_info {
|
|
u8 interface_id;
|
|
u8 dcore_id;
|
|
};
|
|
|
|
static const struct sft_info gaudi2_edma_initiator_sft_id[NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES] = {
|
|
{0, 0}, {1, 0}, {0, 1}, {1, 1}, {1, 2}, {1, 3}, {0, 2}, {0, 3},
|
|
};
|
|
|
|
static const u32 gaudi2_pdma_initiator_rtr_id[NUM_OF_PDMA] = {
|
|
DCORE0_RTR0, DCORE0_RTR0
|
|
};
|
|
|
|
static const u32 gaudi2_rot_initiator_rtr_id[NUM_OF_ROT] = {
|
|
DCORE2_RTR0, DCORE3_RTR7
|
|
};
|
|
|
|
struct mme_initiators_rtr_id {
|
|
u32 wap0;
|
|
u32 wap1;
|
|
u32 write;
|
|
u32 read;
|
|
u32 sbte0;
|
|
u32 sbte1;
|
|
u32 sbte2;
|
|
u32 sbte3;
|
|
u32 sbte4;
|
|
};
|
|
|
|
enum mme_initiators {
|
|
MME_WAP0 = 0,
|
|
MME_WAP1,
|
|
MME_WRITE,
|
|
MME_READ,
|
|
MME_SBTE0,
|
|
MME_SBTE1,
|
|
MME_SBTE2,
|
|
MME_SBTE3,
|
|
MME_SBTE4,
|
|
MME_INITIATORS_MAX
|
|
};
|
|
|
|
static const struct mme_initiators_rtr_id
|
|
gaudi2_mme_initiator_rtr_id[NUM_OF_MME_PER_DCORE * NUM_OF_DCORES] = {
|
|
{ .wap0 = 5, .wap1 = 7, .write = 6, .read = 7,
|
|
.sbte0 = 7, .sbte1 = 4, .sbte2 = 4, .sbte3 = 5, .sbte4 = 6},
|
|
{ .wap0 = 10, .wap1 = 8, .write = 9, .read = 8,
|
|
.sbte0 = 11, .sbte1 = 11, .sbte2 = 10, .sbte3 = 9, .sbte4 = 8},
|
|
{ .wap0 = 21, .wap1 = 23, .write = 22, .read = 23,
|
|
.sbte0 = 20, .sbte1 = 20, .sbte2 = 21, .sbte3 = 22, .sbte4 = 23},
|
|
{ .wap0 = 30, .wap1 = 28, .write = 29, .read = 30,
|
|
.sbte0 = 31, .sbte1 = 31, .sbte2 = 30, .sbte3 = 29, .sbte4 = 28},
|
|
};
|
|
|
|
enum razwi_event_sources {
|
|
RAZWI_TPC,
|
|
RAZWI_MME,
|
|
RAZWI_EDMA,
|
|
RAZWI_PDMA,
|
|
RAZWI_NIC,
|
|
RAZWI_DEC,
|
|
RAZWI_ROT
|
|
};
|
|
|
|
struct hbm_mc_error_causes {
|
|
u32 mask;
|
|
char cause[50];
|
|
};
|
|
|
|
static struct hbm_mc_error_causes hbm_mc_spi[GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE] = {
|
|
{HBM_MC_SPI_TEMP_PIN_CHG_MASK, "temperature pins changed"},
|
|
{HBM_MC_SPI_THR_ENG_MASK, "temperature-based throttling engaged"},
|
|
{HBM_MC_SPI_THR_DIS_ENG_MASK, "temperature-based throttling disengaged"},
|
|
{HBM_MC_SPI_IEEE1500_COMP_MASK, "IEEE1500 op comp"},
|
|
{HBM_MC_SPI_IEEE1500_PAUSED_MASK, "IEEE1500 op paused"},
|
|
};
|
|
|
|
static const char * const hbm_mc_sei_cause[GAUDI2_NUM_OF_HBM_SEI_CAUSE] = {
|
|
[HBM_SEI_CMD_PARITY_EVEN] = "SEI C/A parity even",
|
|
[HBM_SEI_CMD_PARITY_ODD] = "SEI C/A parity odd",
|
|
[HBM_SEI_READ_ERR] = "SEI read data error",
|
|
[HBM_SEI_WRITE_DATA_PARITY_ERR] = "SEI write data parity error",
|
|
[HBM_SEI_CATTRIP] = "SEI CATTRIP asserted",
|
|
[HBM_SEI_MEM_BIST_FAIL] = "SEI memory BIST fail",
|
|
[HBM_SEI_DFI] = "SEI DFI error",
|
|
[HBM_SEI_INV_TEMP_READ_OUT] = "SEI invalid temp read",
|
|
[HBM_SEI_BIST_FAIL] = "SEI BIST fail"
|
|
};
|
|
|
|
struct mmu_spi_sei_cause {
|
|
char cause[50];
|
|
int clear_bit;
|
|
};
|
|
|
|
static const struct mmu_spi_sei_cause gaudi2_mmu_spi_sei[GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE] = {
|
|
{"page fault", 1}, /* INTERRUPT_CLR[1] */
|
|
{"page access", 1}, /* INTERRUPT_CLR[1] */
|
|
{"bypass ddr", 2}, /* INTERRUPT_CLR[2] */
|
|
{"multi hit", 2}, /* INTERRUPT_CLR[2] */
|
|
{"mmu rei0", -1}, /* no clear register bit */
|
|
{"mmu rei1", -1}, /* no clear register bit */
|
|
{"stlb rei0", -1}, /* no clear register bit */
|
|
{"stlb rei1", -1}, /* no clear register bit */
|
|
{"rr privileged write hit", 2}, /* INTERRUPT_CLR[2] */
|
|
{"rr privileged read hit", 2}, /* INTERRUPT_CLR[2] */
|
|
{"rr secure write hit", 2}, /* INTERRUPT_CLR[2] */
|
|
{"rr secure read hit", 2}, /* INTERRUPT_CLR[2] */
|
|
{"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
|
|
{"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
|
|
{"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
|
|
{"bist_fail no use", 2}, /* INTERRUPT_CLR[2] */
|
|
{"slave error", 16}, /* INTERRUPT_CLR[16] */
|
|
{"dec error", 17}, /* INTERRUPT_CLR[17] */
|
|
{"burst fifo full", 2} /* INTERRUPT_CLR[2] */
|
|
};
|
|
|
|
struct gaudi2_cache_invld_params {
|
|
u64 start_va;
|
|
u64 end_va;
|
|
u32 inv_start_val;
|
|
u32 flags;
|
|
bool range_invalidation;
|
|
};
|
|
|
|
struct gaudi2_tpc_idle_data {
|
|
struct engines_data *e;
|
|
unsigned long *mask;
|
|
bool *is_idle;
|
|
const char *tpc_fmt;
|
|
};
|
|
|
|
struct gaudi2_tpc_mmu_data {
|
|
u32 rw_asid;
|
|
};
|
|
|
|
static s64 gaudi2_state_dump_specs_props[SP_MAX] = {0};
|
|
|
|
static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val);
|
|
static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id);
|
|
static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id);
|
|
static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id);
|
|
static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id);
|
|
static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val);
|
|
static int gaudi2_send_job_to_kdma(struct hl_device *hdev, u64 src_addr, u64 dst_addr, u32 size,
|
|
bool is_memset);
|
|
static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr);
|
|
|
|
static void gaudi2_init_scrambler_hbm(struct hl_device *hdev)
|
|
{
|
|
|
|
}
|
|
|
|
static u32 gaudi2_get_signal_cb_size(struct hl_device *hdev)
|
|
{
|
|
return sizeof(struct packet_msg_short);
|
|
}
|
|
|
|
static u32 gaudi2_get_wait_cb_size(struct hl_device *hdev)
|
|
{
|
|
return sizeof(struct packet_msg_short) * 4 + sizeof(struct packet_fence);
|
|
}
|
|
|
|
void gaudi2_iterate_tpcs(struct hl_device *hdev, struct iterate_module_ctx *ctx)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int dcore, inst, tpc_seq;
|
|
u32 offset;
|
|
|
|
/* init the return code */
|
|
ctx->rc = 0;
|
|
|
|
for (dcore = 0; dcore < NUM_OF_DCORES; dcore++) {
|
|
for (inst = 0; inst < NUM_OF_TPC_PER_DCORE; inst++) {
|
|
tpc_seq = dcore * NUM_OF_TPC_PER_DCORE + inst;
|
|
|
|
if (!(prop->tpc_enabled_mask & BIT(tpc_seq)))
|
|
continue;
|
|
|
|
offset = (DCORE_OFFSET * dcore) + (DCORE_TPC_OFFSET * inst);
|
|
|
|
ctx->fn(hdev, dcore, inst, offset, ctx);
|
|
if (ctx->rc) {
|
|
dev_err(hdev->dev, "TPC iterator failed for DCORE%d TPC%d\n",
|
|
dcore, inst);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!(prop->tpc_enabled_mask & BIT(TPC_ID_DCORE0_TPC6)))
|
|
return;
|
|
|
|
/* special check for PCI TPC (DCORE0_TPC6) */
|
|
offset = DCORE_TPC_OFFSET * (NUM_DCORE0_TPC - 1);
|
|
ctx->fn(hdev, 0, NUM_DCORE0_TPC - 1, offset, ctx);
|
|
if (ctx->rc)
|
|
dev_err(hdev->dev, "TPC iterator failed for DCORE0 TPC6\n");
|
|
}
|
|
|
|
static bool gaudi2_host_phys_addr_valid(u64 addr)
|
|
{
|
|
if ((addr < HOST_PHYS_BASE_0 + HOST_PHYS_SIZE_0) || (addr >= HOST_PHYS_BASE_1))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int set_number_of_functional_hbms(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u8 faulty_hbms = hweight64(hdev->dram_binning);
|
|
|
|
/* check if all HBMs should be used */
|
|
if (!faulty_hbms) {
|
|
dev_dbg(hdev->dev, "All HBM are in use (no binning)\n");
|
|
prop->num_functional_hbms = GAUDI2_HBM_NUM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* check for error condition in which number of binning
|
|
* candidates is higher than the maximum supported by the
|
|
* driver (in which case binning mask shall be ignored and driver will
|
|
* set the default)
|
|
*/
|
|
if (faulty_hbms > MAX_FAULTY_HBMS) {
|
|
dev_err(hdev->dev,
|
|
"HBM binning supports max of %d faulty HBMs, supplied mask 0x%llx.\n",
|
|
MAX_FAULTY_HBMS, hdev->dram_binning);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* by default, number of functional HBMs in Gaudi2 is always
|
|
* GAUDI2_HBM_NUM - 1.
|
|
*/
|
|
prop->num_functional_hbms = GAUDI2_HBM_NUM - faulty_hbms;
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_dram_properties(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 basic_hbm_page_size;
|
|
int rc;
|
|
|
|
rc = set_number_of_functional_hbms(hdev);
|
|
if (rc)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Due to HW bug in which TLB size is x16 smaller than expected we use a workaround
|
|
* in which we are using x16 bigger page size to be able to populate the entire
|
|
* HBM mappings in the TLB
|
|
*/
|
|
basic_hbm_page_size = prop->num_functional_hbms * SZ_8M;
|
|
prop->dram_page_size = GAUDI2_COMPENSATE_TLB_PAGE_SIZE_FACTOR * basic_hbm_page_size;
|
|
prop->device_mem_alloc_default_page_size = prop->dram_page_size;
|
|
prop->dram_size = prop->num_functional_hbms * SZ_16G;
|
|
prop->dram_base_address = DRAM_PHYS_BASE;
|
|
prop->dram_end_address = prop->dram_base_address + prop->dram_size;
|
|
prop->dram_supports_virtual_memory = true;
|
|
|
|
prop->dram_user_base_address = DRAM_PHYS_BASE + prop->dram_page_size;
|
|
prop->dram_hints_align_mask = ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK;
|
|
prop->hints_dram_reserved_va_range.start_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_START;
|
|
prop->hints_dram_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HBM_END;
|
|
|
|
/* since DRAM page size differs from DMMU page size we need to allocate
|
|
* DRAM memory in units of dram_page size and mapping this memory in
|
|
* units of DMMU page size. we overcome this size mismatch using a
|
|
* scrambling routine which takes a DRAM page and converts it to a DMMU
|
|
* page.
|
|
* We therefore:
|
|
* 1. partition the virtual address space to DRAM-page (whole) pages.
|
|
* (suppose we get n such pages)
|
|
* 2. limit the amount of virtual address space we got from 1 above to
|
|
* a multiple of 64M as we don't want the scrambled address to cross
|
|
* the DRAM virtual address space.
|
|
* ( m = (n * DRAM_page_size) / DMMU_page_size).
|
|
* 3. determine the and address accordingly
|
|
* end_addr = start_addr + m * 48M
|
|
*
|
|
* the DRAM address MSBs (63:48) are not part of the roundup calculation
|
|
*/
|
|
prop->dmmu.start_addr = prop->dram_base_address +
|
|
(prop->dram_page_size *
|
|
DIV_ROUND_UP_SECTOR_T(prop->dram_size, prop->dram_page_size));
|
|
|
|
prop->dmmu.end_addr = prop->dmmu.start_addr + prop->dram_page_size *
|
|
div_u64((VA_HBM_SPACE_END - prop->dmmu.start_addr), prop->dmmu.page_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_fixed_properties(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hw_queue_properties *q_props;
|
|
u32 num_sync_stream_queues = 0;
|
|
int i;
|
|
|
|
prop->max_queues = GAUDI2_QUEUE_ID_SIZE;
|
|
prop->hw_queues_props = kcalloc(prop->max_queues, sizeof(struct hw_queue_properties),
|
|
GFP_KERNEL);
|
|
|
|
if (!prop->hw_queues_props)
|
|
return -ENOMEM;
|
|
|
|
q_props = prop->hw_queues_props;
|
|
|
|
for (i = 0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i++) {
|
|
q_props[i].type = QUEUE_TYPE_HW;
|
|
q_props[i].driver_only = 0;
|
|
|
|
if (i >= GAUDI2_QUEUE_ID_NIC_0_0 && i <= GAUDI2_QUEUE_ID_NIC_23_3) {
|
|
q_props[i].supports_sync_stream = 0;
|
|
} else {
|
|
q_props[i].supports_sync_stream = 1;
|
|
num_sync_stream_queues++;
|
|
}
|
|
|
|
q_props[i].cb_alloc_flags = CB_ALLOC_USER;
|
|
}
|
|
|
|
q_props[GAUDI2_QUEUE_ID_CPU_PQ].type = QUEUE_TYPE_CPU;
|
|
q_props[GAUDI2_QUEUE_ID_CPU_PQ].driver_only = 1;
|
|
q_props[GAUDI2_QUEUE_ID_CPU_PQ].cb_alloc_flags = CB_ALLOC_KERNEL;
|
|
|
|
prop->cache_line_size = DEVICE_CACHE_LINE_SIZE;
|
|
prop->cfg_base_address = CFG_BASE;
|
|
prop->device_dma_offset_for_host_access = HOST_PHYS_BASE_0;
|
|
prop->host_base_address = HOST_PHYS_BASE_0;
|
|
prop->host_end_address = prop->host_base_address + HOST_PHYS_SIZE_0;
|
|
prop->max_pending_cs = GAUDI2_MAX_PENDING_CS;
|
|
prop->completion_queues_count = GAUDI2_RESERVED_CQ_NUMBER;
|
|
prop->user_dec_intr_count = NUMBER_OF_DEC;
|
|
prop->user_interrupt_count = GAUDI2_IRQ_NUM_USER_LAST - GAUDI2_IRQ_NUM_USER_FIRST + 1;
|
|
prop->completion_mode = HL_COMPLETION_MODE_CS;
|
|
prop->sync_stream_first_sob = GAUDI2_RESERVED_SOB_NUMBER;
|
|
prop->sync_stream_first_mon = GAUDI2_RESERVED_MON_NUMBER;
|
|
|
|
prop->sram_base_address = SRAM_BASE_ADDR;
|
|
prop->sram_size = SRAM_SIZE;
|
|
prop->sram_end_address = prop->sram_base_address + prop->sram_size;
|
|
prop->sram_user_base_address = prop->sram_base_address + SRAM_USER_BASE_OFFSET;
|
|
|
|
prop->hints_range_reservation = true;
|
|
|
|
if (hdev->pldm)
|
|
prop->mmu_pgt_size = 0x800000; /* 8MB */
|
|
else
|
|
prop->mmu_pgt_size = MMU_PAGE_TABLES_INITIAL_SIZE;
|
|
|
|
prop->mmu_pte_size = HL_PTE_SIZE;
|
|
prop->mmu_hop_table_size = HOP_TABLE_SIZE_512_PTE;
|
|
prop->mmu_hop0_tables_total_size = HOP0_512_PTE_TABLES_TOTAL_SIZE;
|
|
|
|
prop->dmmu.hop_shifts[MMU_HOP0] = DHOP0_SHIFT;
|
|
prop->dmmu.hop_shifts[MMU_HOP1] = DHOP1_SHIFT;
|
|
prop->dmmu.hop_shifts[MMU_HOP2] = DHOP2_SHIFT;
|
|
prop->dmmu.hop_shifts[MMU_HOP3] = DHOP3_SHIFT;
|
|
prop->dmmu.hop_shifts[MMU_HOP4] = DHOP4_SHIFT;
|
|
prop->dmmu.hop_masks[MMU_HOP0] = DHOP0_MASK;
|
|
prop->dmmu.hop_masks[MMU_HOP1] = DHOP1_MASK;
|
|
prop->dmmu.hop_masks[MMU_HOP2] = DHOP2_MASK;
|
|
prop->dmmu.hop_masks[MMU_HOP3] = DHOP3_MASK;
|
|
prop->dmmu.hop_masks[MMU_HOP4] = DHOP4_MASK;
|
|
prop->dmmu.page_size = PAGE_SIZE_1GB;
|
|
prop->dmmu.num_hops = MMU_ARCH_6_HOPS;
|
|
prop->dmmu.last_mask = LAST_MASK;
|
|
prop->dmmu.host_resident = 1;
|
|
/* TODO: will be duplicated until implementing per-MMU props */
|
|
prop->dmmu.hop_table_size = prop->mmu_hop_table_size;
|
|
prop->dmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
|
|
|
|
/*
|
|
* this is done in order to be able to validate FW descriptor (i.e. validating that
|
|
* the addresses and allocated space for FW image does not cross memory bounds).
|
|
* for this reason we set the DRAM size to the minimum possible and later it will
|
|
* be modified according to what reported in the cpucp info packet
|
|
*/
|
|
prop->dram_size = (GAUDI2_HBM_NUM - 1) * SZ_16G;
|
|
|
|
hdev->pmmu_huge_range = true;
|
|
prop->pmmu.host_resident = 1;
|
|
prop->pmmu.num_hops = MMU_ARCH_6_HOPS;
|
|
prop->pmmu.last_mask = LAST_MASK;
|
|
/* TODO: will be duplicated until implementing per-MMU props */
|
|
prop->pmmu.hop_table_size = prop->mmu_hop_table_size;
|
|
prop->pmmu.hop0_tables_total_size = prop->mmu_hop0_tables_total_size;
|
|
|
|
prop->hints_host_reserved_va_range.start_addr = RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START;
|
|
prop->hints_host_reserved_va_range.end_addr = RESERVED_VA_RANGE_FOR_ARC_ON_HOST_END;
|
|
prop->hints_host_hpage_reserved_va_range.start_addr =
|
|
RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_START;
|
|
prop->hints_host_hpage_reserved_va_range.end_addr =
|
|
RESERVED_VA_RANGE_FOR_ARC_ON_HOST_HPAGE_END;
|
|
|
|
if (PAGE_SIZE == SZ_64K) {
|
|
prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_64K;
|
|
prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_64K;
|
|
prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_64K;
|
|
prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_64K;
|
|
prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_64K;
|
|
prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_64K;
|
|
prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_64K;
|
|
prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
|
|
prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
|
|
prop->pmmu.page_size = PAGE_SIZE_64KB;
|
|
|
|
/* shifts and masks are the same in PMMU and HPMMU */
|
|
memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
|
|
prop->pmmu_huge.page_size = PAGE_SIZE_16MB;
|
|
prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
|
|
prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
|
|
} else {
|
|
prop->pmmu.hop_shifts[MMU_HOP0] = HOP0_SHIFT_4K;
|
|
prop->pmmu.hop_shifts[MMU_HOP1] = HOP1_SHIFT_4K;
|
|
prop->pmmu.hop_shifts[MMU_HOP2] = HOP2_SHIFT_4K;
|
|
prop->pmmu.hop_shifts[MMU_HOP3] = HOP3_SHIFT_4K;
|
|
prop->pmmu.hop_shifts[MMU_HOP4] = HOP4_SHIFT_4K;
|
|
prop->pmmu.hop_shifts[MMU_HOP5] = HOP5_SHIFT_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP0] = HOP0_MASK_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP1] = HOP1_MASK_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP2] = HOP2_MASK_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP3] = HOP3_MASK_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP4] = HOP4_MASK_4K;
|
|
prop->pmmu.hop_masks[MMU_HOP5] = HOP5_MASK_4K;
|
|
prop->pmmu.start_addr = VA_HOST_SPACE_PAGE_START;
|
|
prop->pmmu.end_addr = VA_HOST_SPACE_PAGE_END;
|
|
prop->pmmu.page_size = PAGE_SIZE_4KB;
|
|
|
|
/* shifts and masks are the same in PMMU and HPMMU */
|
|
memcpy(&prop->pmmu_huge, &prop->pmmu, sizeof(prop->pmmu));
|
|
prop->pmmu_huge.page_size = PAGE_SIZE_2MB;
|
|
prop->pmmu_huge.start_addr = VA_HOST_SPACE_HPAGE_START;
|
|
prop->pmmu_huge.end_addr = VA_HOST_SPACE_HPAGE_END;
|
|
}
|
|
|
|
prop->num_engine_cores = CPU_ID_MAX;
|
|
prop->cfg_size = CFG_SIZE;
|
|
prop->max_asid = MAX_ASID;
|
|
prop->num_of_events = GAUDI2_EVENT_SIZE;
|
|
|
|
prop->dc_power_default = DC_POWER_DEFAULT;
|
|
|
|
prop->cb_pool_cb_cnt = GAUDI2_CB_POOL_CB_CNT;
|
|
prop->cb_pool_cb_size = GAUDI2_CB_POOL_CB_SIZE;
|
|
prop->pcie_dbi_base_address = CFG_BASE + mmPCIE_DBI_BASE;
|
|
prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
|
|
|
|
strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);
|
|
|
|
prop->mme_master_slave_mode = 1;
|
|
|
|
prop->first_available_user_sob[0] = GAUDI2_RESERVED_SOB_NUMBER +
|
|
(num_sync_stream_queues * HL_RSVD_SOBS);
|
|
|
|
prop->first_available_user_mon[0] = GAUDI2_RESERVED_MON_NUMBER +
|
|
(num_sync_stream_queues * HL_RSVD_MONS);
|
|
|
|
prop->first_available_user_interrupt = GAUDI2_IRQ_NUM_USER_FIRST;
|
|
|
|
prop->first_available_cq[0] = GAUDI2_RESERVED_CQ_NUMBER;
|
|
|
|
prop->fw_cpu_boot_dev_sts0_valid = false;
|
|
prop->fw_cpu_boot_dev_sts1_valid = false;
|
|
prop->hard_reset_done_by_fw = false;
|
|
prop->gic_interrupts_enable = true;
|
|
|
|
prop->server_type = HL_SERVER_TYPE_UNKNOWN;
|
|
|
|
prop->max_dec = NUMBER_OF_DEC;
|
|
|
|
prop->clk_pll_index = HL_GAUDI2_MME_PLL;
|
|
|
|
prop->dma_mask = 64;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_pci_bars_map(struct hl_device *hdev)
|
|
{
|
|
static const char * const name[] = {"CFG_SRAM", "MSIX", "DRAM"};
|
|
bool is_wc[3] = {false, false, true};
|
|
int rc;
|
|
|
|
rc = hl_pci_bars_map(hdev, name, is_wc);
|
|
if (rc)
|
|
return rc;
|
|
|
|
hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] + (CFG_BASE - STM_FLASH_BASE_ADDR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 gaudi2_set_hbm_bar_base(struct hl_device *hdev, u64 addr)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct hl_inbound_pci_region pci_region;
|
|
u64 old_addr = addr;
|
|
int rc;
|
|
|
|
if ((gaudi2) && (gaudi2->dram_bar_cur_addr == addr))
|
|
return old_addr;
|
|
|
|
if (hdev->asic_prop.iatu_done_by_fw)
|
|
return U64_MAX;
|
|
|
|
/* Inbound Region 2 - Bar 4 - Point to DRAM */
|
|
pci_region.mode = PCI_BAR_MATCH_MODE;
|
|
pci_region.bar = DRAM_BAR_ID;
|
|
pci_region.addr = addr;
|
|
rc = hl_pci_set_inbound_region(hdev, 2, &pci_region);
|
|
if (rc)
|
|
return U64_MAX;
|
|
|
|
if (gaudi2) {
|
|
old_addr = gaudi2->dram_bar_cur_addr;
|
|
gaudi2->dram_bar_cur_addr = addr;
|
|
}
|
|
|
|
return old_addr;
|
|
}
|
|
|
|
static int gaudi2_init_iatu(struct hl_device *hdev)
|
|
{
|
|
struct hl_inbound_pci_region inbound_region;
|
|
struct hl_outbound_pci_region outbound_region;
|
|
u32 bar_addr_low, bar_addr_high;
|
|
int rc;
|
|
|
|
if (hdev->asic_prop.iatu_done_by_fw)
|
|
return 0;
|
|
|
|
/* Temporary inbound Region 0 - Bar 0 - Point to CFG
|
|
* We must map this region in BAR match mode in order to
|
|
* fetch BAR physical base address
|
|
*/
|
|
inbound_region.mode = PCI_BAR_MATCH_MODE;
|
|
inbound_region.bar = SRAM_CFG_BAR_ID;
|
|
/* Base address must be aligned to Bar size which is 256 MB */
|
|
inbound_region.addr = STM_FLASH_BASE_ADDR - STM_FLASH_ALIGNED_OFF;
|
|
rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Fetch physical BAR address */
|
|
bar_addr_high = RREG32(mmPCIE_DBI_BAR1_REG + STM_FLASH_ALIGNED_OFF);
|
|
bar_addr_low = RREG32(mmPCIE_DBI_BAR0_REG + STM_FLASH_ALIGNED_OFF) & ~0xF;
|
|
|
|
hdev->pcie_bar_phys[SRAM_CFG_BAR_ID] = (u64)bar_addr_high << 32 | bar_addr_low;
|
|
|
|
/* Inbound Region 0 - Bar 0 - Point to CFG */
|
|
inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
|
|
inbound_region.bar = SRAM_CFG_BAR_ID;
|
|
inbound_region.offset_in_bar = 0;
|
|
inbound_region.addr = STM_FLASH_BASE_ADDR;
|
|
inbound_region.size = CFG_REGION_SIZE;
|
|
rc = hl_pci_set_inbound_region(hdev, 0, &inbound_region);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Inbound Region 1 - Bar 0 - Point to BAR0_RESERVED + SRAM */
|
|
inbound_region.mode = PCI_ADDRESS_MATCH_MODE;
|
|
inbound_region.bar = SRAM_CFG_BAR_ID;
|
|
inbound_region.offset_in_bar = CFG_REGION_SIZE;
|
|
inbound_region.addr = BAR0_RSRVD_BASE_ADDR;
|
|
inbound_region.size = BAR0_RSRVD_SIZE + SRAM_SIZE;
|
|
rc = hl_pci_set_inbound_region(hdev, 1, &inbound_region);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Inbound Region 2 - Bar 4 - Point to DRAM */
|
|
inbound_region.mode = PCI_BAR_MATCH_MODE;
|
|
inbound_region.bar = DRAM_BAR_ID;
|
|
inbound_region.addr = DRAM_PHYS_BASE;
|
|
rc = hl_pci_set_inbound_region(hdev, 2, &inbound_region);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Outbound Region 0 - Point to Host */
|
|
outbound_region.addr = HOST_PHYS_BASE_0;
|
|
outbound_region.size = HOST_PHYS_SIZE_0;
|
|
rc = hl_pci_set_outbound_region(hdev, &outbound_region);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static enum hl_device_hw_state gaudi2_get_hw_state(struct hl_device *hdev)
|
|
{
|
|
return RREG32(mmHW_STATE);
|
|
}
|
|
|
|
static int gaudi2_tpc_binning_init_prop(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
/*
|
|
* check for error condition in which number of binning candidates
|
|
* is higher than the maximum supported by the driver
|
|
*/
|
|
if (hweight64(hdev->tpc_binning) > MAX_CLUSTER_BINNING_FAULTY_TPCS) {
|
|
dev_err(hdev->dev, "TPC binning is supported for max of %d faulty TPCs, provided mask 0x%llx\n",
|
|
MAX_CLUSTER_BINNING_FAULTY_TPCS,
|
|
hdev->tpc_binning);
|
|
return -EINVAL;
|
|
}
|
|
|
|
prop->tpc_binning_mask = hdev->tpc_binning;
|
|
prop->tpc_enabled_mask = GAUDI2_TPC_FULL_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_tpc_binning_masks(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hw_queue_properties *q_props = prop->hw_queues_props;
|
|
u64 tpc_binning_mask;
|
|
u8 subst_idx = 0;
|
|
int i, rc;
|
|
|
|
rc = gaudi2_tpc_binning_init_prop(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
tpc_binning_mask = prop->tpc_binning_mask;
|
|
|
|
for (i = 0 ; i < MAX_FAULTY_TPCS ; i++) {
|
|
u8 subst_seq, binned, qid_base;
|
|
|
|
if (tpc_binning_mask == 0)
|
|
break;
|
|
|
|
if (subst_idx == 0) {
|
|
subst_seq = TPC_ID_DCORE0_TPC6;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
|
|
} else {
|
|
subst_seq = TPC_ID_DCORE3_TPC5;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_5_0;
|
|
}
|
|
|
|
|
|
/* clear bit from mask */
|
|
binned = __ffs(tpc_binning_mask);
|
|
/*
|
|
* Coverity complains about possible out-of-bound access in
|
|
* clear_bit
|
|
*/
|
|
if (binned >= TPC_ID_SIZE) {
|
|
dev_err(hdev->dev,
|
|
"Invalid binned TPC (binning mask: %llx)\n",
|
|
tpc_binning_mask);
|
|
return -EINVAL;
|
|
}
|
|
clear_bit(binned, (unsigned long *)&tpc_binning_mask);
|
|
|
|
/* also clear replacing TPC bit from enabled mask */
|
|
clear_bit(subst_seq, (unsigned long *)&prop->tpc_enabled_mask);
|
|
|
|
/* bin substite TPC's Qs */
|
|
q_props[qid_base].binned = 1;
|
|
q_props[qid_base + 1].binned = 1;
|
|
q_props[qid_base + 2].binned = 1;
|
|
q_props[qid_base + 3].binned = 1;
|
|
|
|
subst_idx++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_dec_binning_masks(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u8 num_faulty;
|
|
|
|
num_faulty = hweight32(hdev->decoder_binning);
|
|
|
|
/*
|
|
* check for error condition in which number of binning candidates
|
|
* is higher than the maximum supported by the driver
|
|
*/
|
|
if (num_faulty > MAX_FAULTY_DECODERS) {
|
|
dev_err(hdev->dev, "decoder binning is supported for max of single faulty decoder, provided mask 0x%x\n",
|
|
hdev->decoder_binning);
|
|
return -EINVAL;
|
|
}
|
|
|
|
prop->decoder_binning_mask = (hdev->decoder_binning & GAUDI2_DECODER_FULL_MASK);
|
|
|
|
if (prop->decoder_binning_mask)
|
|
prop->decoder_enabled_mask = (GAUDI2_DECODER_FULL_MASK & ~BIT(DEC_ID_PCIE_VDEC1));
|
|
else
|
|
prop->decoder_enabled_mask = GAUDI2_DECODER_FULL_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_set_dram_binning_masks(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
/* check if we should override default binning */
|
|
if (!hdev->dram_binning) {
|
|
prop->dram_binning_mask = 0;
|
|
prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK;
|
|
return;
|
|
}
|
|
|
|
/* set DRAM binning constraints */
|
|
prop->faulty_dram_cluster_map |= hdev->dram_binning;
|
|
prop->dram_binning_mask = hdev->dram_binning;
|
|
prop->dram_enabled_mask = GAUDI2_DRAM_FULL_MASK & ~BIT(HBM_ID5);
|
|
}
|
|
|
|
static int gaudi2_set_edma_binning_masks(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hw_queue_properties *q_props;
|
|
u8 seq, num_faulty;
|
|
|
|
num_faulty = hweight32(hdev->edma_binning);
|
|
|
|
/*
|
|
* check for error condition in which number of binning candidates
|
|
* is higher than the maximum supported by the driver
|
|
*/
|
|
if (num_faulty > MAX_FAULTY_EDMAS) {
|
|
dev_err(hdev->dev,
|
|
"EDMA binning is supported for max of single faulty EDMA, provided mask 0x%x\n",
|
|
hdev->edma_binning);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!hdev->edma_binning) {
|
|
prop->edma_binning_mask = 0;
|
|
prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK;
|
|
return 0;
|
|
}
|
|
|
|
seq = __ffs((unsigned long)hdev->edma_binning);
|
|
|
|
/* set binning constraints */
|
|
prop->faulty_dram_cluster_map |= BIT(edma_to_hbm_cluster[seq]);
|
|
prop->edma_binning_mask = hdev->edma_binning;
|
|
prop->edma_enabled_mask = GAUDI2_EDMA_FULL_MASK & ~BIT(EDMA_ID_DCORE3_INSTANCE1);
|
|
|
|
/* bin substitute EDMA's queue */
|
|
q_props = prop->hw_queues_props;
|
|
q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0].binned = 1;
|
|
q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1].binned = 1;
|
|
q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2].binned = 1;
|
|
q_props[GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3].binned = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_xbar_edge_enable_mask(struct hl_device *hdev, u32 xbar_edge_iso_mask)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u8 num_faulty, seq;
|
|
|
|
/* check if we should override default binning */
|
|
if (!xbar_edge_iso_mask) {
|
|
prop->xbar_edge_enabled_mask = GAUDI2_XBAR_EDGE_FULL_MASK;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* note that it can be set to value other than 0 only after cpucp packet (i.e.
|
|
* only the FW can set a redundancy value). for user it'll always be 0.
|
|
*/
|
|
num_faulty = hweight32(xbar_edge_iso_mask);
|
|
|
|
/*
|
|
* check for error condition in which number of binning candidates
|
|
* is higher than the maximum supported by the driver
|
|
*/
|
|
if (num_faulty > MAX_FAULTY_XBARS) {
|
|
dev_err(hdev->dev, "we cannot have more than %d faulty XBAR EDGE\n",
|
|
MAX_FAULTY_XBARS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
seq = __ffs((unsigned long)xbar_edge_iso_mask);
|
|
|
|
/* set binning constraints */
|
|
prop->faulty_dram_cluster_map |= BIT(xbar_edge_to_hbm_cluster[seq]);
|
|
prop->xbar_edge_enabled_mask = (~xbar_edge_iso_mask) & GAUDI2_XBAR_EDGE_FULL_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_cluster_binning_masks_common(struct hl_device *hdev, u8 xbar_edge_iso_mask)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* mark all clusters as good, each component will "fail" cluster
|
|
* based on eFuse/user values.
|
|
* If more than single cluster is faulty- the chip is unusable
|
|
*/
|
|
hdev->asic_prop.faulty_dram_cluster_map = 0;
|
|
|
|
gaudi2_set_dram_binning_masks(hdev);
|
|
|
|
rc = gaudi2_set_edma_binning_masks(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_set_xbar_edge_enable_mask(hdev, xbar_edge_iso_mask);
|
|
if (rc)
|
|
return rc;
|
|
|
|
|
|
/* always initially set to full mask */
|
|
hdev->asic_prop.hmmu_hif_enabled_mask = GAUDI2_HIF_HMMU_FULL_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_set_cluster_binning_masks(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int rc;
|
|
|
|
rc = gaudi2_set_cluster_binning_masks_common(hdev, prop->cpucp_info.xbar_binning_mask);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* if we have DRAM binning reported by FW we should perform cluster config */
|
|
if (prop->faulty_dram_cluster_map) {
|
|
u8 cluster_seq = __ffs((unsigned long)prop->faulty_dram_cluster_map);
|
|
|
|
prop->hmmu_hif_enabled_mask = cluster_hmmu_hif_enabled_mask[cluster_seq];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_cpucp_info_get(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
long max_power;
|
|
u64 dram_size;
|
|
int rc;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
|
|
return 0;
|
|
|
|
/* No point of asking this information again when not doing hard reset, as the device
|
|
* CPU hasn't been reset
|
|
*/
|
|
if (hdev->reset_info.in_compute_reset)
|
|
return 0;
|
|
|
|
rc = hl_fw_cpucp_handshake(hdev, mmCPU_BOOT_DEV_STS0, mmCPU_BOOT_DEV_STS1, mmCPU_BOOT_ERR0,
|
|
mmCPU_BOOT_ERR1);
|
|
if (rc)
|
|
return rc;
|
|
|
|
dram_size = le64_to_cpu(prop->cpucp_info.dram_size);
|
|
if (dram_size) {
|
|
/* we can have wither 5 or 6 HBMs. other values are invalid */
|
|
|
|
if ((dram_size != ((GAUDI2_HBM_NUM - 1) * SZ_16G)) &&
|
|
(dram_size != (GAUDI2_HBM_NUM * SZ_16G))) {
|
|
dev_err(hdev->dev,
|
|
"F/W reported invalid DRAM size %llu. Trying to use default size %llu\n",
|
|
dram_size, prop->dram_size);
|
|
dram_size = prop->dram_size;
|
|
}
|
|
|
|
prop->dram_size = dram_size;
|
|
prop->dram_end_address = prop->dram_base_address + dram_size;
|
|
}
|
|
|
|
if (!strlen(prop->cpucp_info.card_name))
|
|
strncpy(prop->cpucp_info.card_name, GAUDI2_DEFAULT_CARD_NAME, CARD_NAME_MAX_LEN);
|
|
|
|
/* Overwrite binning masks with the actual binning values from F/W */
|
|
hdev->dram_binning = prop->cpucp_info.dram_binning_mask;
|
|
hdev->edma_binning = prop->cpucp_info.edma_binning_mask;
|
|
hdev->tpc_binning = le64_to_cpu(prop->cpucp_info.tpc_binning_mask);
|
|
hdev->decoder_binning = lower_32_bits(le64_to_cpu(prop->cpucp_info.decoder_binning_mask));
|
|
|
|
/*
|
|
* at this point the DRAM parameters need to be updated according to data obtained
|
|
* from the FW
|
|
*/
|
|
rc = gaudi2_set_dram_properties(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_set_cluster_binning_masks(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_set_tpc_binning_masks(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_set_dec_binning_masks(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
max_power = hl_fw_get_max_power(hdev);
|
|
if (max_power < 0)
|
|
return max_power;
|
|
|
|
prop->max_power_default = (u64) max_power;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_fetch_psoc_frequency(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u16 pll_freq_arr[HL_PLL_NUM_OUTPUTS];
|
|
int rc;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
|
|
return 0;
|
|
|
|
rc = hl_fw_cpucp_pll_info_get(hdev, HL_GAUDI2_CPU_PLL, pll_freq_arr);
|
|
if (rc)
|
|
return rc;
|
|
|
|
hdev->asic_prop.psoc_timestamp_frequency = pll_freq_arr[3];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_early_init(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct pci_dev *pdev = hdev->pdev;
|
|
resource_size_t pci_bar_size;
|
|
int rc;
|
|
|
|
rc = gaudi2_set_fixed_properties(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Check BAR sizes */
|
|
pci_bar_size = pci_resource_len(pdev, SRAM_CFG_BAR_ID);
|
|
|
|
if (pci_bar_size != CFG_BAR_SIZE) {
|
|
dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
|
|
SRAM_CFG_BAR_ID, &pci_bar_size, CFG_BAR_SIZE);
|
|
rc = -ENODEV;
|
|
goto free_queue_props;
|
|
}
|
|
|
|
pci_bar_size = pci_resource_len(pdev, MSIX_BAR_ID);
|
|
if (pci_bar_size != MSIX_BAR_SIZE) {
|
|
dev_err(hdev->dev, "Not " HL_NAME "? BAR %d size %pa, expecting %llu\n",
|
|
MSIX_BAR_ID, &pci_bar_size, MSIX_BAR_SIZE);
|
|
rc = -ENODEV;
|
|
goto free_queue_props;
|
|
}
|
|
|
|
prop->dram_pci_bar_size = pci_resource_len(pdev, DRAM_BAR_ID);
|
|
hdev->dram_pci_bar_start = pci_resource_start(pdev, DRAM_BAR_ID);
|
|
|
|
/*
|
|
* Only in pldm driver config iATU
|
|
*/
|
|
if (hdev->pldm)
|
|
hdev->asic_prop.iatu_done_by_fw = false;
|
|
else
|
|
hdev->asic_prop.iatu_done_by_fw = true;
|
|
|
|
rc = hl_pci_init(hdev);
|
|
if (rc)
|
|
goto free_queue_props;
|
|
|
|
/* Before continuing in the initialization, we need to read the preboot
|
|
* version to determine whether we run with a security-enabled firmware
|
|
*/
|
|
rc = hl_fw_read_preboot_status(hdev);
|
|
if (rc) {
|
|
if (hdev->reset_on_preboot_fail)
|
|
hdev->asic_funcs->hw_fini(hdev, true, false);
|
|
goto pci_fini;
|
|
}
|
|
|
|
if (gaudi2_get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) {
|
|
dev_dbg(hdev->dev, "H/W state is dirty, must reset before initializing\n");
|
|
hdev->asic_funcs->hw_fini(hdev, true, false);
|
|
}
|
|
|
|
return 0;
|
|
|
|
pci_fini:
|
|
hl_pci_fini(hdev);
|
|
free_queue_props:
|
|
kfree(hdev->asic_prop.hw_queues_props);
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_early_fini(struct hl_device *hdev)
|
|
{
|
|
kfree(hdev->asic_prop.hw_queues_props);
|
|
hl_pci_fini(hdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool gaudi2_is_arc_nic_owned(u64 arc_id)
|
|
{
|
|
switch (arc_id) {
|
|
case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool gaudi2_is_arc_tpc_owned(u64 arc_id)
|
|
{
|
|
switch (arc_id) {
|
|
case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_arcs(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 arc_id;
|
|
u32 i;
|
|
|
|
for (i = CPU_ID_SCHED_ARC0 ; i <= CPU_ID_SCHED_ARC3 ; i++) {
|
|
if (gaudi2_is_arc_enabled(hdev, i))
|
|
continue;
|
|
|
|
gaudi2_set_arc_id_cap(hdev, i);
|
|
}
|
|
|
|
for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
|
|
if (!gaudi2_is_queue_enabled(hdev, i))
|
|
continue;
|
|
|
|
arc_id = gaudi2_queue_id_to_arc_id[i];
|
|
if (gaudi2_is_arc_enabled(hdev, arc_id))
|
|
continue;
|
|
|
|
if (gaudi2_is_arc_nic_owned(arc_id) &&
|
|
!(hdev->nic_ports_mask & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0)))
|
|
continue;
|
|
|
|
if (gaudi2_is_arc_tpc_owned(arc_id) && !(gaudi2->tpc_hw_cap_initialized &
|
|
BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0)))
|
|
continue;
|
|
|
|
gaudi2_set_arc_id_cap(hdev, arc_id);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_scrub_arc_dccm(struct hl_device *hdev, u32 cpu_id)
|
|
{
|
|
u32 reg_base, reg_val;
|
|
int rc;
|
|
|
|
switch (cpu_id) {
|
|
case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC3:
|
|
/* Each ARC scheduler has 2 consecutive DCCM blocks */
|
|
rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
|
|
ARC_DCCM_BLOCK_SIZE * 2, true);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case CPU_ID_SCHED_ARC4:
|
|
case CPU_ID_SCHED_ARC5:
|
|
case CPU_ID_MME_QMAN_ARC0:
|
|
case CPU_ID_MME_QMAN_ARC1:
|
|
reg_base = gaudi2_arc_blocks_bases[cpu_id];
|
|
|
|
/* Scrub lower DCCM block */
|
|
rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
|
|
ARC_DCCM_BLOCK_SIZE, true);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Switch to upper DCCM block */
|
|
reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 1);
|
|
WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);
|
|
|
|
/* Scrub upper DCCM block */
|
|
rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
|
|
ARC_DCCM_BLOCK_SIZE, true);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Switch to lower DCCM block */
|
|
reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_MME_ARC_UPPER_DCCM_EN_VAL_MASK, 0);
|
|
WREG32(reg_base + ARC_DCCM_UPPER_EN_OFFSET, reg_val);
|
|
break;
|
|
default:
|
|
rc = gaudi2_send_job_to_kdma(hdev, 0, CFG_BASE + gaudi2_arc_dccm_bases[cpu_id],
|
|
ARC_DCCM_BLOCK_SIZE, true);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_scrub_arcs_dccm(struct hl_device *hdev)
|
|
{
|
|
u16 arc_id;
|
|
|
|
for (arc_id = CPU_ID_SCHED_ARC0 ; arc_id < CPU_ID_MAX ; arc_id++) {
|
|
if (!gaudi2_is_arc_enabled(hdev, arc_id))
|
|
continue;
|
|
|
|
gaudi2_scrub_arc_dccm(hdev, arc_id);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_late_init(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int rc;
|
|
|
|
hdev->asic_prop.supports_advanced_cpucp_rc = true;
|
|
|
|
rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_ENABLE_PCI_ACCESS,
|
|
gaudi2->virt_msix_db_dma_addr);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to enable PCI access from CPU\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = gaudi2_fetch_psoc_frequency(hdev);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to fetch psoc frequency\n");
|
|
goto disable_pci_access;
|
|
}
|
|
|
|
gaudi2_init_arcs(hdev);
|
|
gaudi2_scrub_arcs_dccm(hdev);
|
|
gaudi2_init_security(hdev);
|
|
|
|
return 0;
|
|
|
|
disable_pci_access:
|
|
hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_late_fini(struct hl_device *hdev)
|
|
{
|
|
hl_hwmon_release_resources(hdev);
|
|
}
|
|
|
|
static void gaudi2_user_mapped_dec_init(struct gaudi2_device *gaudi2, u32 start_idx)
|
|
{
|
|
struct user_mapped_block *blocks = gaudi2->mapped_blocks;
|
|
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC0_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE0_DEC1_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC0_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE1_DEC1_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC0_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE2_DEC1_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC0_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmDCORE3_DEC1_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx++], mmPCIE_DEC0_CMD_BASE, HL_BLOCK_SIZE);
|
|
HL_USR_MAPPED_BLK_INIT(&blocks[start_idx], mmPCIE_DEC1_CMD_BASE, HL_BLOCK_SIZE);
|
|
}
|
|
|
|
static void gaudi2_user_mapped_blocks_init(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct user_mapped_block *blocks = gaudi2->mapped_blocks;
|
|
u32 block_size, umr_start_idx, num_umr_blocks;
|
|
int i;
|
|
|
|
for (i = 0 ; i < NUM_ARC_CPUS ; i++) {
|
|
if (i >= CPU_ID_SCHED_ARC0 && i <= CPU_ID_SCHED_ARC3)
|
|
block_size = ARC_DCCM_BLOCK_SIZE * 2;
|
|
else
|
|
block_size = ARC_DCCM_BLOCK_SIZE;
|
|
|
|
blocks[i].address = gaudi2_arc_dccm_bases[i];
|
|
blocks[i].size = block_size;
|
|
}
|
|
|
|
blocks[NUM_ARC_CPUS].address = mmARC_FARM_ARC0_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 1].address = mmARC_FARM_ARC1_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 1].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 2].address = mmARC_FARM_ARC2_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 2].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 3].address = mmARC_FARM_ARC3_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 3].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 4].address = mmDCORE0_MME_QM_ARC_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 4].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 5].address = mmDCORE1_MME_QM_ARC_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 5].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 6].address = mmDCORE2_MME_QM_ARC_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 6].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[NUM_ARC_CPUS + 7].address = mmDCORE3_MME_QM_ARC_ACP_ENG_BASE;
|
|
blocks[NUM_ARC_CPUS + 7].size = HL_BLOCK_SIZE;
|
|
|
|
umr_start_idx = NUM_ARC_CPUS + NUM_OF_USER_ACP_BLOCKS;
|
|
num_umr_blocks = NIC_NUMBER_OF_ENGINES * NUM_OF_USER_NIC_UMR_BLOCKS;
|
|
for (i = 0 ; i < num_umr_blocks ; i++) {
|
|
u8 nic_id, umr_block_id;
|
|
|
|
nic_id = i / NUM_OF_USER_NIC_UMR_BLOCKS;
|
|
umr_block_id = i % NUM_OF_USER_NIC_UMR_BLOCKS;
|
|
|
|
blocks[umr_start_idx + i].address =
|
|
mmNIC0_UMR0_0_UNSECURE_DOORBELL0_BASE +
|
|
(nic_id / NIC_NUMBER_OF_QM_PER_MACRO) * NIC_OFFSET +
|
|
(nic_id % NIC_NUMBER_OF_QM_PER_MACRO) * NIC_QM_OFFSET +
|
|
umr_block_id * NIC_UMR_OFFSET;
|
|
blocks[umr_start_idx + i].size = HL_BLOCK_SIZE;
|
|
}
|
|
|
|
/* Expose decoder HW configuration block to user */
|
|
gaudi2_user_mapped_dec_init(gaudi2, USR_MAPPED_BLK_DEC_START_IDX);
|
|
|
|
for (i = 1; i < NUM_OF_DCORES; ++i) {
|
|
blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].size = SM_OBJS_BLOCK_SIZE;
|
|
blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].size = HL_BLOCK_SIZE;
|
|
|
|
blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1)].address =
|
|
mmDCORE0_SYNC_MNGR_OBJS_BASE + i * DCORE_OFFSET;
|
|
|
|
blocks[USR_MAPPED_BLK_SM_START_IDX + 2 * (i - 1) + 1].address =
|
|
mmDCORE0_SYNC_MNGR_GLBL_BASE + i * DCORE_OFFSET;
|
|
}
|
|
}
|
|
|
|
static int gaudi2_alloc_cpu_accessible_dma_mem(struct hl_device *hdev)
|
|
{
|
|
dma_addr_t dma_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {}, end_addr;
|
|
void *virt_addr_arr[GAUDI2_ALLOC_CPU_MEM_RETRY_CNT] = {};
|
|
int i, j, rc = 0;
|
|
|
|
/* The device ARC works with 32-bits addresses, and because there is a single HW register
|
|
* that holds the extension bits (49..28), these bits must be identical in all the allocated
|
|
* range.
|
|
*/
|
|
|
|
for (i = 0 ; i < GAUDI2_ALLOC_CPU_MEM_RETRY_CNT ; i++) {
|
|
virt_addr_arr[i] = hl_asic_dma_alloc_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE,
|
|
&dma_addr_arr[i], GFP_KERNEL | __GFP_ZERO);
|
|
if (!virt_addr_arr[i]) {
|
|
rc = -ENOMEM;
|
|
goto free_dma_mem_arr;
|
|
}
|
|
|
|
end_addr = dma_addr_arr[i] + HL_CPU_ACCESSIBLE_MEM_SIZE - 1;
|
|
if (GAUDI2_ARC_PCI_MSB_ADDR(dma_addr_arr[i]) == GAUDI2_ARC_PCI_MSB_ADDR(end_addr))
|
|
break;
|
|
}
|
|
|
|
if (i == GAUDI2_ALLOC_CPU_MEM_RETRY_CNT) {
|
|
dev_err(hdev->dev,
|
|
"MSB of ARC accessible DMA memory are not identical in all range\n");
|
|
rc = -EFAULT;
|
|
goto free_dma_mem_arr;
|
|
}
|
|
|
|
hdev->cpu_accessible_dma_mem = virt_addr_arr[i];
|
|
hdev->cpu_accessible_dma_address = dma_addr_arr[i];
|
|
|
|
free_dma_mem_arr:
|
|
for (j = 0 ; j < i ; j++)
|
|
hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, virt_addr_arr[j],
|
|
dma_addr_arr[j]);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_set_pci_memory_regions(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct pci_mem_region *region;
|
|
|
|
/* CFG */
|
|
region = &hdev->pci_mem_region[PCI_REGION_CFG];
|
|
region->region_base = CFG_BASE;
|
|
region->region_size = CFG_SIZE;
|
|
region->offset_in_bar = CFG_BASE - STM_FLASH_BASE_ADDR;
|
|
region->bar_size = CFG_BAR_SIZE;
|
|
region->bar_id = SRAM_CFG_BAR_ID;
|
|
region->used = 1;
|
|
|
|
/* SRAM */
|
|
region = &hdev->pci_mem_region[PCI_REGION_SRAM];
|
|
region->region_base = SRAM_BASE_ADDR;
|
|
region->region_size = SRAM_SIZE;
|
|
region->offset_in_bar = CFG_REGION_SIZE + BAR0_RSRVD_SIZE;
|
|
region->bar_size = CFG_BAR_SIZE;
|
|
region->bar_id = SRAM_CFG_BAR_ID;
|
|
region->used = 1;
|
|
|
|
/* DRAM */
|
|
region = &hdev->pci_mem_region[PCI_REGION_DRAM];
|
|
region->region_base = DRAM_PHYS_BASE;
|
|
region->region_size = hdev->asic_prop.dram_size;
|
|
region->offset_in_bar = 0;
|
|
region->bar_size = prop->dram_pci_bar_size;
|
|
region->bar_id = DRAM_BAR_ID;
|
|
region->used = 1;
|
|
}
|
|
|
|
static void gaudi2_user_interrupt_setup(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int i, j, k;
|
|
|
|
/* Initialize common user CQ interrupt */
|
|
HL_USR_INTR_STRUCT_INIT(hdev->common_user_cq_interrupt, hdev,
|
|
HL_COMMON_USER_CQ_INTERRUPT_ID, false);
|
|
|
|
/* Initialize common decoder interrupt */
|
|
HL_USR_INTR_STRUCT_INIT(hdev->common_decoder_interrupt, hdev,
|
|
HL_COMMON_DEC_INTERRUPT_ID, true);
|
|
|
|
/* User interrupts structure holds both decoder and user interrupts from various engines.
|
|
* We first initialize the decoder interrupts and then we add the user interrupts.
|
|
* The only limitation is that the last decoder interrupt id must be smaller
|
|
* then GAUDI2_IRQ_NUM_USER_FIRST. This is checked at compilation time.
|
|
*/
|
|
|
|
/* Initialize decoder interrupts, expose only normal interrupts,
|
|
* error interrupts to be handled by driver
|
|
*/
|
|
for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, j = 0 ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_NRM;
|
|
i += 2, j++)
|
|
HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, true);
|
|
|
|
for (i = GAUDI2_IRQ_NUM_USER_FIRST, k = 0 ; k < prop->user_interrupt_count; i++, j++, k++)
|
|
HL_USR_INTR_STRUCT_INIT(hdev->user_interrupt[j], hdev, i, false);
|
|
}
|
|
|
|
static inline int gaudi2_get_non_zero_random_int(void)
|
|
{
|
|
int rand = get_random_u32();
|
|
|
|
return rand ? rand : 1;
|
|
}
|
|
|
|
static int gaudi2_sw_init(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2;
|
|
int i, rc;
|
|
|
|
/* Allocate device structure */
|
|
gaudi2 = kzalloc(sizeof(*gaudi2), GFP_KERNEL);
|
|
if (!gaudi2)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0 ; i < ARRAY_SIZE(gaudi2_irq_map_table) ; i++) {
|
|
if (gaudi2_irq_map_table[i].msg || !gaudi2_irq_map_table[i].valid)
|
|
continue;
|
|
|
|
if (gaudi2->num_of_valid_hw_events == GAUDI2_EVENT_SIZE) {
|
|
dev_err(hdev->dev, "H/W events array exceeds the limit of %u events\n",
|
|
GAUDI2_EVENT_SIZE);
|
|
rc = -EINVAL;
|
|
goto free_gaudi2_device;
|
|
}
|
|
|
|
gaudi2->hw_events[gaudi2->num_of_valid_hw_events++] = gaudi2_irq_map_table[i].fc_id;
|
|
}
|
|
|
|
for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++)
|
|
gaudi2->lfsr_rand_seeds[i] = gaudi2_get_non_zero_random_int();
|
|
|
|
gaudi2->cpucp_info_get = gaudi2_cpucp_info_get;
|
|
|
|
hdev->asic_specific = gaudi2;
|
|
|
|
/* Create DMA pool for small allocations.
|
|
* Use DEVICE_CACHE_LINE_SIZE for alignment since the NIC memory-mapped
|
|
* PI/CI registers allocated from this pool have this restriction
|
|
*/
|
|
hdev->dma_pool = dma_pool_create(dev_name(hdev->dev), &hdev->pdev->dev,
|
|
GAUDI2_DMA_POOL_BLK_SIZE, DEVICE_CACHE_LINE_SIZE, 0);
|
|
if (!hdev->dma_pool) {
|
|
dev_err(hdev->dev, "failed to create DMA pool\n");
|
|
rc = -ENOMEM;
|
|
goto free_gaudi2_device;
|
|
}
|
|
|
|
rc = gaudi2_alloc_cpu_accessible_dma_mem(hdev);
|
|
if (rc)
|
|
goto free_dma_pool;
|
|
|
|
hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
|
|
if (!hdev->cpu_accessible_dma_pool) {
|
|
dev_err(hdev->dev, "Failed to create CPU accessible DMA pool\n");
|
|
rc = -ENOMEM;
|
|
goto free_cpu_dma_mem;
|
|
}
|
|
|
|
rc = gen_pool_add(hdev->cpu_accessible_dma_pool, (uintptr_t) hdev->cpu_accessible_dma_mem,
|
|
HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to add memory to CPU accessible DMA pool\n");
|
|
rc = -EFAULT;
|
|
goto free_cpu_accessible_dma_pool;
|
|
}
|
|
|
|
gaudi2->virt_msix_db_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, prop->pmmu.page_size,
|
|
&gaudi2->virt_msix_db_dma_addr);
|
|
if (!gaudi2->virt_msix_db_cpu_addr) {
|
|
dev_err(hdev->dev, "Failed to allocate DMA memory for virtual MSI-X doorbell\n");
|
|
rc = -ENOMEM;
|
|
goto free_cpu_accessible_dma_pool;
|
|
}
|
|
|
|
spin_lock_init(&gaudi2->hw_queues_lock);
|
|
|
|
gaudi2->scratchpad_kernel_address = hl_asic_dma_alloc_coherent(hdev, PAGE_SIZE,
|
|
&gaudi2->scratchpad_bus_address,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!gaudi2->scratchpad_kernel_address) {
|
|
rc = -ENOMEM;
|
|
goto free_virt_msix_db_mem;
|
|
}
|
|
|
|
gaudi2_user_mapped_blocks_init(hdev);
|
|
|
|
/* Initialize user interrupts */
|
|
gaudi2_user_interrupt_setup(hdev);
|
|
|
|
hdev->supports_coresight = true;
|
|
hdev->supports_sync_stream = true;
|
|
hdev->supports_cb_mapping = true;
|
|
hdev->supports_wait_for_multi_cs = false;
|
|
|
|
prop->supports_compute_reset = true;
|
|
|
|
hdev->asic_funcs->set_pci_memory_regions(hdev);
|
|
|
|
return 0;
|
|
|
|
free_virt_msix_db_mem:
|
|
hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);
|
|
free_cpu_accessible_dma_pool:
|
|
gen_pool_destroy(hdev->cpu_accessible_dma_pool);
|
|
free_cpu_dma_mem:
|
|
hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
|
|
hdev->cpu_accessible_dma_address);
|
|
free_dma_pool:
|
|
dma_pool_destroy(hdev->dma_pool);
|
|
free_gaudi2_device:
|
|
kfree(gaudi2);
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_sw_fini(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
hl_cpu_accessible_dma_pool_free(hdev, prop->pmmu.page_size, gaudi2->virt_msix_db_cpu_addr);
|
|
|
|
gen_pool_destroy(hdev->cpu_accessible_dma_pool);
|
|
|
|
hl_asic_dma_free_coherent(hdev, HL_CPU_ACCESSIBLE_MEM_SIZE, hdev->cpu_accessible_dma_mem,
|
|
hdev->cpu_accessible_dma_address);
|
|
|
|
hl_asic_dma_free_coherent(hdev, PAGE_SIZE, gaudi2->scratchpad_kernel_address,
|
|
gaudi2->scratchpad_bus_address);
|
|
|
|
dma_pool_destroy(hdev->dma_pool);
|
|
|
|
kfree(gaudi2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_stop_qman_common(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_STOP |
|
|
QM_GLBL_CFG1_CQF_STOP |
|
|
QM_GLBL_CFG1_CP_STOP);
|
|
|
|
/* stop also the ARC */
|
|
WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_STOP);
|
|
}
|
|
|
|
static void gaudi2_flush_qman_common(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
WREG32(reg_base + QM_GLBL_CFG1_OFFSET, QM_GLBL_CFG1_PQF_FLUSH |
|
|
QM_GLBL_CFG1_CQF_FLUSH |
|
|
QM_GLBL_CFG1_CP_FLUSH);
|
|
}
|
|
|
|
static void gaudi2_flush_qman_arc_common(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
WREG32(reg_base + QM_GLBL_CFG2_OFFSET, QM_GLBL_CFG2_ARC_CQF_FLUSH);
|
|
}
|
|
|
|
/**
|
|
* gaudi2_clear_qm_fence_counters_common - clear QM's fence counters
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @queue_id: queue to clear fence counters to
|
|
* @skip_fence: if true set maximum fence value to all fence counters to avoid
|
|
* getting stuck on any fence value. otherwise set all fence
|
|
* counters to 0 (standard clear of fence counters)
|
|
*/
|
|
static void gaudi2_clear_qm_fence_counters_common(struct hl_device *hdev, u32 queue_id,
|
|
bool skip_fence)
|
|
{
|
|
u32 size, reg_base;
|
|
u32 addr, val;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[queue_id];
|
|
|
|
addr = reg_base + QM_CP_FENCE0_CNT_0_OFFSET;
|
|
size = mmPDMA0_QM_CP_BARRIER_CFG - mmPDMA0_QM_CP_FENCE0_CNT_0;
|
|
|
|
/*
|
|
* in case we want to make sure that QM that is stuck on a fence will
|
|
* be released we should set the fence counter to a higher value that
|
|
* the value the QM waiting for. to comply with any fence counter of
|
|
* any value we set maximum fence value to all counters
|
|
*/
|
|
val = skip_fence ? U32_MAX : 0;
|
|
gaudi2_memset_device_lbw(hdev, addr, size, val);
|
|
}
|
|
|
|
static void gaudi2_qman_manual_flush_common(struct hl_device *hdev, u32 queue_id)
|
|
{
|
|
u32 reg_base = gaudi2_qm_blocks_bases[queue_id];
|
|
|
|
gaudi2_clear_qm_fence_counters_common(hdev, queue_id, true);
|
|
gaudi2_flush_qman_common(hdev, reg_base);
|
|
gaudi2_flush_qman_arc_common(hdev, reg_base);
|
|
}
|
|
|
|
static void gaudi2_stop_dma_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int dcore, inst;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
|
|
goto stop_edma_qmans;
|
|
|
|
/* Stop CPs of PDMA QMANs */
|
|
gaudi2_stop_qman_common(hdev, mmPDMA0_QM_BASE);
|
|
gaudi2_stop_qman_common(hdev, mmPDMA1_QM_BASE);
|
|
|
|
stop_edma_qmans:
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
|
|
return;
|
|
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
|
|
u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
|
|
u32 qm_base;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
|
|
continue;
|
|
|
|
qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
|
|
inst * DCORE_EDMA_OFFSET;
|
|
|
|
/* Stop CPs of EDMA QMANs */
|
|
gaudi2_stop_qman_common(hdev, qm_base);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_mme_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 offset, i;
|
|
|
|
offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;
|
|
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++) {
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i)))
|
|
continue;
|
|
|
|
gaudi2_stop_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_tpc_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
int i;
|
|
|
|
if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
|
|
return;
|
|
|
|
for (i = 0 ; i < TPC_ID_SIZE ; i++) {
|
|
if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
|
|
gaudi2_stop_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_rot_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
int i;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
|
|
return;
|
|
|
|
for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
|
|
gaudi2_stop_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_nic_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base, queue_id;
|
|
int i;
|
|
|
|
if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
|
|
return;
|
|
|
|
queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
|
|
|
|
for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
if (!(hdev->nic_ports_mask & BIT(i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[queue_id];
|
|
gaudi2_stop_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stall_dma_common(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
u32 reg_val;
|
|
|
|
reg_val = FIELD_PREP(PDMA0_CORE_CFG_1_HALT_MASK, 0x1);
|
|
WREG32(reg_base + DMA_CORE_CFG_1_OFFSET, reg_val);
|
|
}
|
|
|
|
static void gaudi2_dma_stall(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int dcore, inst;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
|
|
goto stall_edma;
|
|
|
|
gaudi2_stall_dma_common(hdev, mmPDMA0_CORE_BASE);
|
|
gaudi2_stall_dma_common(hdev, mmPDMA1_CORE_BASE);
|
|
|
|
stall_edma:
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
|
|
return;
|
|
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
|
|
u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
|
|
u32 core_base;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
|
|
continue;
|
|
|
|
core_base = mmDCORE0_EDMA0_CORE_BASE + dcore * DCORE_OFFSET +
|
|
inst * DCORE_EDMA_OFFSET;
|
|
|
|
/* Stall CPs of EDMA QMANs */
|
|
gaudi2_stall_dma_common(hdev, core_base);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gaudi2_mme_stall(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 offset, i;
|
|
|
|
offset = mmDCORE1_MME_CTRL_LO_QM_STALL - mmDCORE0_MME_CTRL_LO_QM_STALL;
|
|
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++)
|
|
if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
|
|
WREG32(mmDCORE0_MME_CTRL_LO_QM_STALL + (i * offset), 1);
|
|
}
|
|
|
|
static void gaudi2_tpc_stall(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
int i;
|
|
|
|
if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
|
|
return;
|
|
|
|
for (i = 0 ; i < TPC_ID_SIZE ; i++) {
|
|
if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_tpc_cfg_blocks_bases[i];
|
|
WREG32(reg_base + TPC_CFG_STALL_OFFSET, 1);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_rotator_stall(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_val;
|
|
int i;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
|
|
return;
|
|
|
|
reg_val = FIELD_PREP(ROT_MSS_HALT_WBC_MASK, 0x1) |
|
|
FIELD_PREP(ROT_MSS_HALT_RSB_MASK, 0x1) |
|
|
FIELD_PREP(ROT_MSS_HALT_MRSB_MASK, 0x1);
|
|
|
|
for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
|
|
continue;
|
|
|
|
WREG32(mmROT0_MSS_HALT + i * ROT_OFFSET, reg_val);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_disable_qman_common(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
WREG32(reg_base + QM_GLBL_CFG0_OFFSET, 0);
|
|
}
|
|
|
|
static void gaudi2_disable_dma_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int dcore, inst;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK))
|
|
goto stop_edma_qmans;
|
|
|
|
gaudi2_disable_qman_common(hdev, mmPDMA0_QM_BASE);
|
|
gaudi2_disable_qman_common(hdev, mmPDMA1_QM_BASE);
|
|
|
|
stop_edma_qmans:
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK))
|
|
return;
|
|
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
|
|
u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
|
|
u32 qm_base;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_EDMA_SHIFT + seq)))
|
|
continue;
|
|
|
|
qm_base = mmDCORE0_EDMA0_QM_BASE + dcore * DCORE_OFFSET +
|
|
inst * DCORE_EDMA_OFFSET;
|
|
|
|
/* Disable CPs of EDMA QMANs */
|
|
gaudi2_disable_qman_common(hdev, qm_base);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gaudi2_disable_mme_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 offset, i;
|
|
|
|
offset = mmDCORE1_MME_QM_BASE - mmDCORE0_MME_QM_BASE;
|
|
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++)
|
|
if (gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_MME_SHIFT + i))
|
|
gaudi2_disable_qman_common(hdev, mmDCORE0_MME_QM_BASE + (i * offset));
|
|
}
|
|
|
|
static void gaudi2_disable_tpc_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
int i;
|
|
|
|
if (!(gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK))
|
|
return;
|
|
|
|
for (i = 0 ; i < TPC_ID_SIZE ; i++) {
|
|
if (!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(HW_CAP_TPC_SHIFT + i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[gaudi2_tpc_id_to_queue_id[i]];
|
|
gaudi2_disable_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_disable_rot_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
int i;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_ROT_MASK))
|
|
return;
|
|
|
|
for (i = 0 ; i < ROTATOR_ID_SIZE ; i++) {
|
|
if (!(gaudi2->hw_cap_initialized & BIT_ULL(HW_CAP_ROT_SHIFT + i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[gaudi2_rot_id_to_queue_id[i]];
|
|
gaudi2_disable_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_disable_nic_qmans(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base, queue_id;
|
|
int i;
|
|
|
|
if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
|
|
return;
|
|
|
|
queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
|
|
|
|
for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
if (!(hdev->nic_ports_mask & BIT(i)))
|
|
continue;
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[queue_id];
|
|
gaudi2_disable_qman_common(hdev, reg_base);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_enable_timestamp(struct hl_device *hdev)
|
|
{
|
|
/* Disable the timestamp counter */
|
|
WREG32(mmPSOC_TIMESTAMP_BASE, 0);
|
|
|
|
/* Zero the lower/upper parts of the 64-bit counter */
|
|
WREG32(mmPSOC_TIMESTAMP_BASE + 0xC, 0);
|
|
WREG32(mmPSOC_TIMESTAMP_BASE + 0x8, 0);
|
|
|
|
/* Enable the counter */
|
|
WREG32(mmPSOC_TIMESTAMP_BASE, 1);
|
|
}
|
|
|
|
static void gaudi2_disable_timestamp(struct hl_device *hdev)
|
|
{
|
|
/* Disable the timestamp counter */
|
|
WREG32(mmPSOC_TIMESTAMP_BASE, 0);
|
|
}
|
|
|
|
static const char *gaudi2_irq_name(u16 irq_number)
|
|
{
|
|
switch (irq_number) {
|
|
case GAUDI2_IRQ_NUM_EVENT_QUEUE:
|
|
return "gaudi2 cpu eq";
|
|
case GAUDI2_IRQ_NUM_COMPLETION:
|
|
return "gaudi2 completion";
|
|
case GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ... GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM:
|
|
return gaudi2_vdec_irq_name[irq_number - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM];
|
|
case GAUDI2_IRQ_NUM_USER_FIRST ... GAUDI2_IRQ_NUM_USER_LAST:
|
|
return "gaudi2 user completion";
|
|
default:
|
|
return "invalid";
|
|
}
|
|
}
|
|
|
|
static void gaudi2_dec_disable_msix(struct hl_device *hdev, u32 max_irq_num)
|
|
{
|
|
int i, irq, relative_idx;
|
|
struct hl_dec *dec;
|
|
|
|
for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i < max_irq_num ; i++) {
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;
|
|
|
|
dec = hdev->dec + relative_idx / 2;
|
|
|
|
/* We pass different structures depending on the irq handler. For the abnormal
|
|
* interrupt we pass hl_dec and for the regular interrupt we pass the relevant
|
|
* user_interrupt entry
|
|
*/
|
|
free_irq(irq, ((relative_idx % 2) ?
|
|
(void *) dec :
|
|
(void *) &hdev->user_interrupt[dec->core_id]));
|
|
}
|
|
}
|
|
|
|
static int gaudi2_dec_enable_msix(struct hl_device *hdev)
|
|
{
|
|
int rc, i, irq_init_cnt, irq, relative_idx;
|
|
irq_handler_t irq_handler;
|
|
struct hl_dec *dec;
|
|
|
|
for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM, irq_init_cnt = 0;
|
|
i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM;
|
|
i++, irq_init_cnt++) {
|
|
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
relative_idx = i - GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM;
|
|
|
|
irq_handler = (relative_idx % 2) ?
|
|
hl_irq_handler_dec_abnrm :
|
|
hl_irq_handler_user_interrupt;
|
|
|
|
dec = hdev->dec + relative_idx / 2;
|
|
|
|
/* We pass different structures depending on the irq handler. For the abnormal
|
|
* interrupt we pass hl_dec and for the regular interrupt we pass the relevant
|
|
* user_interrupt entry
|
|
*/
|
|
rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i),
|
|
((relative_idx % 2) ?
|
|
(void *) dec :
|
|
(void *) &hdev->user_interrupt[dec->core_id]));
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
|
|
goto free_dec_irqs;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_dec_irqs:
|
|
gaudi2_dec_disable_msix(hdev, (GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + irq_init_cnt));
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_enable_msix(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int rc, irq, i, j, user_irq_init_cnt;
|
|
irq_handler_t irq_handler;
|
|
struct hl_cq *cq;
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_MSIX)
|
|
return 0;
|
|
|
|
rc = pci_alloc_irq_vectors(hdev->pdev, GAUDI2_MSIX_ENTRIES, GAUDI2_MSIX_ENTRIES,
|
|
PCI_IRQ_MSIX);
|
|
if (rc < 0) {
|
|
dev_err(hdev->dev, "MSI-X: Failed to enable support -- %d/%d\n",
|
|
GAUDI2_MSIX_ENTRIES, rc);
|
|
return rc;
|
|
}
|
|
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
|
|
cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
|
|
rc = request_irq(irq, hl_irq_handler_cq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_COMPLETION), cq);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
|
|
goto free_irq_vectors;
|
|
}
|
|
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
|
|
rc = request_irq(irq, hl_irq_handler_eq, 0, gaudi2_irq_name(GAUDI2_IRQ_NUM_EVENT_QUEUE),
|
|
&hdev->event_queue);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
|
|
goto free_completion_irq;
|
|
}
|
|
|
|
rc = gaudi2_dec_enable_msix(hdev);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to enable decoder IRQ");
|
|
goto free_event_irq;
|
|
}
|
|
|
|
for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, user_irq_init_cnt = 0;
|
|
user_irq_init_cnt < prop->user_interrupt_count;
|
|
i++, j++, user_irq_init_cnt++) {
|
|
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
irq_handler = hl_irq_handler_user_interrupt;
|
|
|
|
rc = request_irq(irq, irq_handler, 0, gaudi2_irq_name(i), &hdev->user_interrupt[j]);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to request IRQ %d", irq);
|
|
goto free_user_irq;
|
|
}
|
|
}
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_MSIX;
|
|
|
|
return 0;
|
|
|
|
free_user_irq:
|
|
for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count;
|
|
i < GAUDI2_IRQ_NUM_USER_FIRST + user_irq_init_cnt ; i++, j++) {
|
|
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
free_irq(irq, &hdev->user_interrupt[j]);
|
|
}
|
|
|
|
gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);
|
|
|
|
free_event_irq:
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
|
|
free_irq(irq, cq);
|
|
|
|
free_completion_irq:
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
|
|
free_irq(irq, cq);
|
|
|
|
free_irq_vectors:
|
|
pci_free_irq_vectors(hdev->pdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_sync_irqs(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int i, j;
|
|
int irq;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
|
|
return;
|
|
|
|
/* Wait for all pending IRQs to be finished */
|
|
synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION));
|
|
|
|
for (i = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM ; i <= GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM ; i++) {
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
synchronize_irq(irq);
|
|
}
|
|
|
|
for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = 0 ; j < hdev->asic_prop.user_interrupt_count;
|
|
i++, j++) {
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
synchronize_irq(irq);
|
|
}
|
|
|
|
synchronize_irq(pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE));
|
|
}
|
|
|
|
static void gaudi2_disable_msix(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct hl_cq *cq;
|
|
int irq, i, j, k;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_MSIX))
|
|
return;
|
|
|
|
gaudi2_sync_irqs(hdev);
|
|
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_EVENT_QUEUE);
|
|
free_irq(irq, &hdev->event_queue);
|
|
|
|
gaudi2_dec_disable_msix(hdev, GAUDI2_IRQ_NUM_SHARED_DEC1_ABNRM + 1);
|
|
|
|
for (i = GAUDI2_IRQ_NUM_USER_FIRST, j = prop->user_dec_intr_count, k = 0;
|
|
k < hdev->asic_prop.user_interrupt_count ; i++, j++, k++) {
|
|
|
|
irq = pci_irq_vector(hdev->pdev, i);
|
|
free_irq(irq, &hdev->user_interrupt[j]);
|
|
}
|
|
|
|
irq = pci_irq_vector(hdev->pdev, GAUDI2_IRQ_NUM_COMPLETION);
|
|
cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_CS_COMPLETION];
|
|
free_irq(irq, cq);
|
|
|
|
pci_free_irq_vectors(hdev->pdev);
|
|
|
|
gaudi2->hw_cap_initialized &= ~HW_CAP_MSIX;
|
|
}
|
|
|
|
static void gaudi2_stop_dcore_dec(struct hl_device *hdev, int dcore_id)
|
|
{
|
|
u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
|
|
u32 graceful_pend_mask = DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
|
|
u32 timeout_usec, dec_id, dec_bit, offset, graceful;
|
|
int rc;
|
|
|
|
if (hdev->pldm)
|
|
timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
|
|
else
|
|
timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;
|
|
|
|
for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
|
|
dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;
|
|
if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
|
|
continue;
|
|
|
|
offset = dcore_id * DCORE_OFFSET + dec_id * DCORE_VDEC_OFFSET;
|
|
|
|
WREG32(mmDCORE0_DEC0_CMD_SWREG16 + offset, 0);
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);
|
|
|
|
/* Wait till all traffic from decoder stops
|
|
* before apply core reset.
|
|
*/
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
mmDCORE0_VDEC0_BRDG_CTRL_GRACEFUL + offset,
|
|
graceful,
|
|
(graceful & graceful_pend_mask),
|
|
100,
|
|
timeout_usec);
|
|
if (rc)
|
|
dev_err(hdev->dev,
|
|
"Failed to stop traffic from DCORE%d Decoder %d\n",
|
|
dcore_id, dec_id);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_pcie_dec(struct hl_device *hdev)
|
|
{
|
|
u32 reg_val = FIELD_PREP(DCORE0_VDEC0_BRDG_CTRL_GRACEFUL_STOP_MASK, 0x1);
|
|
u32 graceful_pend_mask = PCIE_VDEC0_BRDG_CTRL_GRACEFUL_PEND_MASK;
|
|
u32 timeout_usec, dec_id, dec_bit, offset, graceful;
|
|
int rc;
|
|
|
|
if (hdev->pldm)
|
|
timeout_usec = GAUDI2_PLDM_VDEC_TIMEOUT_USEC;
|
|
else
|
|
timeout_usec = GAUDI2_VDEC_TIMEOUT_USEC;
|
|
|
|
for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
|
|
dec_bit = PCIE_DEC_SHIFT + dec_id;
|
|
if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
|
|
continue;
|
|
|
|
offset = dec_id * PCIE_VDEC_OFFSET;
|
|
|
|
WREG32(mmPCIE_DEC0_CMD_SWREG16 + offset, 0);
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset, reg_val);
|
|
|
|
/* Wait till all traffic from decoder stops
|
|
* before apply core reset.
|
|
*/
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
mmPCIE_VDEC0_BRDG_CTRL_GRACEFUL + offset,
|
|
graceful,
|
|
(graceful & graceful_pend_mask),
|
|
100,
|
|
timeout_usec);
|
|
if (rc)
|
|
dev_err(hdev->dev,
|
|
"Failed to stop traffic from PCIe Decoder %d\n",
|
|
dec_id);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_stop_dec(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int dcore_id;
|
|
|
|
if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == 0)
|
|
return;
|
|
|
|
for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
|
|
gaudi2_stop_dcore_dec(hdev, dcore_id);
|
|
|
|
gaudi2_stop_pcie_dec(hdev);
|
|
}
|
|
|
|
static void gaudi2_set_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
|
|
{
|
|
u32 reg_base, reg_val;
|
|
|
|
reg_base = gaudi2_arc_blocks_bases[cpu_id];
|
|
if (run_mode == HL_ENGINE_CORE_RUN)
|
|
reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 1);
|
|
else
|
|
reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_HALT_REQ_MASK, 1);
|
|
|
|
WREG32(reg_base + ARC_HALT_REQ_OFFSET, reg_val);
|
|
}
|
|
|
|
static void gaudi2_halt_arcs(struct hl_device *hdev)
|
|
{
|
|
u16 arc_id;
|
|
|
|
for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++) {
|
|
if (gaudi2_is_arc_enabled(hdev, arc_id))
|
|
gaudi2_set_arc_running_mode(hdev, arc_id, HL_ENGINE_CORE_HALT);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_verify_arc_running_mode(struct hl_device *hdev, u32 cpu_id, u32 run_mode)
|
|
{
|
|
int rc;
|
|
u32 reg_base, val, ack_mask, timeout_usec = 100000;
|
|
|
|
if (hdev->pldm)
|
|
timeout_usec *= 100;
|
|
|
|
reg_base = gaudi2_arc_blocks_bases[cpu_id];
|
|
if (run_mode == HL_ENGINE_CORE_RUN)
|
|
ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_RUN_ACK_MASK;
|
|
else
|
|
ack_mask = ARC_FARM_ARC0_AUX_RUN_HALT_ACK_HALT_ACK_MASK;
|
|
|
|
rc = hl_poll_timeout(hdev, reg_base + ARC_HALT_ACK_OFFSET,
|
|
val, ((val & ack_mask) == ack_mask),
|
|
1000, timeout_usec);
|
|
|
|
if (!rc) {
|
|
/* Clear */
|
|
val = FIELD_PREP(ARC_FARM_ARC0_AUX_RUN_HALT_REQ_RUN_REQ_MASK, 0);
|
|
WREG32(reg_base + ARC_HALT_REQ_OFFSET, val);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_reset_arcs(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u16 arc_id;
|
|
|
|
if (!gaudi2)
|
|
return;
|
|
|
|
for (arc_id = CPU_ID_SCHED_ARC0; arc_id < CPU_ID_MAX; arc_id++)
|
|
if (gaudi2_is_arc_enabled(hdev, arc_id))
|
|
gaudi2_clr_arc_id_cap(hdev, arc_id);
|
|
}
|
|
|
|
static void gaudi2_nic_qmans_manual_flush(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 queue_id;
|
|
int i;
|
|
|
|
if (!(gaudi2->nic_hw_cap_initialized & HW_CAP_NIC_MASK))
|
|
return;
|
|
|
|
queue_id = GAUDI2_QUEUE_ID_NIC_0_0;
|
|
|
|
for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
if (!(hdev->nic_ports_mask & BIT(i)))
|
|
continue;
|
|
|
|
gaudi2_qman_manual_flush_common(hdev, queue_id);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_set_engine_cores(struct hl_device *hdev, u32 *core_ids,
|
|
u32 num_cores, u32 core_command)
|
|
{
|
|
int i, rc;
|
|
|
|
|
|
for (i = 0 ; i < num_cores ; i++) {
|
|
if (gaudi2_is_arc_enabled(hdev, core_ids[i]))
|
|
gaudi2_set_arc_running_mode(hdev, core_ids[i], core_command);
|
|
}
|
|
|
|
for (i = 0 ; i < num_cores ; i++) {
|
|
if (gaudi2_is_arc_enabled(hdev, core_ids[i])) {
|
|
rc = gaudi2_verify_arc_running_mode(hdev, core_ids[i], core_command);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to %s arc: %d\n",
|
|
(core_command == HL_ENGINE_CORE_HALT) ?
|
|
"HALT" : "RUN", core_ids[i]);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_halt_engines(struct hl_device *hdev, bool hard_reset, bool fw_reset)
|
|
{
|
|
u32 wait_timeout_ms;
|
|
|
|
if (hdev->pldm)
|
|
wait_timeout_ms = GAUDI2_PLDM_RESET_WAIT_MSEC;
|
|
else
|
|
wait_timeout_ms = GAUDI2_RESET_WAIT_MSEC;
|
|
|
|
if (fw_reset)
|
|
goto skip_engines;
|
|
|
|
gaudi2_stop_dma_qmans(hdev);
|
|
gaudi2_stop_mme_qmans(hdev);
|
|
gaudi2_stop_tpc_qmans(hdev);
|
|
gaudi2_stop_rot_qmans(hdev);
|
|
gaudi2_stop_nic_qmans(hdev);
|
|
msleep(wait_timeout_ms);
|
|
|
|
gaudi2_halt_arcs(hdev);
|
|
gaudi2_dma_stall(hdev);
|
|
gaudi2_mme_stall(hdev);
|
|
gaudi2_tpc_stall(hdev);
|
|
gaudi2_rotator_stall(hdev);
|
|
|
|
msleep(wait_timeout_ms);
|
|
|
|
gaudi2_stop_dec(hdev);
|
|
|
|
/*
|
|
* in case of soft reset do a manual flush for QMANs (currently called
|
|
* only for NIC QMANs
|
|
*/
|
|
if (!hard_reset)
|
|
gaudi2_nic_qmans_manual_flush(hdev);
|
|
|
|
gaudi2_disable_dma_qmans(hdev);
|
|
gaudi2_disable_mme_qmans(hdev);
|
|
gaudi2_disable_tpc_qmans(hdev);
|
|
gaudi2_disable_rot_qmans(hdev);
|
|
gaudi2_disable_nic_qmans(hdev);
|
|
gaudi2_disable_timestamp(hdev);
|
|
|
|
skip_engines:
|
|
if (hard_reset) {
|
|
gaudi2_disable_msix(hdev);
|
|
return;
|
|
}
|
|
|
|
gaudi2_sync_irqs(hdev);
|
|
}
|
|
|
|
static void gaudi2_init_firmware_preload_params(struct hl_device *hdev)
|
|
{
|
|
struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
|
|
|
|
pre_fw_load->cpu_boot_status_reg = mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS;
|
|
pre_fw_load->sts_boot_dev_sts0_reg = mmCPU_BOOT_DEV_STS0;
|
|
pre_fw_load->sts_boot_dev_sts1_reg = mmCPU_BOOT_DEV_STS1;
|
|
pre_fw_load->boot_err0_reg = mmCPU_BOOT_ERR0;
|
|
pre_fw_load->boot_err1_reg = mmCPU_BOOT_ERR1;
|
|
pre_fw_load->wait_for_preboot_timeout = GAUDI2_PREBOOT_REQ_TIMEOUT_USEC;
|
|
}
|
|
|
|
static void gaudi2_init_firmware_loader(struct hl_device *hdev)
|
|
{
|
|
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
|
|
struct dynamic_fw_load_mgr *dynamic_loader;
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
|
|
/* fill common fields */
|
|
fw_loader->fw_comp_loaded = FW_TYPE_NONE;
|
|
fw_loader->boot_fit_img.image_name = GAUDI2_BOOT_FIT_FILE;
|
|
fw_loader->linux_img.image_name = GAUDI2_LINUX_FW_FILE;
|
|
fw_loader->boot_fit_timeout = GAUDI2_BOOT_FIT_REQ_TIMEOUT_USEC;
|
|
fw_loader->skip_bmc = false;
|
|
fw_loader->sram_bar_id = SRAM_CFG_BAR_ID;
|
|
fw_loader->dram_bar_id = DRAM_BAR_ID;
|
|
|
|
if (hdev->asic_type == ASIC_GAUDI2 || hdev->asic_type == ASIC_GAUDI2_SEC)
|
|
fw_loader->cpu_timeout = GAUDI2_CPU_TIMEOUT_USEC;
|
|
else /* ASIC_GAUDI2_FPGA */
|
|
fw_loader->cpu_timeout = GAUDI2_FPGA_CPU_TIMEOUT;
|
|
|
|
/* here we update initial values for few specific dynamic regs (as
|
|
* before reading the first descriptor from FW those value has to be
|
|
* hard-coded). in later stages of the protocol those values will be
|
|
* updated automatically by reading the FW descriptor so data there
|
|
* will always be up-to-date
|
|
*/
|
|
dynamic_loader = &hdev->fw_loader.dynamic_loader;
|
|
dyn_regs = &dynamic_loader->comm_desc.cpu_dyn_regs;
|
|
dyn_regs->kmd_msg_to_cpu = cpu_to_le32(mmPSOC_GLOBAL_CONF_KMD_MSG_TO_CPU);
|
|
dyn_regs->cpu_cmd_status_to_host = cpu_to_le32(mmCPU_CMD_STATUS_TO_HOST);
|
|
dynamic_loader->wait_for_bl_timeout = GAUDI2_WAIT_FOR_BL_TIMEOUT_USEC;
|
|
}
|
|
|
|
static int gaudi2_init_cpu(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int rc;
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
|
|
return 0;
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_CPU)
|
|
return 0;
|
|
|
|
rc = hl_fw_init_cpu(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_CPU;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_init_cpu_queues(struct hl_device *hdev, u32 cpu_timeout)
|
|
{
|
|
struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
struct hl_eq *eq;
|
|
u32 status;
|
|
int err;
|
|
|
|
if (!hdev->cpu_queues_enable)
|
|
return 0;
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
|
|
return 0;
|
|
|
|
eq = &hdev->event_queue;
|
|
|
|
dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
WREG32(mmCPU_IF_PQ_BASE_ADDR_LOW, lower_32_bits(cpu_pq->bus_address));
|
|
WREG32(mmCPU_IF_PQ_BASE_ADDR_HIGH, upper_32_bits(cpu_pq->bus_address));
|
|
|
|
WREG32(mmCPU_IF_EQ_BASE_ADDR_LOW, lower_32_bits(eq->bus_address));
|
|
WREG32(mmCPU_IF_EQ_BASE_ADDR_HIGH, upper_32_bits(eq->bus_address));
|
|
|
|
WREG32(mmCPU_IF_CQ_BASE_ADDR_LOW, lower_32_bits(hdev->cpu_accessible_dma_address));
|
|
WREG32(mmCPU_IF_CQ_BASE_ADDR_HIGH, upper_32_bits(hdev->cpu_accessible_dma_address));
|
|
|
|
WREG32(mmCPU_IF_PQ_LENGTH, HL_QUEUE_SIZE_IN_BYTES);
|
|
WREG32(mmCPU_IF_EQ_LENGTH, HL_EQ_SIZE_IN_BYTES);
|
|
WREG32(mmCPU_IF_CQ_LENGTH, HL_CPU_ACCESSIBLE_MEM_SIZE);
|
|
|
|
/* Used for EQ CI */
|
|
WREG32(mmCPU_IF_EQ_RD_OFFS, 0);
|
|
|
|
WREG32(mmCPU_IF_PF_PQ_PI, 0);
|
|
|
|
WREG32(mmCPU_IF_QUEUE_INIT, PQ_INIT_STATUS_READY_FOR_CP);
|
|
|
|
/* Let the ARC know we are ready as it is now handling those queues */
|
|
|
|
WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
|
|
gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);
|
|
|
|
err = hl_poll_timeout(
|
|
hdev,
|
|
mmCPU_IF_QUEUE_INIT,
|
|
status,
|
|
(status == PQ_INIT_STATUS_READY_FOR_HOST),
|
|
1000,
|
|
cpu_timeout);
|
|
|
|
if (err) {
|
|
dev_err(hdev->dev, "Failed to communicate with device CPU (timeout)\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* update FW application security bits */
|
|
if (prop->fw_cpu_boot_dev_sts0_valid)
|
|
prop->fw_app_cpu_boot_dev_sts0 = RREG32(mmCPU_BOOT_DEV_STS0);
|
|
|
|
if (prop->fw_cpu_boot_dev_sts1_valid)
|
|
prop->fw_app_cpu_boot_dev_sts1 = RREG32(mmCPU_BOOT_DEV_STS1);
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_CPU_Q;
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_init_qman_pq(struct hl_device *hdev, u32 reg_base,
|
|
u32 queue_id_base)
|
|
{
|
|
struct hl_hw_queue *q;
|
|
u32 pq_id, pq_offset;
|
|
|
|
for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
|
|
q = &hdev->kernel_queues[queue_id_base + pq_id];
|
|
pq_offset = pq_id * 4;
|
|
|
|
WREG32(reg_base + QM_PQ_BASE_LO_0_OFFSET + pq_offset,
|
|
lower_32_bits(q->bus_address));
|
|
WREG32(reg_base + QM_PQ_BASE_HI_0_OFFSET + pq_offset,
|
|
upper_32_bits(q->bus_address));
|
|
WREG32(reg_base + QM_PQ_SIZE_0_OFFSET + pq_offset, ilog2(HL_QUEUE_LENGTH));
|
|
WREG32(reg_base + QM_PQ_PI_0_OFFSET + pq_offset, 0);
|
|
WREG32(reg_base + QM_PQ_CI_0_OFFSET + pq_offset, 0);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_qman_cp(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
u32 cp_id, cp_offset, mtr_base_lo, mtr_base_hi, so_base_lo, so_base_hi;
|
|
|
|
mtr_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
|
|
mtr_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
|
|
so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
|
|
so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
|
|
|
|
for (cp_id = 0 ; cp_id < NUM_OF_CP_PER_QMAN; cp_id++) {
|
|
cp_offset = cp_id * 4;
|
|
|
|
WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_LO_0_OFFSET + cp_offset, mtr_base_lo);
|
|
WREG32(reg_base + QM_CP_MSG_BASE0_ADDR_HI_0_OFFSET + cp_offset, mtr_base_hi);
|
|
WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_LO_0_OFFSET + cp_offset, so_base_lo);
|
|
WREG32(reg_base + QM_CP_MSG_BASE1_ADDR_HI_0_OFFSET + cp_offset, so_base_hi);
|
|
}
|
|
|
|
/* allow QMANs to accept work from ARC CQF */
|
|
WREG32(reg_base + QM_CP_CFG_OFFSET, FIELD_PREP(PDMA0_QM_CP_CFG_SWITCH_EN_MASK, 0x1));
|
|
}
|
|
|
|
static void gaudi2_init_qman_pqc(struct hl_device *hdev, u32 reg_base,
|
|
u32 queue_id_base)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 pq_id, pq_offset, so_base_lo, so_base_hi;
|
|
|
|
so_base_lo = lower_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
|
|
so_base_hi = upper_32_bits(CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0);
|
|
|
|
for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++) {
|
|
pq_offset = pq_id * 4;
|
|
|
|
/* Configure QMAN HBW to scratchpad as it is not needed */
|
|
WREG32(reg_base + QM_PQC_HBW_BASE_LO_0_OFFSET + pq_offset,
|
|
lower_32_bits(gaudi2->scratchpad_bus_address));
|
|
WREG32(reg_base + QM_PQC_HBW_BASE_HI_0_OFFSET + pq_offset,
|
|
upper_32_bits(gaudi2->scratchpad_bus_address));
|
|
WREG32(reg_base + QM_PQC_SIZE_0_OFFSET + pq_offset,
|
|
ilog2(PAGE_SIZE / sizeof(struct hl_cq_entry)));
|
|
|
|
WREG32(reg_base + QM_PQC_PI_0_OFFSET + pq_offset, 0);
|
|
WREG32(reg_base + QM_PQC_LBW_WDATA_0_OFFSET + pq_offset, QM_PQC_LBW_WDATA);
|
|
WREG32(reg_base + QM_PQC_LBW_BASE_LO_0_OFFSET + pq_offset, so_base_lo);
|
|
WREG32(reg_base + QM_PQC_LBW_BASE_HI_0_OFFSET + pq_offset, so_base_hi);
|
|
}
|
|
|
|
/* Enable QMAN H/W completion */
|
|
WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
|
|
}
|
|
|
|
static u32 gaudi2_get_dyn_sp_reg(struct hl_device *hdev, u32 queue_id_base)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
u32 sp_reg_addr;
|
|
|
|
switch (queue_id_base) {
|
|
case GAUDI2_QUEUE_ID_PDMA_0_0...GAUDI2_QUEUE_ID_PDMA_1_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
|
|
sp_reg_addr = le32_to_cpu(dyn_regs->gic_dma_qm_irq_ctrl);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE0_MME_0_0...GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE1_MME_0_0...GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE2_MME_0_0...GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE3_MME_0_0...GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
|
|
sp_reg_addr = le32_to_cpu(dyn_regs->gic_mme_qm_irq_ctrl);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
|
|
fallthrough;
|
|
case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
|
|
sp_reg_addr = le32_to_cpu(dyn_regs->gic_tpc_qm_irq_ctrl);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_ROT_0_0...GAUDI2_QUEUE_ID_ROT_1_3:
|
|
sp_reg_addr = le32_to_cpu(dyn_regs->gic_rot_qm_irq_ctrl);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_NIC_0_0...GAUDI2_QUEUE_ID_NIC_23_3:
|
|
sp_reg_addr = le32_to_cpu(dyn_regs->gic_nic_qm_irq_ctrl);
|
|
break;
|
|
default:
|
|
dev_err(hdev->dev, "Unexpected h/w queue %d\n", queue_id_base);
|
|
return 0;
|
|
}
|
|
|
|
return sp_reg_addr;
|
|
}
|
|
|
|
static void gaudi2_init_qman_common(struct hl_device *hdev, u32 reg_base,
|
|
u32 queue_id_base)
|
|
{
|
|
u32 glbl_prot = QMAN_MAKE_TRUSTED, irq_handler_offset;
|
|
int map_table_entry;
|
|
|
|
WREG32(reg_base + QM_GLBL_PROT_OFFSET, glbl_prot);
|
|
|
|
irq_handler_offset = gaudi2_get_dyn_sp_reg(hdev, queue_id_base);
|
|
WREG32(reg_base + QM_GLBL_ERR_ADDR_LO_OFFSET, lower_32_bits(CFG_BASE + irq_handler_offset));
|
|
WREG32(reg_base + QM_GLBL_ERR_ADDR_HI_OFFSET, upper_32_bits(CFG_BASE + irq_handler_offset));
|
|
|
|
map_table_entry = gaudi2_qman_async_event_id[queue_id_base];
|
|
WREG32(reg_base + QM_GLBL_ERR_WDATA_OFFSET,
|
|
gaudi2_irq_map_table[map_table_entry].cpu_id);
|
|
|
|
WREG32(reg_base + QM_ARB_ERR_MSG_EN_OFFSET, QM_ARB_ERR_MSG_EN_MASK);
|
|
|
|
WREG32(reg_base + QM_ARB_SLV_CHOISE_WDT_OFFSET, GAUDI2_ARB_WDT_TIMEOUT);
|
|
WREG32(reg_base + QM_GLBL_CFG1_OFFSET, 0);
|
|
WREG32(reg_base + QM_GLBL_CFG2_OFFSET, 0);
|
|
|
|
/* Enable the QMAN channel.
|
|
* PDMA QMAN configuration is different, as we do not allow user to
|
|
* access some of the CPs.
|
|
* PDMA0: CP2/3 are reserved for the ARC usage.
|
|
* PDMA1: CP1/2/3 are reserved for the ARC usage.
|
|
*/
|
|
if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0])
|
|
WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA1_QMAN_ENABLE);
|
|
else if (reg_base == gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0])
|
|
WREG32(reg_base + QM_GLBL_CFG0_OFFSET, PDMA0_QMAN_ENABLE);
|
|
else
|
|
WREG32(reg_base + QM_GLBL_CFG0_OFFSET, QMAN_ENABLE);
|
|
}
|
|
|
|
static void gaudi2_init_qman(struct hl_device *hdev, u32 reg_base,
|
|
u32 queue_id_base)
|
|
{
|
|
u32 pq_id;
|
|
|
|
for (pq_id = 0 ; pq_id < NUM_OF_PQ_PER_QMAN ; pq_id++)
|
|
hdev->kernel_queues[queue_id_base + pq_id].cq_id = GAUDI2_RESERVED_CQ_CS_COMPLETION;
|
|
|
|
gaudi2_init_qman_pq(hdev, reg_base, queue_id_base);
|
|
gaudi2_init_qman_cp(hdev, reg_base);
|
|
gaudi2_init_qman_pqc(hdev, reg_base, queue_id_base);
|
|
gaudi2_init_qman_common(hdev, reg_base, queue_id_base);
|
|
}
|
|
|
|
static void gaudi2_init_dma_core(struct hl_device *hdev, u32 reg_base,
|
|
u32 dma_core_id, bool is_secure)
|
|
{
|
|
u32 prot, irq_handler_offset;
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
int map_table_entry;
|
|
|
|
prot = 1 << ARC_FARM_KDMA_PROT_ERR_VAL_SHIFT;
|
|
if (is_secure)
|
|
prot |= 1 << ARC_FARM_KDMA_PROT_VAL_SHIFT;
|
|
|
|
WREG32(reg_base + DMA_CORE_PROT_OFFSET, prot);
|
|
|
|
dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
irq_handler_offset = le32_to_cpu(dyn_regs->gic_dma_core_irq_ctrl);
|
|
|
|
WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_LO_OFFSET,
|
|
lower_32_bits(CFG_BASE + irq_handler_offset));
|
|
|
|
WREG32(reg_base + DMA_CORE_ERRMSG_ADDR_HI_OFFSET,
|
|
upper_32_bits(CFG_BASE + irq_handler_offset));
|
|
|
|
map_table_entry = gaudi2_dma_core_async_event_id[dma_core_id];
|
|
WREG32(reg_base + DMA_CORE_ERRMSG_WDATA_OFFSET,
|
|
gaudi2_irq_map_table[map_table_entry].cpu_id);
|
|
|
|
/* Enable the DMA channel */
|
|
WREG32(reg_base + DMA_CORE_CFG_0_OFFSET, 1 << ARC_FARM_KDMA_CFG_0_EN_SHIFT);
|
|
}
|
|
|
|
static void gaudi2_init_kdma(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
|
|
if ((gaudi2->hw_cap_initialized & HW_CAP_KDMA) == HW_CAP_KDMA)
|
|
return;
|
|
|
|
reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_KDMA];
|
|
|
|
gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_KDMA, true);
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_KDMA;
|
|
}
|
|
|
|
static void gaudi2_init_pdma(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_base;
|
|
|
|
if ((gaudi2->hw_cap_initialized & HW_CAP_PDMA_MASK) == HW_CAP_PDMA_MASK)
|
|
return;
|
|
|
|
reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA0];
|
|
gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA0, false);
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_0_0];
|
|
gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_0_0);
|
|
|
|
reg_base = gaudi2_dma_core_blocks_bases[DMA_CORE_ID_PDMA1];
|
|
gaudi2_init_dma_core(hdev, reg_base, DMA_CORE_ID_PDMA1, false);
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[GAUDI2_QUEUE_ID_PDMA_1_0];
|
|
gaudi2_init_qman(hdev, reg_base, GAUDI2_QUEUE_ID_PDMA_1_0);
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_PDMA_MASK;
|
|
}
|
|
|
|
static void gaudi2_init_edma_instance(struct hl_device *hdev, u8 seq)
|
|
{
|
|
u32 reg_base, base_edma_core_id, base_edma_qman_id;
|
|
|
|
base_edma_core_id = DMA_CORE_ID_EDMA0 + seq;
|
|
base_edma_qman_id = edma_stream_base[seq];
|
|
|
|
reg_base = gaudi2_dma_core_blocks_bases[base_edma_core_id];
|
|
gaudi2_init_dma_core(hdev, reg_base, base_edma_core_id, false);
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[base_edma_qman_id];
|
|
gaudi2_init_qman(hdev, reg_base, base_edma_qman_id);
|
|
}
|
|
|
|
static void gaudi2_init_edma(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int dcore, inst;
|
|
|
|
if ((gaudi2->hw_cap_initialized & HW_CAP_EDMA_MASK) == HW_CAP_EDMA_MASK)
|
|
return;
|
|
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (inst = 0 ; inst < NUM_OF_EDMA_PER_DCORE ; inst++) {
|
|
u8 seq = dcore * NUM_OF_EDMA_PER_DCORE + inst;
|
|
|
|
if (!(prop->edma_enabled_mask & BIT(seq)))
|
|
continue;
|
|
|
|
gaudi2_init_edma_instance(hdev, seq);
|
|
|
|
gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_EDMA_SHIFT + seq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* gaudi2_arm_monitors_for_virt_msix_db() - Arm monitors for writing to the virtual MSI-X doorbell.
|
|
* @hdev: pointer to habanalabs device structure.
|
|
* @sob_id: sync object ID.
|
|
* @first_mon_id: ID of first monitor out of 3 consecutive monitors.
|
|
* @interrupt_id: interrupt ID.
|
|
*
|
|
* Some initiators cannot have HBW address in their completion address registers, and thus cannot
|
|
* write directly to the HBW host memory of the virtual MSI-X doorbell.
|
|
* Instead, they are configured to LBW write to a sync object, and a monitor will do the HBW write.
|
|
*
|
|
* The mechanism in the sync manager block is composed of a master monitor with 3 messages.
|
|
* In addition to the HBW write, the other 2 messages are for preparing the monitor to next
|
|
* completion, by decrementing the sync object value and re-arming the monitor.
|
|
*/
|
|
static void gaudi2_arm_monitors_for_virt_msix_db(struct hl_device *hdev, u32 sob_id,
|
|
u32 first_mon_id, u32 interrupt_id)
|
|
{
|
|
u32 sob_offset, first_mon_offset, mon_offset, payload, sob_group, mode, arm, config;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 addr;
|
|
u8 mask;
|
|
|
|
/* Reset the SOB value */
|
|
sob_offset = sob_id * sizeof(u32);
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);
|
|
|
|
/* Configure 3 monitors:
|
|
* 1. Write interrupt ID to the virtual MSI-X doorbell (master monitor)
|
|
* 2. Decrement SOB value by 1.
|
|
* 3. Re-arm the master monitor.
|
|
*/
|
|
|
|
first_mon_offset = first_mon_id * sizeof(u32);
|
|
|
|
/* 2nd monitor: Decrement SOB value by 1 */
|
|
mon_offset = first_mon_offset + sizeof(u32);
|
|
|
|
addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
|
|
|
|
payload = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 0x7FFF) | /* "-1" */
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_SIGN_MASK, 1) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1);
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
|
|
|
|
/* 3rd monitor: Re-arm the master monitor */
|
|
mon_offset = first_mon_offset + 2 * sizeof(u32);
|
|
|
|
addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + first_mon_offset;
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
|
|
|
|
sob_group = sob_id / 8;
|
|
mask = ~BIT(sob_id & 0x7);
|
|
mode = 0; /* comparison mode is "greater than or equal to" */
|
|
arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sob_group) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, 1);
|
|
|
|
payload = arm;
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
|
|
|
|
/* 1st monitor (master): Write interrupt ID to the virtual MSI-X doorbell */
|
|
mon_offset = first_mon_offset;
|
|
|
|
config = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_WR_NUM_MASK, 2); /* "2": 3 writes */
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + mon_offset, config);
|
|
|
|
addr = gaudi2->virt_msix_db_dma_addr;
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, lower_32_bits(addr));
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + mon_offset, upper_32_bits(addr));
|
|
|
|
payload = interrupt_id;
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, payload);
|
|
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, arm);
|
|
}
|
|
|
|
static void gaudi2_prepare_sm_for_virt_msix_db(struct hl_device *hdev)
|
|
{
|
|
u32 decoder_id, sob_id, first_mon_id, interrupt_id;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
/* Decoder normal/abnormal interrupts */
|
|
for (decoder_id = 0 ; decoder_id < NUMBER_OF_DEC ; ++decoder_id) {
|
|
if (!(prop->decoder_enabled_mask & BIT(decoder_id)))
|
|
continue;
|
|
|
|
sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
|
|
first_mon_id = GAUDI2_RESERVED_MON_DEC_NRM_FIRST + 3 * decoder_id;
|
|
interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id;
|
|
gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);
|
|
|
|
sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
|
|
first_mon_id = GAUDI2_RESERVED_MON_DEC_ABNRM_FIRST + 3 * decoder_id;
|
|
interrupt_id += 1;
|
|
gaudi2_arm_monitors_for_virt_msix_db(hdev, sob_id, first_mon_id, interrupt_id);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_sm(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 cq_address;
|
|
u32 reg_val;
|
|
int i;
|
|
|
|
/* Enable HBW/LBW CQ for completion monitors */
|
|
reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
|
|
reg_val |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_LBW_EN_MASK, 1);
|
|
|
|
for (i = 0 ; i < GAUDI2_MAX_PENDING_CS ; i++)
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);
|
|
|
|
/* Enable only HBW CQ for KDMA completion monitor */
|
|
reg_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_CONFIG_CQ_EN_MASK, 1);
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + (4 * i), reg_val);
|
|
|
|
/* Init CQ0 DB */
|
|
/* Configure the monitor to trigger MSI-X interrupt */
|
|
/* TODO:
|
|
* Remove the if statement when virtual MSI-X doorbell is supported in simulator (SW-93022)
|
|
* and in F/W (SW-93024).
|
|
*/
|
|
if (!hdev->pdev || hdev->asic_prop.fw_security_enabled) {
|
|
u64 msix_db_reg = CFG_BASE + mmPCIE_DBI_MSIX_DOORBELL_OFF;
|
|
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0, lower_32_bits(msix_db_reg));
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0, upper_32_bits(msix_db_reg));
|
|
} else {
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0,
|
|
lower_32_bits(gaudi2->virt_msix_db_dma_addr));
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0,
|
|
upper_32_bits(gaudi2->virt_msix_db_dma_addr));
|
|
}
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0, GAUDI2_IRQ_NUM_COMPLETION);
|
|
|
|
for (i = 0 ; i < GAUDI2_RESERVED_CQ_NUMBER ; i++) {
|
|
cq_address =
|
|
hdev->completion_queue[i].bus_address;
|
|
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + (4 * i),
|
|
lower_32_bits(cq_address));
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + (4 * i),
|
|
upper_32_bits(cq_address));
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + (4 * i),
|
|
ilog2(HL_CQ_SIZE_IN_BYTES));
|
|
}
|
|
|
|
/* Configure kernel ASID and MMU BP*/
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_SEC, 0x10000);
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV, 0);
|
|
|
|
/* Initialize sync objects and monitors which are used for the virtual MSI-X doorbell */
|
|
gaudi2_prepare_sm_for_virt_msix_db(hdev);
|
|
}
|
|
|
|
static void gaudi2_init_mme_acc(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 reg_val;
|
|
int i;
|
|
|
|
reg_val = FIELD_PREP(MME_ACC_INTR_MASK_WBC_ERR_RESP_MASK, 0);
|
|
reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_POS_INF_MASK, 1);
|
|
reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NEG_INF_MASK, 1);
|
|
reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_SRC_NAN_MASK, 1);
|
|
reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_POS_INF_MASK, 1);
|
|
reg_val |= FIELD_PREP(MME_ACC_INTR_MASK_AP_RESULT_NEG_INF_MASK, 1);
|
|
|
|
WREG32(reg_base + MME_ACC_INTR_MASK_OFFSET, reg_val);
|
|
WREG32(reg_base + MME_ACC_AP_LFSR_POLY_OFFSET, 0x80DEADAF);
|
|
|
|
for (i = 0 ; i < MME_NUM_OF_LFSR_SEEDS ; i++) {
|
|
WREG32(reg_base + MME_ACC_AP_LFSR_SEED_SEL_OFFSET, i);
|
|
WREG32(reg_base + MME_ACC_AP_LFSR_SEED_WDATA_OFFSET, gaudi2->lfsr_rand_seeds[i]);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_dcore_mme(struct hl_device *hdev, int dcore_id,
|
|
bool config_qman_only)
|
|
{
|
|
u32 queue_id_base, reg_base, clk_en_addr = 0;
|
|
|
|
switch (dcore_id) {
|
|
case 0:
|
|
queue_id_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
|
|
break;
|
|
case 1:
|
|
queue_id_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
|
|
clk_en_addr = mmDCORE1_MME_CTRL_LO_QM_SLV_CLK_EN;
|
|
break;
|
|
case 2:
|
|
queue_id_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
|
|
break;
|
|
case 3:
|
|
queue_id_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
|
|
clk_en_addr = mmDCORE3_MME_CTRL_LO_QM_SLV_CLK_EN;
|
|
break;
|
|
default:
|
|
dev_err(hdev->dev, "Invalid dcore id %u\n", dcore_id);
|
|
return;
|
|
}
|
|
|
|
if (clk_en_addr && !(hdev->fw_components & FW_TYPE_BOOT_CPU))
|
|
WREG32(clk_en_addr, 0x1);
|
|
|
|
if (!config_qman_only) {
|
|
reg_base = gaudi2_mme_acc_blocks_bases[dcore_id];
|
|
gaudi2_init_mme_acc(hdev, reg_base);
|
|
}
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[queue_id_base];
|
|
gaudi2_init_qman(hdev, reg_base, queue_id_base);
|
|
}
|
|
|
|
static void gaudi2_init_mme(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int i;
|
|
|
|
if ((gaudi2->hw_cap_initialized & HW_CAP_MME_MASK) == HW_CAP_MME_MASK)
|
|
return;
|
|
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++) {
|
|
gaudi2_init_dcore_mme(hdev, i, false);
|
|
|
|
gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_MME_SHIFT + i);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_tpc_cfg(struct hl_device *hdev, u32 reg_base)
|
|
{
|
|
/* Mask arithmetic and QM interrupts in TPC */
|
|
WREG32(reg_base + TPC_CFG_TPC_INTR_MASK_OFFSET, 0x23FFFE);
|
|
|
|
/* Set 16 cache lines */
|
|
WREG32(reg_base + TPC_CFG_MSS_CONFIG_OFFSET,
|
|
2 << DCORE0_TPC0_CFG_MSS_CONFIG_ICACHE_FETCH_LINE_NUM_SHIFT);
|
|
}
|
|
|
|
struct gaudi2_tpc_init_cfg_data {
|
|
enum gaudi2_queue_id dcore_tpc_qid_base[NUM_OF_DCORES];
|
|
};
|
|
|
|
static void gaudi2_init_tpc_config(struct hl_device *hdev, int dcore, int inst,
|
|
u32 offset, struct iterate_module_ctx *ctx)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct gaudi2_tpc_init_cfg_data *cfg_data = ctx->data;
|
|
u32 queue_id_base;
|
|
u8 seq;
|
|
|
|
queue_id_base = cfg_data->dcore_tpc_qid_base[dcore] + (inst * NUM_OF_PQ_PER_QMAN);
|
|
|
|
if (dcore == 0 && inst == (NUM_DCORE0_TPC - 1))
|
|
/* gets last sequence number */
|
|
seq = NUM_OF_DCORES * NUM_OF_TPC_PER_DCORE;
|
|
else
|
|
seq = dcore * NUM_OF_TPC_PER_DCORE + inst;
|
|
|
|
gaudi2_init_tpc_cfg(hdev, mmDCORE0_TPC0_CFG_BASE + offset);
|
|
gaudi2_init_qman(hdev, mmDCORE0_TPC0_QM_BASE + offset, queue_id_base);
|
|
|
|
gaudi2->tpc_hw_cap_initialized |= BIT_ULL(HW_CAP_TPC_SHIFT + seq);
|
|
}
|
|
|
|
static void gaudi2_init_tpc(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct gaudi2_tpc_init_cfg_data init_cfg_data;
|
|
struct iterate_module_ctx tpc_iter;
|
|
|
|
if (!hdev->asic_prop.tpc_enabled_mask)
|
|
return;
|
|
|
|
if ((gaudi2->tpc_hw_cap_initialized & HW_CAP_TPC_MASK) == HW_CAP_TPC_MASK)
|
|
return;
|
|
|
|
init_cfg_data.dcore_tpc_qid_base[0] = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0;
|
|
init_cfg_data.dcore_tpc_qid_base[1] = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0;
|
|
init_cfg_data.dcore_tpc_qid_base[2] = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0;
|
|
init_cfg_data.dcore_tpc_qid_base[3] = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0;
|
|
tpc_iter.fn = &gaudi2_init_tpc_config;
|
|
tpc_iter.data = &init_cfg_data;
|
|
gaudi2_iterate_tpcs(hdev, &tpc_iter);
|
|
}
|
|
|
|
static void gaudi2_init_rotator(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 i, reg_base, queue_id;
|
|
|
|
queue_id = GAUDI2_QUEUE_ID_ROT_0_0;
|
|
|
|
for (i = 0 ; i < NUM_OF_ROT ; i++, queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
reg_base = gaudi2_qm_blocks_bases[queue_id];
|
|
gaudi2_init_qman(hdev, reg_base, queue_id);
|
|
|
|
gaudi2->hw_cap_initialized |= BIT_ULL(HW_CAP_ROT_SHIFT + i);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_vdec_brdg_ctrl(struct hl_device *hdev, u64 base_addr, u32 decoder_id)
|
|
{
|
|
u32 sob_id;
|
|
|
|
/* TODO:
|
|
* Remove when virtual MSI-X doorbell is supported in simulator (SW-93022) and in F/W
|
|
* (SW-93024).
|
|
*/
|
|
if (!hdev->pdev || hdev->asic_prop.fw_security_enabled) {
|
|
u32 interrupt_id = GAUDI2_IRQ_NUM_DCORE0_DEC0_NRM + 2 * decoder_id;
|
|
|
|
WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR, mmPCIE_DBI_MSIX_DOORBELL_OFF);
|
|
WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, interrupt_id);
|
|
WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR, mmPCIE_DBI_MSIX_DOORBELL_OFF);
|
|
WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, interrupt_id + 1);
|
|
return;
|
|
}
|
|
|
|
/* VCMD normal interrupt */
|
|
sob_id = GAUDI2_RESERVED_SOB_DEC_NRM_FIRST + decoder_id;
|
|
WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_AWADDR,
|
|
mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
|
|
WREG32(base_addr + BRDG_CTRL_NRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);
|
|
|
|
/* VCMD abnormal interrupt */
|
|
sob_id = GAUDI2_RESERVED_SOB_DEC_ABNRM_FIRST + decoder_id;
|
|
WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_AWADDR,
|
|
mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_id * sizeof(u32));
|
|
WREG32(base_addr + BRDG_CTRL_ABNRM_MSIX_LBW_WDATA, GAUDI2_SOB_INCREMENT_BY_ONE);
|
|
}
|
|
|
|
static void gaudi2_init_dec(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 dcore_id, dec_id, dec_bit;
|
|
u64 base_addr;
|
|
|
|
if (!hdev->asic_prop.decoder_enabled_mask)
|
|
return;
|
|
|
|
if ((gaudi2->dec_hw_cap_initialized & HW_CAP_DEC_MASK) == HW_CAP_DEC_MASK)
|
|
return;
|
|
|
|
for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
|
|
for (dec_id = 0 ; dec_id < NUM_OF_DEC_PER_DCORE ; dec_id++) {
|
|
dec_bit = dcore_id * NUM_OF_DEC_PER_DCORE + dec_id;
|
|
|
|
if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
|
|
continue;
|
|
|
|
base_addr = mmDCORE0_DEC0_CMD_BASE +
|
|
BRDG_CTRL_BLOCK_OFFSET +
|
|
dcore_id * DCORE_OFFSET +
|
|
dec_id * DCORE_VDEC_OFFSET;
|
|
|
|
gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
|
|
|
|
gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
|
|
}
|
|
|
|
for (dec_id = 0 ; dec_id < NUM_OF_PCIE_VDEC ; dec_id++) {
|
|
dec_bit = PCIE_DEC_SHIFT + dec_id;
|
|
if (!(hdev->asic_prop.decoder_enabled_mask & BIT(dec_bit)))
|
|
continue;
|
|
|
|
base_addr = mmPCIE_DEC0_CMD_BASE + BRDG_CTRL_BLOCK_OFFSET +
|
|
dec_id * DCORE_VDEC_OFFSET;
|
|
|
|
gaudi2_init_vdec_brdg_ctrl(hdev, base_addr, dec_bit);
|
|
|
|
gaudi2->dec_hw_cap_initialized |= BIT_ULL(HW_CAP_DEC_SHIFT + dec_bit);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_msix_gw_table(struct hl_device *hdev)
|
|
{
|
|
u32 first_reg_offset, last_reg_offset, msix_gw_table_base;
|
|
u8 first_bit, last_bit;
|
|
int i;
|
|
|
|
msix_gw_table_base = mmPCIE_WRAP_MSIX_GW_TABLE_0;
|
|
first_reg_offset = (GAUDI2_IRQ_NUM_USER_FIRST >> 5) << 2;
|
|
first_bit = GAUDI2_IRQ_NUM_USER_FIRST % 32;
|
|
last_reg_offset = (GAUDI2_IRQ_NUM_USER_LAST >> 5) << 2;
|
|
last_bit = GAUDI2_IRQ_NUM_USER_LAST % 32;
|
|
|
|
if (first_reg_offset == last_reg_offset) {
|
|
WREG32(msix_gw_table_base + first_reg_offset, GENMASK(last_bit, first_bit));
|
|
return;
|
|
}
|
|
|
|
WREG32(msix_gw_table_base + first_reg_offset, GENMASK(31, first_bit));
|
|
WREG32(msix_gw_table_base + last_reg_offset, GENMASK(last_bit, 0));
|
|
|
|
for (i = first_reg_offset + 4; i < last_reg_offset ; i += 4)
|
|
WREG32(msix_gw_table_base + i, 0xFFFFFFFF);
|
|
}
|
|
|
|
static int gaudi2_mmu_update_asid_hop0_addr(struct hl_device *hdev,
|
|
u32 stlb_base, u32 asid, u64 phys_addr)
|
|
{
|
|
u32 status, timeout_usec;
|
|
int rc;
|
|
|
|
if (hdev->pldm || !hdev->pdev)
|
|
timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
|
|
else
|
|
timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
|
|
|
|
WREG32(stlb_base + STLB_ASID_OFFSET, asid);
|
|
WREG32(stlb_base + STLB_HOP0_PA43_12_OFFSET, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
|
|
WREG32(stlb_base + STLB_HOP0_PA63_44_OFFSET, phys_addr >> MMU_HOP0_PA63_44_SHIFT);
|
|
WREG32(stlb_base + STLB_BUSY_OFFSET, 0x80000000);
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
stlb_base + STLB_BUSY_OFFSET,
|
|
status,
|
|
!(status & 0x80000000),
|
|
1000,
|
|
timeout_usec);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Timeout during MMU hop0 config of asid %d\n", asid);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_mmu_send_invalidate_cache_cmd(struct hl_device *hdev, u32 stlb_base,
|
|
u32 start_offset, u32 inv_start_val,
|
|
u32 flags)
|
|
{
|
|
/* clear PMMU mem line cache (only needed in mmu range invalidation) */
|
|
if (flags & MMU_OP_CLEAR_MEMCACHE)
|
|
WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INVALIDATION, 0x1);
|
|
|
|
if (flags & MMU_OP_SKIP_LOW_CACHE_INV)
|
|
return;
|
|
|
|
WREG32(stlb_base + start_offset, inv_start_val);
|
|
}
|
|
|
|
static int gaudi2_mmu_invalidate_cache_status_poll(struct hl_device *hdev, u32 stlb_base,
|
|
struct gaudi2_cache_invld_params *inv_params)
|
|
{
|
|
u32 status, timeout_usec, start_offset;
|
|
int rc;
|
|
|
|
timeout_usec = (hdev->pldm) ? GAUDI2_PLDM_MMU_TIMEOUT_USEC :
|
|
GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;
|
|
|
|
/* poll PMMU mem line cache (only needed in mmu range invalidation) */
|
|
if (inv_params->flags & MMU_OP_CLEAR_MEMCACHE) {
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS,
|
|
status,
|
|
status & 0x1,
|
|
1000,
|
|
timeout_usec);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Need to manually reset the status to 0 */
|
|
WREG32(mmPMMU_HBW_STLB_MEM_CACHE_INV_STATUS, 0x0);
|
|
}
|
|
|
|
/* Lower cache does not work with cache lines, hence we can skip its
|
|
* invalidation upon map and invalidate only upon unmap
|
|
*/
|
|
if (inv_params->flags & MMU_OP_SKIP_LOW_CACHE_INV)
|
|
return 0;
|
|
|
|
start_offset = inv_params->range_invalidation ?
|
|
STLB_RANGE_CACHE_INVALIDATION_OFFSET : STLB_INV_ALL_START_OFFSET;
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
stlb_base + start_offset,
|
|
status,
|
|
!(status & 0x1),
|
|
1000,
|
|
timeout_usec);
|
|
|
|
return rc;
|
|
}
|
|
|
|
bool gaudi2_is_hmmu_enabled(struct hl_device *hdev, int dcore_id, int hmmu_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 hw_cap;
|
|
|
|
hw_cap = HW_CAP_DCORE0_DMMU0 << (NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id);
|
|
|
|
if (gaudi2->hw_cap_initialized & hw_cap)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* this function shall be called only for HMMUs for which capability bit is set */
|
|
static inline u32 get_hmmu_stlb_base(int dcore_id, int hmmu_id)
|
|
{
|
|
u32 offset;
|
|
|
|
offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
|
|
return (u32)(mmDCORE0_HMMU0_STLB_BASE + offset);
|
|
}
|
|
|
|
static void gaudi2_mmu_invalidate_cache_trigger(struct hl_device *hdev, u32 stlb_base,
|
|
struct gaudi2_cache_invld_params *inv_params)
|
|
{
|
|
u32 start_offset;
|
|
|
|
if (inv_params->range_invalidation) {
|
|
/* Set the addresses range
|
|
* Note: that the start address we set in register, is not included in
|
|
* the range of the invalidation, by design.
|
|
* that's why we need to set lower address than the one we actually
|
|
* want to be included in the range invalidation.
|
|
*/
|
|
u64 start = inv_params->start_va - 1;
|
|
|
|
start_offset = STLB_RANGE_CACHE_INVALIDATION_OFFSET;
|
|
|
|
WREG32(stlb_base + STLB_RANGE_INV_START_LSB_OFFSET,
|
|
start >> MMU_RANGE_INV_VA_LSB_SHIFT);
|
|
|
|
WREG32(stlb_base + STLB_RANGE_INV_START_MSB_OFFSET,
|
|
start >> MMU_RANGE_INV_VA_MSB_SHIFT);
|
|
|
|
WREG32(stlb_base + STLB_RANGE_INV_END_LSB_OFFSET,
|
|
inv_params->end_va >> MMU_RANGE_INV_VA_LSB_SHIFT);
|
|
|
|
WREG32(stlb_base + STLB_RANGE_INV_END_MSB_OFFSET,
|
|
inv_params->end_va >> MMU_RANGE_INV_VA_MSB_SHIFT);
|
|
} else {
|
|
start_offset = STLB_INV_ALL_START_OFFSET;
|
|
}
|
|
|
|
gaudi2_mmu_send_invalidate_cache_cmd(hdev, stlb_base, start_offset,
|
|
inv_params->inv_start_val, inv_params->flags);
|
|
}
|
|
|
|
static inline void gaudi2_hmmu_invalidate_cache_trigger(struct hl_device *hdev,
|
|
int dcore_id, int hmmu_id,
|
|
struct gaudi2_cache_invld_params *inv_params)
|
|
{
|
|
u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);
|
|
|
|
gaudi2_mmu_invalidate_cache_trigger(hdev, stlb_base, inv_params);
|
|
}
|
|
|
|
static inline int gaudi2_hmmu_invalidate_cache_status_poll(struct hl_device *hdev,
|
|
int dcore_id, int hmmu_id,
|
|
struct gaudi2_cache_invld_params *inv_params)
|
|
{
|
|
u32 stlb_base = get_hmmu_stlb_base(dcore_id, hmmu_id);
|
|
|
|
return gaudi2_mmu_invalidate_cache_status_poll(hdev, stlb_base, inv_params);
|
|
}
|
|
|
|
static int gaudi2_hmmus_invalidate_cache(struct hl_device *hdev,
|
|
struct gaudi2_cache_invld_params *inv_params)
|
|
{
|
|
int dcore_id, hmmu_id;
|
|
|
|
/* first send all invalidation commands */
|
|
for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
|
|
for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
|
|
if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
|
|
continue;
|
|
|
|
gaudi2_hmmu_invalidate_cache_trigger(hdev, dcore_id, hmmu_id, inv_params);
|
|
}
|
|
}
|
|
|
|
/* next, poll all invalidations status */
|
|
for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
|
|
for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE ; hmmu_id++) {
|
|
int rc;
|
|
|
|
if (!gaudi2_is_hmmu_enabled(hdev, dcore_id, hmmu_id))
|
|
continue;
|
|
|
|
rc = gaudi2_hmmu_invalidate_cache_status_poll(hdev, dcore_id, hmmu_id,
|
|
inv_params);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct gaudi2_cache_invld_params invld_params;
|
|
int rc = 0;
|
|
|
|
if (hdev->reset_info.hard_reset_pending)
|
|
return rc;
|
|
|
|
invld_params.range_invalidation = false;
|
|
invld_params.inv_start_val = 1;
|
|
|
|
if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
|
|
invld_params.flags = flags;
|
|
gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
|
|
rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
|
|
&invld_params);
|
|
} else if (flags & MMU_OP_PHYS_PACK) {
|
|
invld_params.flags = 0;
|
|
rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
|
|
u32 flags, u32 asid, u64 va, u64 size)
|
|
{
|
|
struct gaudi2_cache_invld_params invld_params = {0};
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 start_va, end_va;
|
|
u32 inv_start_val;
|
|
int rc = 0;
|
|
|
|
if (hdev->reset_info.hard_reset_pending)
|
|
return 0;
|
|
|
|
inv_start_val = (1 << MMU_RANGE_INV_EN_SHIFT |
|
|
1 << MMU_RANGE_INV_ASID_EN_SHIFT |
|
|
asid << MMU_RANGE_INV_ASID_SHIFT);
|
|
start_va = va;
|
|
end_va = start_va + size;
|
|
|
|
if ((flags & MMU_OP_USERPTR) && (gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
|
|
/* As range invalidation does not support zero address we will
|
|
* do full invalidation in this case
|
|
*/
|
|
if (start_va) {
|
|
invld_params.range_invalidation = true;
|
|
invld_params.start_va = start_va;
|
|
invld_params.end_va = end_va;
|
|
invld_params.inv_start_val = inv_start_val;
|
|
invld_params.flags = flags | MMU_OP_CLEAR_MEMCACHE;
|
|
} else {
|
|
invld_params.range_invalidation = false;
|
|
invld_params.inv_start_val = 1;
|
|
invld_params.flags = flags;
|
|
}
|
|
|
|
|
|
gaudi2_mmu_invalidate_cache_trigger(hdev, mmPMMU_HBW_STLB_BASE, &invld_params);
|
|
rc = gaudi2_mmu_invalidate_cache_status_poll(hdev, mmPMMU_HBW_STLB_BASE,
|
|
&invld_params);
|
|
if (rc)
|
|
return rc;
|
|
|
|
} else if (flags & MMU_OP_PHYS_PACK) {
|
|
invld_params.start_va = gaudi2_mmu_scramble_addr(hdev, start_va);
|
|
invld_params.end_va = gaudi2_mmu_scramble_addr(hdev, end_va);
|
|
invld_params.inv_start_val = inv_start_val;
|
|
invld_params.flags = flags;
|
|
rc = gaudi2_hmmus_invalidate_cache(hdev, &invld_params);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_mmu_update_hop0_addr(struct hl_device *hdev, u32 stlb_base)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 hop0_addr;
|
|
u32 asid, max_asid = prop->max_asid;
|
|
int rc;
|
|
|
|
/* it takes too much time to init all of the ASIDs on palladium */
|
|
if (hdev->pldm)
|
|
max_asid = min((u32) 8, max_asid);
|
|
|
|
for (asid = 0 ; asid < max_asid ; asid++) {
|
|
hop0_addr = hdev->mmu_priv.hr.mmu_asid_hop0[asid].phys_addr;
|
|
rc = gaudi2_mmu_update_asid_hop0_addr(hdev, stlb_base, asid, hop0_addr);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to set hop0 addr for asid %d\n", asid);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_mmu_init_common(struct hl_device *hdev, u32 mmu_base, u32 stlb_base)
|
|
{
|
|
u32 status, timeout_usec;
|
|
int rc;
|
|
|
|
if (hdev->pldm || !hdev->pdev)
|
|
timeout_usec = GAUDI2_PLDM_MMU_TIMEOUT_USEC;
|
|
else
|
|
timeout_usec = GAUDI2_MMU_CACHE_INV_TIMEOUT_USEC;
|
|
|
|
WREG32(stlb_base + STLB_INV_ALL_START_OFFSET, 1);
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
stlb_base + STLB_SRAM_INIT_OFFSET,
|
|
status,
|
|
!status,
|
|
1000,
|
|
timeout_usec);
|
|
|
|
if (rc)
|
|
dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU SRAM init\n");
|
|
|
|
rc = gaudi2_mmu_update_hop0_addr(hdev, stlb_base);
|
|
if (rc)
|
|
return rc;
|
|
|
|
WREG32(mmu_base + MMU_BYPASS_OFFSET, 0);
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
stlb_base + STLB_INV_ALL_START_OFFSET,
|
|
status,
|
|
!status,
|
|
1000,
|
|
timeout_usec);
|
|
|
|
if (rc)
|
|
dev_notice_ratelimited(hdev->dev, "Timeout when waiting for MMU invalidate all\n");
|
|
|
|
WREG32(mmu_base + MMU_ENABLE_OFFSET, 1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_pci_mmu_init(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 mmu_base, stlb_base;
|
|
int rc;
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_PMMU)
|
|
return 0;
|
|
|
|
mmu_base = mmPMMU_HBW_MMU_BASE;
|
|
stlb_base = mmPMMU_HBW_STLB_BASE;
|
|
|
|
RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
|
|
(0 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_SHIFT) |
|
|
(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_SHIFT) |
|
|
(4 << PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_SHIFT) |
|
|
(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_SHIFT) |
|
|
(5 << PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_SHIFT),
|
|
PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
|
|
PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
|
|
PMMU_HBW_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
|
|
PMMU_HBW_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
|
|
PMMU_HBW_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);
|
|
|
|
WREG32(stlb_base + STLB_LL_LOOKUP_MASK_63_32_OFFSET, 0);
|
|
|
|
if (PAGE_SIZE == SZ_64K) {
|
|
/* Set page sizes to 64K on hop5 and 16M on hop4 + enable 8 bit hops */
|
|
RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET,
|
|
FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK, 4) |
|
|
FIELD_PREP(DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK, 3) |
|
|
FIELD_PREP(
|
|
DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK,
|
|
1),
|
|
DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP5_PAGE_SIZE_MASK |
|
|
DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK |
|
|
DCORE0_HMMU0_MMU_STATIC_MULTI_PAGE_SIZE_CFG_8_BITS_HOP_MODE_EN_MASK);
|
|
}
|
|
|
|
WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_PMMU_SPI_SEI_ENABLE_MASK);
|
|
|
|
rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
|
|
if (rc)
|
|
return rc;
|
|
|
|
gaudi2->hw_cap_initialized |= HW_CAP_PMMU;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_dcore_hmmu_init(struct hl_device *hdev, int dcore_id,
|
|
int hmmu_id)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 offset, mmu_base, stlb_base, hw_cap;
|
|
u8 dmmu_seq;
|
|
int rc;
|
|
|
|
dmmu_seq = NUM_OF_HMMU_PER_DCORE * dcore_id + hmmu_id;
|
|
hw_cap = HW_CAP_DCORE0_DMMU0 << dmmu_seq;
|
|
|
|
/*
|
|
* return if DMMU is already initialized or if it's not out of
|
|
* isolation (due to cluster binning)
|
|
*/
|
|
if ((gaudi2->hw_cap_initialized & hw_cap) || !(prop->hmmu_hif_enabled_mask & BIT(dmmu_seq)))
|
|
return 0;
|
|
|
|
offset = (u32) (dcore_id * DCORE_OFFSET + hmmu_id * DCORE_HMMU_OFFSET);
|
|
mmu_base = mmDCORE0_HMMU0_MMU_BASE + offset;
|
|
stlb_base = mmDCORE0_HMMU0_STLB_BASE + offset;
|
|
|
|
RMWREG32(mmu_base + MMU_STATIC_MULTI_PAGE_SIZE_OFFSET, 5 /* 64MB */,
|
|
MMU_STATIC_MULTI_PAGE_SIZE_HOP4_PAGE_SIZE_MASK);
|
|
|
|
RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET,
|
|
FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK, 0) |
|
|
FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK, 3) |
|
|
FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK, 3) |
|
|
FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK, 3) |
|
|
FIELD_PREP(DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK, 3),
|
|
DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_HOP_MASK |
|
|
DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_SMALL_P_MASK |
|
|
DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FIRST_LOOKUP_HOP_LARGE_P_MASK |
|
|
DCORE0_HMMU0_STLB_HOP_CONFIGURATION_LAST_HOP_MASK |
|
|
DCORE0_HMMU0_STLB_HOP_CONFIGURATION_FOLLOWER_HOP_MASK);
|
|
|
|
RMWREG32(stlb_base + STLB_HOP_CONFIGURATION_OFFSET, 1,
|
|
STLB_HOP_CONFIGURATION_ONLY_LARGE_PAGE_MASK);
|
|
|
|
WREG32(mmu_base + MMU_SPI_SEI_MASK_OFFSET, GAUDI2_HMMU_SPI_SEI_ENABLE_MASK);
|
|
|
|
rc = gaudi2_mmu_init_common(hdev, mmu_base, stlb_base);
|
|
if (rc)
|
|
return rc;
|
|
|
|
gaudi2->hw_cap_initialized |= hw_cap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_hbm_mmu_init(struct hl_device *hdev)
|
|
{
|
|
int rc, dcore_id, hmmu_id;
|
|
|
|
for (dcore_id = 0 ; dcore_id < NUM_OF_DCORES ; dcore_id++)
|
|
for (hmmu_id = 0 ; hmmu_id < NUM_OF_HMMU_PER_DCORE; hmmu_id++) {
|
|
rc = gaudi2_dcore_hmmu_init(hdev, dcore_id, hmmu_id);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_mmu_init(struct hl_device *hdev)
|
|
{
|
|
int rc;
|
|
|
|
rc = gaudi2_pci_mmu_init(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_hbm_mmu_init(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_hw_init(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int rc;
|
|
|
|
/* Let's mark in the H/W that we have reached this point. We check
|
|
* this value in the reset_before_init function to understand whether
|
|
* we need to reset the chip before doing H/W init. This register is
|
|
* cleared by the H/W upon H/W reset
|
|
*/
|
|
WREG32(mmHW_STATE, HL_DEVICE_HW_STATE_DIRTY);
|
|
|
|
/* Perform read from the device to make sure device is up */
|
|
RREG32(mmHW_STATE);
|
|
|
|
/* If iATU is done by FW, the HBM bar ALWAYS points to DRAM_PHYS_BASE.
|
|
* So we set it here and if anyone tries to move it later to
|
|
* a different address, there will be an error
|
|
*/
|
|
if (hdev->asic_prop.iatu_done_by_fw)
|
|
gaudi2->dram_bar_cur_addr = DRAM_PHYS_BASE;
|
|
|
|
/*
|
|
* Before pushing u-boot/linux to device, need to set the hbm bar to
|
|
* base address of dram
|
|
*/
|
|
if (gaudi2_set_hbm_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
|
|
dev_err(hdev->dev, "failed to map HBM bar to DRAM base address\n");
|
|
return -EIO;
|
|
}
|
|
|
|
rc = gaudi2_init_cpu(hdev);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to initialize CPU\n");
|
|
return rc;
|
|
}
|
|
|
|
gaudi2_init_msix_gw_table(hdev);
|
|
|
|
gaudi2_init_scrambler_hbm(hdev);
|
|
gaudi2_init_kdma(hdev);
|
|
|
|
rc = gaudi2_init_cpu_queues(hdev, GAUDI2_CPU_TIMEOUT_USEC);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to initialize CPU H/W queues %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = gaudi2->cpucp_info_get(hdev);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to get cpucp info\n");
|
|
return rc;
|
|
}
|
|
|
|
rc = gaudi2_mmu_init(hdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
gaudi2_init_pdma(hdev);
|
|
gaudi2_init_edma(hdev);
|
|
gaudi2_init_sm(hdev);
|
|
gaudi2_init_tpc(hdev);
|
|
gaudi2_init_mme(hdev);
|
|
gaudi2_init_rotator(hdev);
|
|
gaudi2_init_dec(hdev);
|
|
gaudi2_enable_timestamp(hdev);
|
|
|
|
rc = gaudi2_coresight_init(hdev);
|
|
if (rc)
|
|
goto disable_queues;
|
|
|
|
rc = gaudi2_enable_msix(hdev);
|
|
if (rc)
|
|
goto disable_queues;
|
|
|
|
/* Perform read from the device to flush all configuration */
|
|
RREG32(mmHW_STATE);
|
|
|
|
return 0;
|
|
|
|
disable_queues:
|
|
gaudi2_disable_dma_qmans(hdev);
|
|
gaudi2_disable_mme_qmans(hdev);
|
|
gaudi2_disable_tpc_qmans(hdev);
|
|
gaudi2_disable_rot_qmans(hdev);
|
|
gaudi2_disable_nic_qmans(hdev);
|
|
|
|
gaudi2_disable_timestamp(hdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* gaudi2_send_hard_reset_cmd - common function to handle reset
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
*
|
|
* This function handles the various possible scenarios for reset.
|
|
* It considers if reset is handled by driver\FW and what FW components are loaded
|
|
*/
|
|
static void gaudi2_send_hard_reset_cmd(struct hl_device *hdev)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
bool heartbeat_reset, preboot_only, cpu_initialized = false;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 cpu_boot_status;
|
|
|
|
preboot_only = (hdev->fw_loader.fw_comp_loaded == FW_TYPE_PREBOOT_CPU);
|
|
heartbeat_reset = (hdev->reset_info.curr_reset_cause == HL_RESET_CAUSE_HEARTBEAT);
|
|
|
|
/*
|
|
* Handle corner case where failure was at cpu management app load,
|
|
* and driver didn't detect any failure while loading the FW,
|
|
* then at such scenario driver will send only HALT_MACHINE
|
|
* and no one will respond to this request since FW already back to preboot
|
|
* and it cannot handle such cmd.
|
|
* In this case next time the management app loads it'll check on events register
|
|
* which will still have the halt indication, and will reboot the device.
|
|
* The solution is to let preboot clear all relevant registers before next boot
|
|
* once driver send COMMS_RST_DEV.
|
|
*/
|
|
cpu_boot_status = RREG32(mmPSOC_GLOBAL_CONF_CPU_BOOT_STATUS);
|
|
|
|
if (gaudi2 && (gaudi2->hw_cap_initialized & HW_CAP_CPU) &&
|
|
(cpu_boot_status == CPU_BOOT_STATUS_SRAM_AVAIL))
|
|
cpu_initialized = true;
|
|
|
|
/*
|
|
* when Linux/Bootfit exist this write to the SP can be interpreted in 2 ways:
|
|
* 1. FW reset: FW initiate the reset sequence
|
|
* 2. driver reset: FW will start HALT sequence (the preparations for the
|
|
* reset but not the reset itself as it is not implemented
|
|
* on their part) and LKD will wait to let FW complete the
|
|
* sequence before issuing the reset
|
|
*/
|
|
if (!preboot_only && cpu_initialized) {
|
|
WREG32(le32_to_cpu(dyn_regs->gic_host_halt_irq),
|
|
gaudi2_irq_map_table[GAUDI2_EVENT_CPU_HALT_MACHINE].cpu_id);
|
|
|
|
msleep(GAUDI2_CPU_RESET_WAIT_MSEC);
|
|
}
|
|
|
|
/*
|
|
* When working with preboot (without Linux/Boot fit) we can
|
|
* communicate only using the COMMS commands to issue halt/reset.
|
|
*
|
|
* For the case in which we are working with Linux/Bootfit this is a hail-mary
|
|
* attempt to revive the card in the small chance that the f/w has
|
|
* experienced a watchdog event, which caused it to return back to preboot.
|
|
* In that case, triggering reset through GIC won't help. We need to
|
|
* trigger the reset as if Linux wasn't loaded.
|
|
*
|
|
* We do it only if the reset cause was HB, because that would be the
|
|
* indication of such an event.
|
|
*
|
|
* In case watchdog hasn't expired but we still got HB, then this won't
|
|
* do any damage.
|
|
*/
|
|
|
|
if (heartbeat_reset || preboot_only || !cpu_initialized) {
|
|
if (hdev->asic_prop.hard_reset_done_by_fw)
|
|
hl_fw_ask_hard_reset_without_linux(hdev);
|
|
else
|
|
hl_fw_ask_halt_machine_without_linux(hdev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gaudi2_execute_hard_reset - execute hard reset by driver/FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @reset_sleep_ms: sleep time in msec after reset
|
|
*
|
|
* This function executes hard reset based on if driver/FW should do the reset
|
|
*/
|
|
static void gaudi2_execute_hard_reset(struct hl_device *hdev, u32 reset_sleep_ms)
|
|
{
|
|
if (hdev->asic_prop.hard_reset_done_by_fw) {
|
|
gaudi2_send_hard_reset_cmd(hdev);
|
|
return;
|
|
}
|
|
|
|
/* Set device to handle FLR by H/W as we will put the device
|
|
* CPU to halt mode
|
|
*/
|
|
WREG32(mmPCIE_AUX_FLR_CTRL,
|
|
(PCIE_AUX_FLR_CTRL_HW_CTRL_MASK | PCIE_AUX_FLR_CTRL_INT_MASK_MASK));
|
|
|
|
gaudi2_send_hard_reset_cmd(hdev);
|
|
|
|
WREG32(mmPSOC_RESET_CONF_SW_ALL_RST, 1);
|
|
}
|
|
|
|
/**
|
|
* gaudi2_execute_soft_reset - execute soft reset by driver/FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @reset_sleep_ms: sleep time in msec after reset
|
|
* @driver_performs_reset: true if driver should perform reset instead of f/w.
|
|
*
|
|
* This function executes soft reset based on if driver/FW should do the reset
|
|
*/
|
|
static void gaudi2_execute_soft_reset(struct hl_device *hdev, u32 reset_sleep_ms,
|
|
bool driver_performs_reset)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
if (!driver_performs_reset) {
|
|
/* set SP to indicate reset request sent to FW */
|
|
if (dyn_regs->cpu_rst_status)
|
|
WREG32(le32_to_cpu(dyn_regs->cpu_rst_status), CPU_RST_STATUS_NA);
|
|
else
|
|
WREG32(mmCPU_RST_STATUS_TO_HOST, CPU_RST_STATUS_NA);
|
|
|
|
WREG32(le32_to_cpu(dyn_regs->gic_host_soft_rst_irq),
|
|
gaudi2_irq_map_table[GAUDI2_EVENT_CPU_SOFT_RESET].cpu_id);
|
|
return;
|
|
}
|
|
|
|
/* Block access to engines, QMANs and SM during reset, these
|
|
* RRs will be reconfigured after soft reset.
|
|
* PCIE_MSIX is left unsecured to allow NIC packets processing during the reset.
|
|
*/
|
|
gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 1,
|
|
mmDCORE0_TPC0_QM_DCCM_BASE, mmPCIE_MSIX_BASE);
|
|
|
|
gaudi2_write_rr_to_all_lbw_rtrs(hdev, RR_TYPE_LONG, NUM_LONG_LBW_RR - 2,
|
|
mmPCIE_MSIX_BASE + HL_BLOCK_SIZE,
|
|
mmPCIE_VDEC1_MSTR_IF_RR_SHRD_HBW_BASE + HL_BLOCK_SIZE);
|
|
|
|
WREG32(mmPSOC_RESET_CONF_SOFT_RST, 1);
|
|
}
|
|
|
|
static void gaudi2_poll_btm_indication(struct hl_device *hdev, u32 reset_sleep_ms,
|
|
u32 poll_timeout_us)
|
|
{
|
|
int i, rc = 0;
|
|
u32 reg_val;
|
|
|
|
/* without this sleep reset will not work */
|
|
msleep(reset_sleep_ms);
|
|
|
|
/* We poll the BTM done indication multiple times after reset due to
|
|
* a HW errata 'GAUDI2_0300'
|
|
*/
|
|
for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
mmPSOC_GLOBAL_CONF_BTM_FSM,
|
|
reg_val,
|
|
reg_val == 0,
|
|
1000,
|
|
poll_timeout_us);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "Timeout while waiting for device to reset 0x%x\n", reg_val);
|
|
}
|
|
|
|
static void gaudi2_get_soft_rst_done_indication(struct hl_device *hdev, u32 poll_timeout_us)
|
|
{
|
|
int i, rc = 0;
|
|
u32 reg_val;
|
|
|
|
for (i = 0 ; i < GAUDI2_RESET_POLL_CNT ; i++)
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
mmCPU_RST_STATUS_TO_HOST,
|
|
reg_val,
|
|
reg_val == CPU_RST_STATUS_SOFT_RST_DONE,
|
|
1000,
|
|
poll_timeout_us);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "Timeout while waiting for FW to complete soft reset (0x%x)\n",
|
|
reg_val);
|
|
}
|
|
|
|
static void gaudi2_hw_fini(struct hl_device *hdev, bool hard_reset, bool fw_reset)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 poll_timeout_us, reset_sleep_ms;
|
|
bool driver_performs_reset = false;
|
|
|
|
if (hdev->pldm) {
|
|
reset_sleep_ms = hard_reset ? GAUDI2_PLDM_HRESET_TIMEOUT_MSEC :
|
|
GAUDI2_PLDM_SRESET_TIMEOUT_MSEC;
|
|
poll_timeout_us = GAUDI2_PLDM_RESET_POLL_TIMEOUT_USEC;
|
|
} else {
|
|
reset_sleep_ms = GAUDI2_RESET_TIMEOUT_MSEC;
|
|
poll_timeout_us = GAUDI2_RESET_POLL_TIMEOUT_USEC;
|
|
}
|
|
|
|
if (fw_reset)
|
|
goto skip_reset;
|
|
|
|
gaudi2_reset_arcs(hdev);
|
|
|
|
if (hard_reset) {
|
|
driver_performs_reset = !hdev->asic_prop.hard_reset_done_by_fw;
|
|
gaudi2_execute_hard_reset(hdev, reset_sleep_ms);
|
|
} else {
|
|
/*
|
|
* As we have to support also work with preboot only (which does not supports
|
|
* soft reset) we have to make sure that security is disabled before letting driver
|
|
* do the reset. user shall control the BFE flags to avoid asking soft reset in
|
|
* secured device with preboot only.
|
|
*/
|
|
driver_performs_reset = (hdev->fw_components == FW_TYPE_PREBOOT_CPU &&
|
|
!hdev->asic_prop.fw_security_enabled);
|
|
gaudi2_execute_soft_reset(hdev, reset_sleep_ms, driver_performs_reset);
|
|
}
|
|
|
|
skip_reset:
|
|
if (driver_performs_reset || hard_reset)
|
|
gaudi2_poll_btm_indication(hdev, reset_sleep_ms, poll_timeout_us);
|
|
else
|
|
gaudi2_get_soft_rst_done_indication(hdev, poll_timeout_us);
|
|
|
|
if (!gaudi2)
|
|
return;
|
|
|
|
gaudi2->dec_hw_cap_initialized &= ~(HW_CAP_DEC_MASK);
|
|
gaudi2->tpc_hw_cap_initialized &= ~(HW_CAP_TPC_MASK);
|
|
|
|
/*
|
|
* Clear NIC capability mask in order for driver to re-configure
|
|
* NIC QMANs. NIC ports will not be re-configured during soft
|
|
* reset as we call gaudi2_nic_init only during hard reset
|
|
*/
|
|
gaudi2->nic_hw_cap_initialized &= ~(HW_CAP_NIC_MASK);
|
|
|
|
if (hard_reset) {
|
|
gaudi2->hw_cap_initialized &=
|
|
~(HW_CAP_DRAM | HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_MASK |
|
|
HW_CAP_PMMU | HW_CAP_CPU | HW_CAP_CPU_Q |
|
|
HW_CAP_SRAM_SCRAMBLER | HW_CAP_DMMU_MASK |
|
|
HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_KDMA |
|
|
HW_CAP_MME_MASK | HW_CAP_ROT_MASK);
|
|
|
|
memset(gaudi2->events_stat, 0, sizeof(gaudi2->events_stat));
|
|
} else {
|
|
gaudi2->hw_cap_initialized &=
|
|
~(HW_CAP_CLK_GATE | HW_CAP_HBM_SCRAMBLER_SW_RESET |
|
|
HW_CAP_PDMA_MASK | HW_CAP_EDMA_MASK | HW_CAP_MME_MASK |
|
|
HW_CAP_ROT_MASK);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_suspend(struct hl_device *hdev)
|
|
{
|
|
int rc;
|
|
|
|
rc = hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_resume(struct hl_device *hdev)
|
|
{
|
|
return gaudi2_init_iatu(hdev);
|
|
}
|
|
|
|
static int gaudi2_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
int rc;
|
|
|
|
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
|
|
VM_DONTCOPY | VM_NORESERVE;
|
|
|
|
#ifdef _HAS_DMA_MMAP_COHERENT
|
|
|
|
rc = dma_mmap_coherent(hdev->dev, vma, cpu_addr, dma_addr, size);
|
|
if (rc)
|
|
dev_err(hdev->dev, "dma_mmap_coherent error %d", rc);
|
|
|
|
#else
|
|
|
|
rc = remap_pfn_range(vma, vma->vm_start,
|
|
virt_to_phys(cpu_addr) >> PAGE_SHIFT,
|
|
size, vma->vm_page_prot);
|
|
if (rc)
|
|
dev_err(hdev->dev, "remap_pfn_range error %d", rc);
|
|
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool gaudi2_is_queue_enabled(struct hl_device *hdev, u32 hw_queue_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 hw_cap_mask = 0;
|
|
u64 hw_tpc_cap_bit = 0;
|
|
u64 hw_nic_cap_bit = 0;
|
|
u64 hw_test_cap_bit = 0;
|
|
|
|
switch (hw_queue_id) {
|
|
case GAUDI2_QUEUE_ID_PDMA_0_0:
|
|
case GAUDI2_QUEUE_ID_PDMA_0_1:
|
|
case GAUDI2_QUEUE_ID_PDMA_1_0:
|
|
hw_cap_mask = HW_CAP_PDMA_MASK;
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3:
|
|
hw_test_cap_bit = HW_CAP_EDMA_SHIFT +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0) >> 2);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3:
|
|
hw_test_cap_bit = HW_CAP_EDMA_SHIFT + NUM_OF_EDMA_PER_DCORE +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0) >> 2);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3:
|
|
hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 2 * NUM_OF_EDMA_PER_DCORE +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0) >> 2);
|
|
break;
|
|
case GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0...GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3:
|
|
hw_test_cap_bit = HW_CAP_EDMA_SHIFT + 3 * NUM_OF_EDMA_PER_DCORE +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0) >> 2);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE0_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE0_MME_0_3:
|
|
hw_test_cap_bit = HW_CAP_MME_SHIFT;
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE1_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE1_MME_0_3:
|
|
hw_test_cap_bit = HW_CAP_MME_SHIFT + 1;
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE2_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE2_MME_0_3:
|
|
hw_test_cap_bit = HW_CAP_MME_SHIFT + 2;
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE3_MME_0_0 ... GAUDI2_QUEUE_ID_DCORE3_MME_0_3:
|
|
hw_test_cap_bit = HW_CAP_MME_SHIFT + 3;
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_5_3:
|
|
hw_tpc_cap_bit = HW_CAP_TPC_SHIFT +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE0_TPC_0_0) >> 2);
|
|
|
|
/* special case where cap bit refers to the first queue id */
|
|
if (!hw_tpc_cap_bit)
|
|
return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(0));
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE1_TPC_5_3:
|
|
hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + NUM_OF_TPC_PER_DCORE +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE1_TPC_0_0) >> 2);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE2_TPC_5_3:
|
|
hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (2 * NUM_OF_TPC_PER_DCORE) +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE2_TPC_0_0) >> 2);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 ... GAUDI2_QUEUE_ID_DCORE3_TPC_5_3:
|
|
hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (3 * NUM_OF_TPC_PER_DCORE) +
|
|
((hw_queue_id - GAUDI2_QUEUE_ID_DCORE3_TPC_0_0) >> 2);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 ... GAUDI2_QUEUE_ID_DCORE0_TPC_6_3:
|
|
hw_tpc_cap_bit = HW_CAP_TPC_SHIFT + (4 * NUM_OF_TPC_PER_DCORE);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_ROT_0_0 ... GAUDI2_QUEUE_ID_ROT_1_3:
|
|
hw_test_cap_bit = HW_CAP_ROT_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_ROT_0_0) >> 2);
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_NIC_0_0 ... GAUDI2_QUEUE_ID_NIC_23_3:
|
|
hw_nic_cap_bit = HW_CAP_NIC_SHIFT + ((hw_queue_id - GAUDI2_QUEUE_ID_NIC_0_0) >> 2);
|
|
|
|
/* special case where cap bit refers to the first queue id */
|
|
if (!hw_nic_cap_bit)
|
|
return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(0));
|
|
break;
|
|
|
|
case GAUDI2_QUEUE_ID_CPU_PQ:
|
|
return !!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (hw_tpc_cap_bit)
|
|
return !!(gaudi2->tpc_hw_cap_initialized & BIT_ULL(hw_tpc_cap_bit));
|
|
|
|
if (hw_nic_cap_bit)
|
|
return !!(gaudi2->nic_hw_cap_initialized & BIT_ULL(hw_nic_cap_bit));
|
|
|
|
if (hw_test_cap_bit)
|
|
hw_cap_mask = BIT_ULL(hw_test_cap_bit);
|
|
|
|
return !!(gaudi2->hw_cap_initialized & hw_cap_mask);
|
|
}
|
|
|
|
static bool gaudi2_is_arc_enabled(struct hl_device *hdev, u64 arc_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
switch (arc_id) {
|
|
case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
|
|
case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
|
|
return !!(gaudi2->active_hw_arc & BIT_ULL(arc_id));
|
|
|
|
case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
|
|
return !!(gaudi2->active_tpc_arc & BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));
|
|
|
|
case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
|
|
return !!(gaudi2->active_nic_arc & BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void gaudi2_clr_arc_id_cap(struct hl_device *hdev, u64 arc_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
switch (arc_id) {
|
|
case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
|
|
case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
|
|
gaudi2->active_hw_arc &= ~(BIT_ULL(arc_id));
|
|
break;
|
|
|
|
case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
|
|
gaudi2->active_tpc_arc &= ~(BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0));
|
|
break;
|
|
|
|
case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
|
|
gaudi2->active_nic_arc &= ~(BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0));
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void gaudi2_set_arc_id_cap(struct hl_device *hdev, u64 arc_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
switch (arc_id) {
|
|
case CPU_ID_SCHED_ARC0 ... CPU_ID_SCHED_ARC5:
|
|
case CPU_ID_MME_QMAN_ARC0...CPU_ID_ROT_QMAN_ARC1:
|
|
gaudi2->active_hw_arc |= BIT_ULL(arc_id);
|
|
break;
|
|
|
|
case CPU_ID_TPC_QMAN_ARC0...CPU_ID_TPC_QMAN_ARC24:
|
|
gaudi2->active_tpc_arc |= BIT_ULL(arc_id - CPU_ID_TPC_QMAN_ARC0);
|
|
break;
|
|
|
|
case CPU_ID_NIC_QMAN_ARC0...CPU_ID_NIC_QMAN_ARC23:
|
|
gaudi2->active_nic_arc |= BIT_ULL(arc_id - CPU_ID_NIC_QMAN_ARC0);
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void gaudi2_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
u32 pq_offset, reg_base, db_reg_offset, db_value;
|
|
|
|
if (hw_queue_id != GAUDI2_QUEUE_ID_CPU_PQ) {
|
|
/*
|
|
* QMAN has 4 successive PQ_PI registers, 1 for each of the QMAN PQs.
|
|
* Masking the H/W queue ID with 0x3 extracts the QMAN internal PQ
|
|
* number.
|
|
*/
|
|
pq_offset = (hw_queue_id & 0x3) * 4;
|
|
reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
|
|
db_reg_offset = reg_base + QM_PQ_PI_0_OFFSET + pq_offset;
|
|
} else {
|
|
db_reg_offset = mmCPU_IF_PF_PQ_PI;
|
|
}
|
|
|
|
db_value = pi;
|
|
|
|
/* ring the doorbell */
|
|
WREG32(db_reg_offset, db_value);
|
|
|
|
if (hw_queue_id == GAUDI2_QUEUE_ID_CPU_PQ) {
|
|
/* make sure device CPU will read latest data from host */
|
|
mb();
|
|
WREG32(le32_to_cpu(dyn_regs->gic_host_pi_upd_irq),
|
|
gaudi2_irq_map_table[GAUDI2_EVENT_CPU_PI_UPDATE].cpu_id);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_pqe_write(struct hl_device *hdev, __le64 *pqe, struct hl_bd *bd)
|
|
{
|
|
__le64 *pbd = (__le64 *) bd;
|
|
|
|
/* The QMANs are on the host memory so a simple copy suffice */
|
|
pqe[0] = pbd[0];
|
|
pqe[1] = pbd[1];
|
|
}
|
|
|
|
static void *gaudi2_dma_alloc_coherent(struct hl_device *hdev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags)
|
|
{
|
|
return dma_alloc_coherent(&hdev->pdev->dev, size, dma_handle, flags);
|
|
}
|
|
|
|
static void gaudi2_dma_free_coherent(struct hl_device *hdev, size_t size,
|
|
void *cpu_addr, dma_addr_t dma_handle)
|
|
{
|
|
dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, dma_handle);
|
|
}
|
|
|
|
static int gaudi2_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
|
|
u32 timeout, u64 *result)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)) {
|
|
if (result)
|
|
*result = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (!timeout)
|
|
timeout = GAUDI2_MSG_TO_CPU_TIMEOUT_USEC;
|
|
|
|
return hl_fw_send_cpu_message(hdev, GAUDI2_QUEUE_ID_CPU_PQ, msg, len, timeout, result);
|
|
}
|
|
|
|
static void *gaudi2_dma_pool_zalloc(struct hl_device *hdev, size_t size,
|
|
gfp_t mem_flags, dma_addr_t *dma_handle)
|
|
{
|
|
if (size > GAUDI2_DMA_POOL_BLK_SIZE)
|
|
return NULL;
|
|
|
|
return dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
|
|
}
|
|
|
|
static void gaudi2_dma_pool_free(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr)
|
|
{
|
|
dma_pool_free(hdev->dma_pool, vaddr, dma_addr);
|
|
}
|
|
|
|
static void *gaudi2_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
|
|
dma_addr_t *dma_handle)
|
|
{
|
|
return hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
|
|
}
|
|
|
|
static void gaudi2_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
|
|
{
|
|
hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
|
|
}
|
|
|
|
static dma_addr_t gaudi2_dma_map_single(struct hl_device *hdev, void *addr, int len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
|
|
dma_addr = dma_map_single(&hdev->pdev->dev, addr, len, dir);
|
|
if (unlikely(dma_mapping_error(&hdev->pdev->dev, dma_addr)))
|
|
return 0;
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
static void gaudi2_dma_unmap_single(struct hl_device *hdev, dma_addr_t addr, int len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
dma_unmap_single(&hdev->pdev->dev, addr, len, dir);
|
|
}
|
|
|
|
static int gaudi2_validate_cb_address(struct hl_device *hdev, struct hl_cs_parser *parser)
|
|
{
|
|
struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!gaudi2_is_queue_enabled(hdev, parser->hw_queue_id)) {
|
|
dev_err(hdev->dev, "h/w queue %d is disabled\n", parser->hw_queue_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Just check if CB address is valid */
|
|
|
|
if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
|
|
parser->user_cb_size,
|
|
asic_prop->sram_user_base_address,
|
|
asic_prop->sram_end_address))
|
|
return 0;
|
|
|
|
if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
|
|
parser->user_cb_size,
|
|
asic_prop->dram_user_base_address,
|
|
asic_prop->dram_end_address))
|
|
return 0;
|
|
|
|
if ((gaudi2->hw_cap_initialized & HW_CAP_DMMU_MASK) &&
|
|
hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
|
|
parser->user_cb_size,
|
|
asic_prop->dmmu.start_addr,
|
|
asic_prop->dmmu.end_addr))
|
|
return 0;
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_PMMU) {
|
|
if (hl_mem_area_inside_range((u64) (uintptr_t) parser->user_cb,
|
|
parser->user_cb_size,
|
|
asic_prop->pmmu.start_addr,
|
|
asic_prop->pmmu.end_addr) ||
|
|
hl_mem_area_inside_range(
|
|
(u64) (uintptr_t) parser->user_cb,
|
|
parser->user_cb_size,
|
|
asic_prop->pmmu_huge.start_addr,
|
|
asic_prop->pmmu_huge.end_addr))
|
|
return 0;
|
|
|
|
} else if (gaudi2_host_phys_addr_valid((u64) (uintptr_t) parser->user_cb)) {
|
|
if (!hdev->pdev)
|
|
return 0;
|
|
|
|
if (!device_iommu_mapped(&hdev->pdev->dev))
|
|
return 0;
|
|
}
|
|
|
|
dev_err(hdev->dev, "CB address %p + 0x%x for internal QMAN is not valid\n",
|
|
parser->user_cb, parser->user_cb_size);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
static int gaudi2_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!parser->is_kernel_allocated_cb)
|
|
return gaudi2_validate_cb_address(hdev, parser);
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU)) {
|
|
dev_err(hdev->dev, "PMMU not initialized - Unsupported mode in Gaudi2\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_send_heartbeat(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
|
|
return 0;
|
|
|
|
return hl_fw_send_heartbeat(hdev);
|
|
}
|
|
|
|
/* This is an internal helper function, used to update the KDMA mmu props.
|
|
* Should be called with a proper kdma lock.
|
|
*/
|
|
static void gaudi2_kdma_set_mmbp_asid(struct hl_device *hdev,
|
|
bool mmu_bypass, u32 asid)
|
|
{
|
|
u32 rw_asid, rw_mmu_bp;
|
|
|
|
rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
|
|
(asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
|
|
|
|
rw_mmu_bp = (!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_SHIFT) |
|
|
(!!mmu_bypass << ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_SHIFT);
|
|
|
|
WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_ASID, rw_asid);
|
|
WREG32(mmARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP, rw_mmu_bp);
|
|
}
|
|
|
|
static void gaudi2_arm_cq_monitor(struct hl_device *hdev, u32 sob_id, u32 mon_id, u32 cq_id,
|
|
u32 mon_payload, u32 sync_value)
|
|
{
|
|
u32 sob_offset, mon_offset, sync_group_id, mode, mon_arm;
|
|
u8 mask;
|
|
|
|
sob_offset = sob_id * 4;
|
|
mon_offset = mon_id * 4;
|
|
|
|
/* Reset the SOB value */
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset, 0);
|
|
|
|
/* Configure this address with CQ_ID 0 because CQ_EN is set */
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + mon_offset, cq_id);
|
|
|
|
/* Configure this address with CS index because CQ_EN is set */
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + mon_offset, mon_payload);
|
|
|
|
sync_group_id = sob_id / 8;
|
|
mask = ~(1 << (sob_id & 0x7));
|
|
mode = 1; /* comparison mode is "equal to" */
|
|
|
|
mon_arm = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOD_MASK, sync_value);
|
|
mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SOP_MASK, mode);
|
|
mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_MASK_MASK, mask);
|
|
mon_arm |= FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_MON_ARM_SID_MASK, sync_group_id);
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + mon_offset, mon_arm);
|
|
}
|
|
|
|
/* This is an internal helper function used by gaudi2_send_job_to_kdma only */
|
|
static int gaudi2_send_job_to_kdma(struct hl_device *hdev,
|
|
u64 src_addr, u64 dst_addr,
|
|
u32 size, bool is_memset)
|
|
{
|
|
u32 comp_val, commit_mask, *polling_addr, timeout, status = 0;
|
|
struct hl_cq_entry *cq_base;
|
|
struct hl_cq *cq;
|
|
u64 comp_addr;
|
|
int rc;
|
|
|
|
gaudi2_arm_cq_monitor(hdev, GAUDI2_RESERVED_SOB_KDMA_COMPLETION,
|
|
GAUDI2_RESERVED_MON_KDMA_COMPLETION,
|
|
GAUDI2_RESERVED_CQ_KDMA_COMPLETION, 1, 1);
|
|
|
|
comp_addr = CFG_BASE + mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 +
|
|
(GAUDI2_RESERVED_SOB_KDMA_COMPLETION * sizeof(u32));
|
|
|
|
comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);
|
|
|
|
WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_LO, lower_32_bits(src_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_SRC_BASE_HI, upper_32_bits(src_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_LO, lower_32_bits(dst_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_DST_BASE_HI, upper_32_bits(dst_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_LO, lower_32_bits(comp_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_ADDR_HI, upper_32_bits(comp_addr));
|
|
WREG32(mmARC_FARM_KDMA_CTX_WR_COMP_WDATA, comp_val);
|
|
WREG32(mmARC_FARM_KDMA_CTX_DST_TSIZE_0, size);
|
|
|
|
commit_mask = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) |
|
|
FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1);
|
|
|
|
if (is_memset)
|
|
commit_mask |= FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1);
|
|
|
|
WREG32(mmARC_FARM_KDMA_CTX_COMMIT, commit_mask);
|
|
|
|
/* Wait for completion */
|
|
cq = &hdev->completion_queue[GAUDI2_RESERVED_CQ_KDMA_COMPLETION];
|
|
cq_base = cq->kernel_address;
|
|
polling_addr = (u32 *)&cq_base[cq->ci];
|
|
|
|
if (hdev->pldm)
|
|
/* for each 1MB 20 second of timeout */
|
|
timeout = ((size / SZ_1M) + 1) * USEC_PER_SEC * 20;
|
|
else
|
|
timeout = KDMA_TIMEOUT_USEC;
|
|
|
|
/* Polling */
|
|
rc = hl_poll_timeout_memory(
|
|
hdev,
|
|
polling_addr,
|
|
status,
|
|
(status == 1),
|
|
1000,
|
|
timeout,
|
|
true);
|
|
|
|
*polling_addr = 0;
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Timeout while waiting for KDMA to be idle\n");
|
|
WREG32(mmARC_FARM_KDMA_CFG_1, 1 << ARC_FARM_KDMA_CFG_1_HALT_SHIFT);
|
|
return rc;
|
|
}
|
|
|
|
cq->ci = hl_cq_inc_ptr(cq->ci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_memset_device_lbw(struct hl_device *hdev, u32 addr, u32 size, u32 val)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0 ; i < size ; i += sizeof(u32))
|
|
WREG32(addr + i, val);
|
|
}
|
|
|
|
static void gaudi2_qman_set_test_mode(struct hl_device *hdev, u32 hw_queue_id, bool enable)
|
|
{
|
|
u32 reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
|
|
|
|
if (enable) {
|
|
WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED_TEST_MODE);
|
|
WREG32(reg_base + QM_PQC_CFG_OFFSET, 0);
|
|
} else {
|
|
WREG32(reg_base + QM_GLBL_PROT_OFFSET, QMAN_MAKE_TRUSTED);
|
|
WREG32(reg_base + QM_PQC_CFG_OFFSET, 1 << PDMA0_QM_PQC_CFG_EN_SHIFT);
|
|
}
|
|
}
|
|
|
|
static int gaudi2_test_queue(struct hl_device *hdev, u32 hw_queue_id)
|
|
{
|
|
u32 sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
|
|
u32 sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
|
|
u32 timeout_usec, tmp, sob_base = 1, sob_val = 0x5a5a;
|
|
struct packet_msg_short *msg_short_pkt;
|
|
dma_addr_t pkt_dma_addr;
|
|
size_t pkt_size;
|
|
int rc;
|
|
|
|
if (hdev->pldm)
|
|
timeout_usec = GAUDI2_PLDM_TEST_QUEUE_WAIT_USEC;
|
|
else
|
|
timeout_usec = GAUDI2_TEST_QUEUE_WAIT_USEC;
|
|
|
|
pkt_size = sizeof(*msg_short_pkt);
|
|
msg_short_pkt = hl_asic_dma_pool_zalloc(hdev, pkt_size, GFP_KERNEL, &pkt_dma_addr);
|
|
if (!msg_short_pkt) {
|
|
dev_err(hdev->dev, "Failed to allocate packet for H/W queue %d testing\n",
|
|
hw_queue_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tmp = (PACKET_MSG_SHORT << GAUDI2_PKT_CTL_OPCODE_SHIFT) |
|
|
(1 << GAUDI2_PKT_CTL_EB_SHIFT) |
|
|
(1 << GAUDI2_PKT_CTL_MB_SHIFT) |
|
|
(sob_base << GAUDI2_PKT_SHORT_CTL_BASE_SHIFT) |
|
|
(sob_offset << GAUDI2_PKT_SHORT_CTL_ADDR_SHIFT);
|
|
|
|
msg_short_pkt->value = cpu_to_le32(sob_val);
|
|
msg_short_pkt->ctl = cpu_to_le32(tmp);
|
|
|
|
/* Reset the SOB value */
|
|
WREG32(sob_addr, 0);
|
|
|
|
rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, pkt_size, pkt_dma_addr);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to send msg_short packet to H/W queue %d\n",
|
|
hw_queue_id);
|
|
goto free_pkt;
|
|
}
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
sob_addr,
|
|
tmp,
|
|
(tmp == sob_val),
|
|
1000,
|
|
timeout_usec);
|
|
|
|
if (rc == -ETIMEDOUT) {
|
|
dev_err(hdev->dev, "H/W queue %d test failed (SOB_OBJ_0 == 0x%x)\n",
|
|
hw_queue_id, tmp);
|
|
rc = -EIO;
|
|
}
|
|
|
|
/* Reset the SOB value */
|
|
WREG32(sob_addr, 0);
|
|
|
|
free_pkt:
|
|
hl_asic_dma_pool_free(hdev, (void *) msg_short_pkt, pkt_dma_addr);
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_test_cpu_queue(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
/*
|
|
* check capability here as send_cpu_message() won't update the result
|
|
* value if no capability
|
|
*/
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
|
|
return 0;
|
|
|
|
return hl_fw_test_cpu_queue(hdev);
|
|
}
|
|
|
|
static int gaudi2_test_queues(struct hl_device *hdev)
|
|
{
|
|
int i, rc, ret_val = 0;
|
|
|
|
for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ; i++) {
|
|
if (!gaudi2_is_queue_enabled(hdev, i))
|
|
continue;
|
|
|
|
gaudi2_qman_set_test_mode(hdev, i, true);
|
|
rc = gaudi2_test_queue(hdev, i);
|
|
gaudi2_qman_set_test_mode(hdev, i, false);
|
|
|
|
if (rc) {
|
|
ret_val = -EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
rc = gaudi2_test_cpu_queue(hdev);
|
|
if (rc) {
|
|
ret_val = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
return ret_val;
|
|
}
|
|
|
|
static int gaudi2_compute_reset_late_init(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
size_t irq_arr_size;
|
|
|
|
/* TODO: missing gaudi2_nic_resume.
|
|
* Until implemented nic_hw_cap_initialized will remain zeroed
|
|
*/
|
|
gaudi2_init_arcs(hdev);
|
|
gaudi2_scrub_arcs_dccm(hdev);
|
|
gaudi2_init_security(hdev);
|
|
|
|
/* Unmask all IRQs since some could have been received during the soft reset */
|
|
irq_arr_size = gaudi2->num_of_valid_hw_events * sizeof(gaudi2->hw_events[0]);
|
|
return hl_fw_unmask_irq_arr(hdev, gaudi2->hw_events, irq_arr_size);
|
|
}
|
|
|
|
static void gaudi2_is_tpc_engine_idle(struct hl_device *hdev, int dcore, int inst, u32 offset,
|
|
struct iterate_module_ctx *ctx)
|
|
{
|
|
struct gaudi2_tpc_idle_data *idle_data = ctx->data;
|
|
u32 tpc_cfg_sts, qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts;
|
|
bool is_eng_idle;
|
|
int engine_idx;
|
|
|
|
if ((dcore == 0) && (inst == (NUM_DCORE0_TPC - 1)))
|
|
engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_6;
|
|
else
|
|
engine_idx = GAUDI2_DCORE0_ENGINE_ID_TPC_0 +
|
|
dcore * GAUDI2_ENGINE_ID_DCORE_OFFSET + inst;
|
|
|
|
tpc_cfg_sts = RREG32(mmDCORE0_TPC0_CFG_STATUS + offset);
|
|
qm_glbl_sts0 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmDCORE0_TPC0_QM_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmDCORE0_TPC0_QM_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
|
|
IS_TPC_IDLE(tpc_cfg_sts);
|
|
*(idle_data->is_idle) &= is_eng_idle;
|
|
|
|
if (idle_data->mask && !is_eng_idle)
|
|
set_bit(engine_idx, idle_data->mask);
|
|
|
|
if (idle_data->e)
|
|
hl_engine_data_sprintf(idle_data->e,
|
|
idle_data->tpc_fmt, dcore, inst,
|
|
is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0, qm_cgm_sts, tpc_cfg_sts);
|
|
}
|
|
|
|
static bool gaudi2_is_device_idle(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
|
|
struct engines_data *e)
|
|
{
|
|
u32 qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts, dma_core_idle_ind_mask,
|
|
mme_arch_sts, dec_swreg15, dec_enabled_bit;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
const char *rot_fmt = "%-6d%-5d%-9s%#-14x%#-12x%s\n";
|
|
unsigned long *mask = (unsigned long *) mask_arr;
|
|
const char *edma_fmt = "%-6d%-6d%-9s%#-14x%#x\n";
|
|
const char *mme_fmt = "%-5d%-6s%-9s%#-14x%#x\n";
|
|
const char *nic_fmt = "%-5d%-9s%#-14x%#-12x\n";
|
|
const char *pdma_fmt = "%-6d%-9s%#-14x%#x\n";
|
|
const char *pcie_dec_fmt = "%-10d%-9s%#x\n";
|
|
const char *dec_fmt = "%-6d%-5d%-9s%#x\n";
|
|
bool is_idle = true, is_eng_idle;
|
|
u64 offset;
|
|
|
|
struct gaudi2_tpc_idle_data tpc_idle_data = {
|
|
.tpc_fmt = "%-6d%-5d%-9s%#-14x%#-12x%#x\n",
|
|
.e = e,
|
|
.mask = mask,
|
|
.is_idle = &is_idle,
|
|
};
|
|
struct iterate_module_ctx tpc_iter = {
|
|
.fn = &gaudi2_is_tpc_engine_idle,
|
|
.data = &tpc_idle_data,
|
|
};
|
|
|
|
int engine_idx, i, j;
|
|
|
|
/* EDMA, Two engines per Dcore */
|
|
if (e)
|
|
hl_engine_data_sprintf(e,
|
|
"\nCORE EDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n"
|
|
"---- ---- ------- ------------ ----------------------\n");
|
|
|
|
for (i = 0; i < NUM_OF_DCORES; i++) {
|
|
for (j = 0 ; j < NUM_OF_EDMA_PER_DCORE ; j++) {
|
|
int seq = i * NUM_OF_EDMA_PER_DCORE + j;
|
|
|
|
if (!(prop->edma_enabled_mask & BIT(seq)))
|
|
continue;
|
|
|
|
engine_idx = GAUDI2_DCORE0_ENGINE_ID_EDMA_0 +
|
|
i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
|
|
offset = i * DCORE_OFFSET + j * DCORE_EDMA_OFFSET;
|
|
|
|
dma_core_idle_ind_mask =
|
|
RREG32(mmDCORE0_EDMA0_CORE_IDLE_IND_MASK + offset);
|
|
|
|
qm_glbl_sts0 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmDCORE0_EDMA0_QM_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmDCORE0_EDMA0_QM_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
|
|
IS_DMA_IDLE(dma_core_idle_ind_mask);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, edma_fmt, i, j,
|
|
is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0,
|
|
dma_core_idle_ind_mask);
|
|
}
|
|
}
|
|
|
|
/* PDMA, Two engines in Full chip */
|
|
if (e)
|
|
hl_engine_data_sprintf(e,
|
|
"\nPDMA is_idle QM_GLBL_STS0 DMA_CORE_IDLE_IND_MASK\n"
|
|
"---- ------- ------------ ----------------------\n");
|
|
|
|
for (i = 0 ; i < NUM_OF_PDMA ; i++) {
|
|
engine_idx = GAUDI2_ENGINE_ID_PDMA_0 + i;
|
|
offset = i * PDMA_OFFSET;
|
|
dma_core_idle_ind_mask = RREG32(mmPDMA0_CORE_IDLE_IND_MASK + offset);
|
|
|
|
qm_glbl_sts0 = RREG32(mmPDMA0_QM_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmPDMA0_QM_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmPDMA0_QM_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts) &&
|
|
IS_DMA_IDLE(dma_core_idle_ind_mask);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, pdma_fmt, i, is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0, dma_core_idle_ind_mask);
|
|
}
|
|
|
|
/* NIC, twelve macros in Full chip */
|
|
if (e && hdev->nic_ports_mask)
|
|
hl_engine_data_sprintf(e,
|
|
"\nNIC is_idle QM_GLBL_STS0 QM_CGM_STS\n"
|
|
"--- ------- ------------ ----------\n");
|
|
|
|
for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
|
|
if (!(i & 1))
|
|
offset = i / 2 * NIC_OFFSET;
|
|
else
|
|
offset += NIC_QM_OFFSET;
|
|
|
|
if (!(hdev->nic_ports_mask & BIT(i)))
|
|
continue;
|
|
|
|
engine_idx = GAUDI2_ENGINE_ID_NIC0_0 + i;
|
|
|
|
|
|
qm_glbl_sts0 = RREG32(mmNIC0_QM0_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmNIC0_QM0_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmNIC0_QM0_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, nic_fmt, i, is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0, qm_cgm_sts);
|
|
}
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e,
|
|
"\nMME Stub is_idle QM_GLBL_STS0 MME_ARCH_STATUS\n"
|
|
"--- ---- ------- ------------ ---------------\n");
|
|
/* MME, one per Dcore */
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++) {
|
|
engine_idx = GAUDI2_DCORE0_ENGINE_ID_MME + i * GAUDI2_ENGINE_ID_DCORE_OFFSET;
|
|
offset = i * DCORE_OFFSET;
|
|
|
|
qm_glbl_sts0 = RREG32(mmDCORE0_MME_QM_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmDCORE0_MME_QM_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmDCORE0_MME_QM_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
|
|
is_idle &= is_eng_idle;
|
|
|
|
mme_arch_sts = RREG32(mmDCORE0_MME_CTRL_LO_ARCH_STATUS + offset);
|
|
is_eng_idle &= IS_MME_IDLE(mme_arch_sts);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, mme_fmt, i, "N",
|
|
is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0,
|
|
mme_arch_sts);
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
}
|
|
|
|
/*
|
|
* TPC
|
|
*/
|
|
if (e && prop->tpc_enabled_mask)
|
|
hl_engine_data_sprintf(e,
|
|
"\nCORE TPC is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_IDLE_IND_MASK\n"
|
|
"---- --- -------- ------------ ---------- ----------------------\n");
|
|
|
|
gaudi2_iterate_tpcs(hdev, &tpc_iter);
|
|
|
|
/* Decoders, two each Dcore and two shared PCIe decoders */
|
|
if (e && (prop->decoder_enabled_mask & (~PCIE_DEC_EN_MASK)))
|
|
hl_engine_data_sprintf(e,
|
|
"\nCORE DEC is_idle VSI_CMD_SWREG15\n"
|
|
"---- --- ------- ---------------\n");
|
|
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++) {
|
|
for (j = 0 ; j < NUM_OF_DEC_PER_DCORE ; j++) {
|
|
dec_enabled_bit = 1 << (i * NUM_OF_DEC_PER_DCORE + j);
|
|
if (!(prop->decoder_enabled_mask & dec_enabled_bit))
|
|
continue;
|
|
|
|
engine_idx = GAUDI2_DCORE0_ENGINE_ID_DEC_0 +
|
|
i * GAUDI2_ENGINE_ID_DCORE_OFFSET + j;
|
|
offset = i * DCORE_OFFSET + j * DCORE_DEC_OFFSET;
|
|
|
|
dec_swreg15 = RREG32(mmDCORE0_DEC0_CMD_SWREG15 + offset);
|
|
is_eng_idle = IS_DEC_IDLE(dec_swreg15);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, dec_fmt, i, j,
|
|
is_eng_idle ? "Y" : "N", dec_swreg15);
|
|
}
|
|
}
|
|
|
|
if (e && (prop->decoder_enabled_mask & PCIE_DEC_EN_MASK))
|
|
hl_engine_data_sprintf(e,
|
|
"\nPCIe DEC is_idle VSI_CMD_SWREG15\n"
|
|
"-------- ------- ---------------\n");
|
|
|
|
/* Check shared(PCIe) decoders */
|
|
for (i = 0 ; i < NUM_OF_DEC_PER_DCORE ; i++) {
|
|
dec_enabled_bit = PCIE_DEC_SHIFT + i;
|
|
if (!(prop->decoder_enabled_mask & BIT(dec_enabled_bit)))
|
|
continue;
|
|
|
|
engine_idx = GAUDI2_PCIE_ENGINE_ID_DEC_0 + i;
|
|
offset = i * DCORE_DEC_OFFSET;
|
|
dec_swreg15 = RREG32(mmPCIE_DEC0_CMD_SWREG15 + offset);
|
|
is_eng_idle = IS_DEC_IDLE(dec_swreg15);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, pcie_dec_fmt, i,
|
|
is_eng_idle ? "Y" : "N", dec_swreg15);
|
|
}
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e,
|
|
"\nCORE ROT is_idle QM_GLBL_STS0 QM_CGM_STS DMA_CORE_STS0\n"
|
|
"---- ---- ------- ------------ ---------- -------------\n");
|
|
|
|
for (i = 0 ; i < NUM_OF_ROT ; i++) {
|
|
engine_idx = GAUDI2_ENGINE_ID_ROT_0 + i;
|
|
|
|
offset = i * ROT_OFFSET;
|
|
|
|
qm_glbl_sts0 = RREG32(mmROT0_QM_GLBL_STS0 + offset);
|
|
qm_glbl_sts1 = RREG32(mmROT0_QM_GLBL_STS1 + offset);
|
|
qm_cgm_sts = RREG32(mmROT0_QM_CGM_STS + offset);
|
|
|
|
is_eng_idle = IS_QM_IDLE(qm_glbl_sts0, qm_glbl_sts1, qm_cgm_sts);
|
|
is_idle &= is_eng_idle;
|
|
|
|
if (mask && !is_eng_idle)
|
|
set_bit(engine_idx, mask);
|
|
|
|
if (e)
|
|
hl_engine_data_sprintf(e, rot_fmt, i, 0, is_eng_idle ? "Y" : "N",
|
|
qm_glbl_sts0, qm_cgm_sts, "-");
|
|
}
|
|
|
|
return is_idle;
|
|
}
|
|
|
|
static void gaudi2_hw_queues_lock(struct hl_device *hdev)
|
|
__acquires(&gaudi2->hw_queues_lock)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
spin_lock(&gaudi2->hw_queues_lock);
|
|
}
|
|
|
|
static void gaudi2_hw_queues_unlock(struct hl_device *hdev)
|
|
__releases(&gaudi2->hw_queues_lock)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
spin_unlock(&gaudi2->hw_queues_lock);
|
|
}
|
|
|
|
static u32 gaudi2_get_pci_id(struct hl_device *hdev)
|
|
{
|
|
return hdev->pdev->device;
|
|
}
|
|
|
|
static int gaudi2_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q))
|
|
return 0;
|
|
|
|
return hl_fw_get_eeprom_data(hdev, data, max_size);
|
|
}
|
|
|
|
static void gaudi2_update_eq_ci(struct hl_device *hdev, u32 val)
|
|
{
|
|
WREG32(mmCPU_IF_EQ_RD_OFFS, val);
|
|
}
|
|
|
|
static void *gaudi2_get_events_stat(struct hl_device *hdev, bool aggregate, u32 *size)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (aggregate) {
|
|
*size = (u32) sizeof(gaudi2->events_stat_aggregate);
|
|
return gaudi2->events_stat_aggregate;
|
|
}
|
|
|
|
*size = (u32) sizeof(gaudi2->events_stat);
|
|
return gaudi2->events_stat;
|
|
}
|
|
|
|
static void gaudi2_mmu_vdec_dcore_prepare(struct hl_device *hdev, int dcore_id,
|
|
int dcore_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
|
|
{
|
|
u32 offset = (mmDCORE0_VDEC1_BRDG_CTRL_BASE - mmDCORE0_VDEC0_BRDG_CTRL_BASE) *
|
|
dcore_vdec_id + DCORE_OFFSET * dcore_id;
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmDCORE0_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
|
|
}
|
|
|
|
static void gaudi2_mmu_dcore_prepare(struct hl_device *hdev, int dcore_id, u32 asid)
|
|
{
|
|
u32 rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
|
|
(asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 dcore_offset = dcore_id * DCORE_OFFSET;
|
|
u32 vdec_id, i, ports_offset, reg_val;
|
|
u8 edma_seq_base;
|
|
|
|
/* EDMA */
|
|
edma_seq_base = dcore_id * NUM_OF_EDMA_PER_DCORE;
|
|
if (prop->edma_enabled_mask & BIT(edma_seq_base)) {
|
|
WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
|
|
WREG32(mmDCORE0_EDMA0_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
|
|
}
|
|
|
|
if (prop->edma_enabled_mask & BIT(edma_seq_base + 1)) {
|
|
WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
|
|
WREG32(mmDCORE0_EDMA1_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
|
|
WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_ASID + dcore_offset, rw_asid);
|
|
WREG32(mmDCORE0_EDMA1_CORE_CTX_AXUSER_HB_MMU_BP + dcore_offset, 0);
|
|
}
|
|
|
|
/* Sync Mngr */
|
|
WREG32(mmDCORE0_SYNC_MNGR_GLBL_ASID_NONE_SEC_PRIV + dcore_offset, asid);
|
|
/*
|
|
* Sync Mngrs on dcores 1 - 3 are exposed to user, so must use user ASID
|
|
* for any access type
|
|
*/
|
|
if (dcore_id > 0) {
|
|
reg_val = (asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_RD_SHIFT) |
|
|
(asid << DCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID_WR_SHIFT);
|
|
WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_ASID + dcore_offset, reg_val);
|
|
WREG32(mmDCORE0_SYNC_MNGR_MSTR_IF_AXUSER_HB_MMU_BP + dcore_offset, 0);
|
|
}
|
|
|
|
WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_MMU_BP + dcore_offset, 0);
|
|
WREG32(mmDCORE0_MME_CTRL_LO_MME_AXUSER_HB_ASID + dcore_offset, rw_asid);
|
|
|
|
for (i = 0 ; i < NUM_OF_MME_SBTE_PORTS ; i++) {
|
|
ports_offset = i * DCORE_MME_SBTE_OFFSET;
|
|
WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_MMU_BP +
|
|
dcore_offset + ports_offset, 0);
|
|
WREG32(mmDCORE0_MME_SBTE0_MSTR_IF_AXUSER_HB_ASID +
|
|
dcore_offset + ports_offset, rw_asid);
|
|
}
|
|
|
|
for (i = 0 ; i < NUM_OF_MME_WB_PORTS ; i++) {
|
|
ports_offset = i * DCORE_MME_WB_OFFSET;
|
|
WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_MMU_BP +
|
|
dcore_offset + ports_offset, 0);
|
|
WREG32(mmDCORE0_MME_WB0_MSTR_IF_AXUSER_HB_ASID +
|
|
dcore_offset + ports_offset, rw_asid);
|
|
}
|
|
|
|
WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_MMU_BP + dcore_offset, 0);
|
|
WREG32(mmDCORE0_MME_QM_AXUSER_NONSECURED_HB_ASID + dcore_offset, rw_asid);
|
|
|
|
/*
|
|
* Decoders
|
|
*/
|
|
for (vdec_id = 0 ; vdec_id < NUM_OF_DEC_PER_DCORE ; vdec_id++) {
|
|
if (prop->decoder_enabled_mask & BIT(dcore_id * NUM_OF_DEC_PER_DCORE + vdec_id))
|
|
gaudi2_mmu_vdec_dcore_prepare(hdev, dcore_id, vdec_id, rw_asid, 0);
|
|
}
|
|
}
|
|
|
|
static void gudi2_mmu_vdec_shared_prepare(struct hl_device *hdev,
|
|
int shared_vdec_id, u32 rw_asid, u32 rw_mmu_bp)
|
|
{
|
|
u32 offset = (mmPCIE_VDEC1_BRDG_CTRL_BASE - mmPCIE_VDEC0_BRDG_CTRL_BASE) * shared_vdec_id;
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_DEC_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_ABNRM_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_L2C_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_NRM_HB_ASID + offset, rw_asid);
|
|
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmPCIE_VDEC0_BRDG_CTRL_AXUSER_MSIX_VCD_HB_ASID + offset, rw_asid);
|
|
}
|
|
|
|
static void gudi2_mmu_arc_farm_arc_dup_eng_prepare(struct hl_device *hdev, int arc_farm_id,
|
|
u32 rw_asid, u32 rw_mmu_bp)
|
|
{
|
|
u32 offset = (mmARC_FARM_ARC1_DUP_ENG_BASE - mmARC_FARM_ARC0_DUP_ENG_BASE) * arc_farm_id;
|
|
|
|
WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_MMU_BP + offset, rw_mmu_bp);
|
|
WREG32(mmARC_FARM_ARC0_DUP_ENG_AXUSER_HB_ASID + offset, rw_asid);
|
|
}
|
|
|
|
static void gaudi2_arc_mmu_prepare(struct hl_device *hdev, u32 cpu_id, u32 asid)
|
|
{
|
|
u32 reg_base, reg_offset, reg_val = 0;
|
|
|
|
reg_base = gaudi2_arc_blocks_bases[cpu_id];
|
|
|
|
/* Enable MMU and configure asid for all relevant ARC regions */
|
|
reg_val = FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_MMU_BP_MASK, 0);
|
|
reg_val |= FIELD_PREP(ARC_FARM_ARC0_AUX_ARC_REGION_CFG_0_ASID_MASK, asid);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION3_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION4_HBM0_FW);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION5_HBM1_GC_DATA);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION6_HBM2_GC_DATA);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION7_HBM3_GC_DATA);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION9_PCIE);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION10_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION11_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION12_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION13_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
|
|
reg_offset = ARC_REGION_CFG_OFFSET(ARC_REGION14_GENERAL);
|
|
WREG32(reg_base + reg_offset, reg_val);
|
|
}
|
|
|
|
static int gaudi2_arc_mmu_prepare_all(struct hl_device *hdev, u32 asid)
|
|
{
|
|
int i;
|
|
|
|
if (hdev->fw_components & FW_TYPE_BOOT_CPU)
|
|
return hl_fw_cpucp_engine_core_asid_set(hdev, asid);
|
|
|
|
for (i = CPU_ID_SCHED_ARC0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
|
|
gaudi2_arc_mmu_prepare(hdev, i, asid);
|
|
|
|
for (i = GAUDI2_QUEUE_ID_PDMA_0_0 ; i < GAUDI2_QUEUE_ID_CPU_PQ ; i += 4) {
|
|
if (!gaudi2_is_queue_enabled(hdev, i))
|
|
continue;
|
|
|
|
gaudi2_arc_mmu_prepare(hdev, gaudi2_queue_id_to_arc_id[i], asid);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_mmu_shared_prepare(struct hl_device *hdev, u32 asid)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 rw_asid, offset;
|
|
int rc, i;
|
|
|
|
rw_asid = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_MASK, asid) |
|
|
FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_MASK, asid);
|
|
|
|
WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
|
|
WREG32(mmPDMA0_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
|
|
WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_ASID, rw_asid);
|
|
WREG32(mmPDMA0_CORE_CTX_AXUSER_HB_MMU_BP, 0);
|
|
|
|
WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_ASID, rw_asid);
|
|
WREG32(mmPDMA1_QM_AXUSER_NONSECURED_HB_MMU_BP, 0);
|
|
WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_ASID, rw_asid);
|
|
WREG32(mmPDMA1_CORE_CTX_AXUSER_HB_MMU_BP, 0);
|
|
|
|
/* ROT */
|
|
for (i = 0 ; i < NUM_OF_ROT ; i++) {
|
|
offset = i * ROT_OFFSET;
|
|
WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_ASID + offset, rw_asid);
|
|
WREG32(mmROT0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
|
|
RMWREG32(mmROT0_CPL_QUEUE_AWUSER + offset, asid, MMUBP_ASID_MASK);
|
|
RMWREG32(mmROT0_DESC_HBW_ARUSER_LO + offset, asid, MMUBP_ASID_MASK);
|
|
RMWREG32(mmROT0_DESC_HBW_AWUSER_LO + offset, asid, MMUBP_ASID_MASK);
|
|
}
|
|
|
|
/* Shared Decoders are the last bits in the decoders mask */
|
|
if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 0))
|
|
gudi2_mmu_vdec_shared_prepare(hdev, 0, rw_asid, 0);
|
|
|
|
if (prop->decoder_enabled_mask & BIT(NUM_OF_DCORES * NUM_OF_DEC_PER_DCORE + 1))
|
|
gudi2_mmu_vdec_shared_prepare(hdev, 1, rw_asid, 0);
|
|
|
|
/* arc farm arc dup eng */
|
|
for (i = 0 ; i < NUM_OF_ARC_FARMS_ARC ; i++)
|
|
gudi2_mmu_arc_farm_arc_dup_eng_prepare(hdev, i, rw_asid, 0);
|
|
|
|
rc = gaudi2_arc_mmu_prepare_all(hdev, asid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_tpc_mmu_prepare(struct hl_device *hdev, int dcore, int inst, u32 offset,
|
|
struct iterate_module_ctx *ctx)
|
|
{
|
|
struct gaudi2_tpc_mmu_data *mmu_data = ctx->data;
|
|
|
|
WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_MMU_BP + offset, 0);
|
|
WREG32(mmDCORE0_TPC0_CFG_AXUSER_HB_ASID + offset, mmu_data->rw_asid);
|
|
WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_MMU_BP + offset, 0);
|
|
WREG32(mmDCORE0_TPC0_QM_AXUSER_NONSECURED_HB_ASID + offset, mmu_data->rw_asid);
|
|
}
|
|
|
|
/* zero the MMUBP and set the ASID */
|
|
static int gaudi2_mmu_prepare(struct hl_device *hdev, u32 asid)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
struct gaudi2_tpc_mmu_data tpc_mmu_data;
|
|
struct iterate_module_ctx tpc_iter = {
|
|
.fn = &gaudi2_tpc_mmu_prepare,
|
|
.data = &tpc_mmu_data,
|
|
};
|
|
int rc, i;
|
|
|
|
if (asid & ~DCORE0_HMMU0_STLB_ASID_ASID_MASK) {
|
|
dev_crit(hdev->dev, "asid %u is too big\n", asid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_MMU_MASK))
|
|
return 0;
|
|
|
|
rc = gaudi2_mmu_shared_prepare(hdev, asid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* configure DCORE MMUs */
|
|
tpc_mmu_data.rw_asid = (asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_RD_SHIFT) |
|
|
(asid << ARC_FARM_KDMA_CTX_AXUSER_HB_ASID_WR_SHIFT);
|
|
gaudi2_iterate_tpcs(hdev, &tpc_iter);
|
|
for (i = 0 ; i < NUM_OF_DCORES ; i++)
|
|
gaudi2_mmu_dcore_prepare(hdev, i, asid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool is_info_event(u32 event)
|
|
{
|
|
switch (event) {
|
|
case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void gaudi2_print_irq_info(struct hl_device *hdev, u16 event_type)
|
|
{
|
|
char desc[64] = "";
|
|
bool event_valid = false;
|
|
|
|
/* return in case of NIC status event - these events are received periodically and not as
|
|
* an indication to an error, thus not printed.
|
|
*/
|
|
if (event_type >= GAUDI2_EVENT_CPU0_STATUS_NIC0_ENG0 &&
|
|
event_type <= GAUDI2_EVENT_CPU11_STATUS_NIC11_ENG1)
|
|
return;
|
|
|
|
if (gaudi2_irq_map_table[event_type].valid) {
|
|
snprintf(desc, sizeof(desc), gaudi2_irq_map_table[event_type].name);
|
|
event_valid = true;
|
|
}
|
|
|
|
if (!event_valid)
|
|
snprintf(desc, sizeof(desc), "N/A");
|
|
|
|
if (is_info_event(event_type))
|
|
dev_info_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
|
|
event_type, desc);
|
|
else
|
|
dev_err_ratelimited(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
|
|
event_type, desc);
|
|
}
|
|
|
|
static bool gaudi2_handle_ecc_event(struct hl_device *hdev, u16 event_type,
|
|
struct hl_eq_ecc_data *ecc_data)
|
|
{
|
|
u64 ecc_address = 0, ecc_syndrom = 0;
|
|
u8 memory_wrapper_idx = 0;
|
|
|
|
ecc_address = le64_to_cpu(ecc_data->ecc_address);
|
|
ecc_syndrom = le64_to_cpu(ecc_data->ecc_syndrom);
|
|
memory_wrapper_idx = ecc_data->memory_wrapper_idx;
|
|
|
|
dev_err(hdev->dev,
|
|
"ECC error detected. address: %#llx. Syndrom: %#llx. block id %u. critical %u.\n",
|
|
ecc_address, ecc_syndrom, memory_wrapper_idx, ecc_data->is_critical);
|
|
|
|
return !!ecc_data->is_critical;
|
|
}
|
|
|
|
/*
|
|
* gaudi2_queue_idx_dec - decrement queue index (pi/ci) and handle wrap
|
|
*
|
|
* @idx: the current pi/ci value
|
|
* @q_len: the queue length (power of 2)
|
|
*
|
|
* @return the cyclically decremented index
|
|
*/
|
|
static inline u32 gaudi2_queue_idx_dec(u32 idx, u32 q_len)
|
|
{
|
|
u32 mask = q_len - 1;
|
|
|
|
/*
|
|
* modular decrement is equivalent to adding (queue_size -1)
|
|
* later we take LSBs to make sure the value is in the
|
|
* range [0, queue_len - 1]
|
|
*/
|
|
return (idx + q_len - 1) & mask;
|
|
}
|
|
|
|
/**
|
|
* gaudi2_print_sw_config_stream_data - print SW config stream data
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @stream: the QMAN's stream
|
|
* @qman_base: base address of QMAN registers block
|
|
*/
|
|
static void gaudi2_print_sw_config_stream_data(struct hl_device *hdev,
|
|
u32 stream, u64 qman_base)
|
|
{
|
|
u64 cq_ptr_lo, cq_ptr_hi, cq_tsize, cq_ptr;
|
|
u32 cq_ptr_lo_off, size;
|
|
|
|
cq_ptr_lo_off = mmDCORE0_TPC0_QM_CQ_PTR_LO_1 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0;
|
|
|
|
cq_ptr_lo = qman_base + (mmDCORE0_TPC0_QM_CQ_PTR_LO_0 - mmDCORE0_TPC0_QM_BASE) +
|
|
stream * cq_ptr_lo_off;
|
|
|
|
cq_ptr_hi = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_PTR_HI_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);
|
|
|
|
cq_tsize = cq_ptr_lo + (mmDCORE0_TPC0_QM_CQ_TSIZE_0 - mmDCORE0_TPC0_QM_CQ_PTR_LO_0);
|
|
|
|
cq_ptr = (((u64) RREG32(cq_ptr_hi)) << 32) | RREG32(cq_ptr_lo);
|
|
size = RREG32(cq_tsize);
|
|
dev_info(hdev->dev, "stop on err: stream: %u, addr: %#llx, size: %x\n",
|
|
stream, cq_ptr, size);
|
|
}
|
|
|
|
/**
|
|
* gaudi2_print_last_pqes_on_err - print last PQEs on error
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @qid_base: first QID of the QMAN (out of 4 streams)
|
|
* @stream: the QMAN's stream
|
|
* @qman_base: base address of QMAN registers block
|
|
* @pr_sw_conf: if true print the SW config stream data (CQ PTR and SIZE)
|
|
*/
|
|
static void gaudi2_print_last_pqes_on_err(struct hl_device *hdev, u32 qid_base, u32 stream,
|
|
u64 qman_base, bool pr_sw_conf)
|
|
{
|
|
u32 ci, qm_ci_stream_off;
|
|
struct hl_hw_queue *q;
|
|
u64 pq_ci;
|
|
int i;
|
|
|
|
q = &hdev->kernel_queues[qid_base + stream];
|
|
|
|
qm_ci_stream_off = mmDCORE0_TPC0_QM_PQ_CI_1 - mmDCORE0_TPC0_QM_PQ_CI_0;
|
|
pq_ci = qman_base + (mmDCORE0_TPC0_QM_PQ_CI_0 - mmDCORE0_TPC0_QM_BASE) +
|
|
stream * qm_ci_stream_off;
|
|
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
if (pr_sw_conf)
|
|
gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);
|
|
|
|
ci = RREG32(pq_ci);
|
|
|
|
/* we should start printing form ci -1 */
|
|
ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);
|
|
|
|
for (i = 0; i < PQ_FETCHER_CACHE_SIZE; i++) {
|
|
struct hl_bd *bd;
|
|
u64 addr;
|
|
u32 len;
|
|
|
|
bd = q->kernel_address;
|
|
bd += ci;
|
|
|
|
len = le32_to_cpu(bd->len);
|
|
/* len 0 means uninitialized entry- break */
|
|
if (!len)
|
|
break;
|
|
|
|
addr = le64_to_cpu(bd->ptr);
|
|
|
|
dev_info(hdev->dev, "stop on err PQE(stream %u): ci: %u, addr: %#llx, size: %x\n",
|
|
stream, ci, addr, len);
|
|
|
|
/* get previous ci, wrap if needed */
|
|
ci = gaudi2_queue_idx_dec(ci, HL_QUEUE_LENGTH);
|
|
}
|
|
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
}
|
|
|
|
/**
|
|
* print_qman_data_on_err - extract QMAN data on error
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @qid_base: first QID of the QMAN (out of 4 streams)
|
|
* @stream: the QMAN's stream
|
|
* @qman_base: base address of QMAN registers block
|
|
*
|
|
* This function attempt to extract as much data as possible on QMAN error.
|
|
* On upper CP print the SW config stream data and last 8 PQEs.
|
|
* On lower CP print SW config data and last PQEs of ALL 4 upper CPs
|
|
*/
|
|
static void print_qman_data_on_err(struct hl_device *hdev, u32 qid_base, u32 stream, u64 qman_base)
|
|
{
|
|
u32 i;
|
|
|
|
if (stream != QMAN_STREAMS) {
|
|
gaudi2_print_last_pqes_on_err(hdev, qid_base, stream, qman_base, true);
|
|
return;
|
|
}
|
|
|
|
gaudi2_print_sw_config_stream_data(hdev, stream, qman_base);
|
|
|
|
for (i = 0 ; i < QMAN_STREAMS ; i++)
|
|
gaudi2_print_last_pqes_on_err(hdev, qid_base, i, qman_base, false);
|
|
}
|
|
|
|
static void gaudi2_handle_qman_err_generic(struct hl_device *hdev, const char *qm_name,
|
|
u64 qman_base, u32 qid_base)
|
|
{
|
|
u32 i, j, glbl_sts_val, arb_err_val, num_error_causes;
|
|
u64 glbl_sts_addr, arb_err_addr;
|
|
char reg_desc[32];
|
|
|
|
glbl_sts_addr = qman_base + (mmDCORE0_TPC0_QM_GLBL_ERR_STS_0 - mmDCORE0_TPC0_QM_BASE);
|
|
arb_err_addr = qman_base + (mmDCORE0_TPC0_QM_ARB_ERR_CAUSE - mmDCORE0_TPC0_QM_BASE);
|
|
|
|
/* Iterate through all stream GLBL_ERR_STS registers + Lower CP */
|
|
for (i = 0 ; i < QMAN_STREAMS + 1 ; i++) {
|
|
glbl_sts_val = RREG32(glbl_sts_addr + 4 * i);
|
|
|
|
if (!glbl_sts_val)
|
|
continue;
|
|
|
|
if (i == QMAN_STREAMS) {
|
|
snprintf(reg_desc, ARRAY_SIZE(reg_desc), "LowerCP");
|
|
num_error_causes = GAUDI2_NUM_OF_QM_LCP_ERR_CAUSE;
|
|
} else {
|
|
snprintf(reg_desc, ARRAY_SIZE(reg_desc), "stream%u", i);
|
|
num_error_causes = GAUDI2_NUM_OF_QM_ERR_CAUSE;
|
|
}
|
|
|
|
for (j = 0 ; j < num_error_causes ; j++)
|
|
if (glbl_sts_val & BIT(j))
|
|
dev_err_ratelimited(hdev->dev, "%s %s. err cause: %s\n",
|
|
qm_name, reg_desc,
|
|
i == QMAN_STREAMS ?
|
|
gaudi2_qman_lower_cp_error_cause[j] :
|
|
gaudi2_qman_error_cause[j]);
|
|
|
|
print_qman_data_on_err(hdev, qid_base, i, qman_base);
|
|
}
|
|
|
|
arb_err_val = RREG32(arb_err_addr);
|
|
|
|
if (!arb_err_val)
|
|
return;
|
|
|
|
for (j = 0 ; j < GAUDI2_NUM_OF_QM_ARB_ERR_CAUSE ; j++) {
|
|
if (arb_err_val & BIT(j))
|
|
dev_err_ratelimited(hdev->dev, "%s ARB_ERR. err cause: %s\n",
|
|
qm_name, gaudi2_qman_arb_error_cause[j]);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_razwi_rr_hbw_shared_printf_info(struct hl_device *hdev,
|
|
u64 rtr_mstr_if_base_addr, bool is_write, char *name,
|
|
bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u32 razwi_hi, razwi_lo, razwi_xy;
|
|
|
|
if (is_write) {
|
|
if (read_razwi_regs) {
|
|
razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HI);
|
|
razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_LO);
|
|
razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_XY);
|
|
} else {
|
|
razwi_hi = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_hi_reg);
|
|
razwi_lo = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_lo_reg);
|
|
razwi_xy = le32_to_cpu(razwi_info->hbw.rr_aw_razwi_id_reg);
|
|
}
|
|
} else {
|
|
if (read_razwi_regs) {
|
|
razwi_hi = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HI);
|
|
razwi_lo = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_LO);
|
|
razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_XY);
|
|
} else {
|
|
razwi_hi = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_hi_reg);
|
|
razwi_lo = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_lo_reg);
|
|
razwi_xy = le32_to_cpu(razwi_info->hbw.rr_ar_razwi_id_reg);
|
|
}
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"%s-RAZWI SHARED RR HBW %s error, address %#llx, Initiator coordinates 0x%x\n",
|
|
name, is_write ? "WR" : "RD", (u64)razwi_hi << 32 | razwi_lo, razwi_xy);
|
|
}
|
|
|
|
static void gaudi2_razwi_rr_lbw_shared_printf_info(struct hl_device *hdev,
|
|
u64 rtr_mstr_if_base_addr, bool is_write, char *name,
|
|
bool read_razwi_regs, struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u32 razwi_addr, razwi_xy;
|
|
|
|
if (is_write) {
|
|
if (read_razwi_regs) {
|
|
razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI);
|
|
razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_XY);
|
|
} else {
|
|
razwi_addr = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_reg);
|
|
razwi_xy = le32_to_cpu(razwi_info->lbw.rr_aw_razwi_id_reg);
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"%s-RAZWI SHARED RR LBW WR error, mstr_if 0x%llx, captured address 0x%x, Initiator coordinates 0x%x\n",
|
|
name, rtr_mstr_if_base_addr, razwi_addr, razwi_xy);
|
|
} else {
|
|
if (read_razwi_regs) {
|
|
razwi_addr = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI);
|
|
razwi_xy = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_XY);
|
|
} else {
|
|
razwi_addr = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_reg);
|
|
razwi_xy = le32_to_cpu(razwi_info->lbw.rr_ar_razwi_id_reg);
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"%s-RAZWI SHARED RR LBW AR error, mstr_if 0x%llx, captured address 0x%x Initiator coordinates 0x%x\n",
|
|
name, rtr_mstr_if_base_addr, razwi_addr, razwi_xy);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function handles RR(Range register) hit events.
|
|
* raised be initiators not PSOC RAZWI.
|
|
*/
|
|
static void gaudi2_ack_module_razwi_event_handler(struct hl_device *hdev,
|
|
enum razwi_event_sources module, u8 module_idx,
|
|
u8 module_sub_idx, struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
bool via_sft = false, read_razwi_regs = false;
|
|
u32 rtr_id, dcore_id, dcore_rtr_id, sft_id;
|
|
u64 rtr_mstr_if_base_addr;
|
|
u32 hbw_shrd_aw = 0, hbw_shrd_ar = 0;
|
|
u32 lbw_shrd_aw = 0, lbw_shrd_ar = 0;
|
|
char initiator_name[64];
|
|
|
|
if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX) || !razwi_info)
|
|
read_razwi_regs = true;
|
|
|
|
switch (module) {
|
|
case RAZWI_TPC:
|
|
rtr_id = gaudi2_tpc_initiator_rtr_id[module_idx];
|
|
sprintf(initiator_name, "TPC_%u", module_idx);
|
|
break;
|
|
case RAZWI_MME:
|
|
sprintf(initiator_name, "MME_%u", module_idx);
|
|
switch (module_sub_idx) {
|
|
case MME_WAP0:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap0;
|
|
break;
|
|
case MME_WAP1:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].wap1;
|
|
break;
|
|
case MME_WRITE:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].write;
|
|
break;
|
|
case MME_READ:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].read;
|
|
break;
|
|
case MME_SBTE0:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte0;
|
|
break;
|
|
case MME_SBTE1:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte1;
|
|
break;
|
|
case MME_SBTE2:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte2;
|
|
break;
|
|
case MME_SBTE3:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte3;
|
|
break;
|
|
case MME_SBTE4:
|
|
rtr_id = gaudi2_mme_initiator_rtr_id[module_idx].sbte4;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
break;
|
|
case RAZWI_EDMA:
|
|
sft_id = gaudi2_edma_initiator_sft_id[module_idx].interface_id;
|
|
dcore_id = gaudi2_edma_initiator_sft_id[module_idx].dcore_id;
|
|
via_sft = true;
|
|
sprintf(initiator_name, "EDMA_%u", module_idx);
|
|
break;
|
|
case RAZWI_PDMA:
|
|
rtr_id = gaudi2_pdma_initiator_rtr_id[module_idx];
|
|
sprintf(initiator_name, "PDMA_%u", module_idx);
|
|
break;
|
|
case RAZWI_NIC:
|
|
rtr_id = gaudi2_nic_initiator_rtr_id[module_idx];
|
|
sprintf(initiator_name, "NIC_%u", module_idx);
|
|
break;
|
|
case RAZWI_DEC:
|
|
rtr_id = gaudi2_dec_initiator_rtr_id[module_idx];
|
|
sprintf(initiator_name, "DEC_%u", module_idx);
|
|
break;
|
|
case RAZWI_ROT:
|
|
rtr_id = gaudi2_rot_initiator_rtr_id[module_idx];
|
|
sprintf(initiator_name, "ROT_%u", module_idx);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (!read_razwi_regs) {
|
|
if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_HBW) {
|
|
hbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) &
|
|
RAZWI_HAPPENED_AW;
|
|
hbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) &
|
|
RAZWI_HAPPENED_AR;
|
|
} else if (le32_to_cpu(razwi_info->razwi_happened_mask) & RAZWI_HAPPENED_LBW) {
|
|
lbw_shrd_aw = le32_to_cpu(razwi_info->razwi_happened_mask) &
|
|
RAZWI_HAPPENED_AW;
|
|
lbw_shrd_ar = le32_to_cpu(razwi_info->razwi_happened_mask) &
|
|
RAZWI_HAPPENED_AR;
|
|
}
|
|
rtr_mstr_if_base_addr = 0;
|
|
|
|
goto dump_info;
|
|
}
|
|
|
|
/* Find router mstr_if register base */
|
|
if (via_sft) {
|
|
rtr_mstr_if_base_addr = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE +
|
|
dcore_id * SFT_DCORE_OFFSET +
|
|
sft_id * SFT_IF_OFFSET +
|
|
RTR_MSTR_IF_OFFSET;
|
|
} else {
|
|
dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE;
|
|
dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE;
|
|
rtr_mstr_if_base_addr = mmDCORE0_RTR0_CTRL_BASE +
|
|
dcore_id * DCORE_OFFSET +
|
|
dcore_rtr_id * DCORE_RTR_OFFSET +
|
|
RTR_MSTR_IF_OFFSET;
|
|
}
|
|
|
|
/* Find out event cause by reading "RAZWI_HAPPENED" registers */
|
|
hbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED);
|
|
|
|
hbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED);
|
|
|
|
if (via_sft) {
|
|
/* SFT has separate MSTR_IF for LBW, only there we can
|
|
* read the LBW razwi related registers
|
|
*/
|
|
u64 base;
|
|
|
|
base = mmSFT0_HBW_RTR_IF0_RTR_CTRL_BASE + dcore_id * SFT_DCORE_OFFSET +
|
|
RTR_LBW_MSTR_IF_OFFSET;
|
|
|
|
lbw_shrd_aw = RREG32(base + RR_SHRD_LBW_AW_RAZWI_HAPPENED);
|
|
|
|
lbw_shrd_ar = RREG32(base + RR_SHRD_LBW_AR_RAZWI_HAPPENED);
|
|
} else {
|
|
lbw_shrd_aw = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED);
|
|
|
|
lbw_shrd_ar = RREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED);
|
|
}
|
|
|
|
dump_info:
|
|
/* check if there is no RR razwi indication at all */
|
|
if (!hbw_shrd_aw && !hbw_shrd_ar && !lbw_shrd_aw && !lbw_shrd_ar)
|
|
return;
|
|
|
|
if (hbw_shrd_aw) {
|
|
gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true,
|
|
initiator_name, read_razwi_regs, razwi_info);
|
|
|
|
/* Clear event indication */
|
|
if (read_razwi_regs)
|
|
WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED, hbw_shrd_aw);
|
|
}
|
|
|
|
if (hbw_shrd_ar) {
|
|
gaudi2_razwi_rr_hbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false,
|
|
initiator_name, read_razwi_regs, razwi_info);
|
|
|
|
/* Clear event indication */
|
|
if (read_razwi_regs)
|
|
WREG32(rtr_mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED, hbw_shrd_ar);
|
|
}
|
|
|
|
if (lbw_shrd_aw) {
|
|
gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, true,
|
|
initiator_name, read_razwi_regs, razwi_info);
|
|
|
|
/* Clear event indication */
|
|
if (read_razwi_regs)
|
|
WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED, lbw_shrd_aw);
|
|
}
|
|
|
|
if (lbw_shrd_ar) {
|
|
gaudi2_razwi_rr_lbw_shared_printf_info(hdev, rtr_mstr_if_base_addr, false,
|
|
initiator_name, read_razwi_regs, razwi_info);
|
|
|
|
/* Clear event indication */
|
|
if (read_razwi_regs)
|
|
WREG32(rtr_mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED, lbw_shrd_ar);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_check_if_razwi_happened(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u8 mod_idx, sub_mod;
|
|
|
|
/* check all TPCs */
|
|
for (mod_idx = 0 ; mod_idx < (NUM_OF_TPC_PER_DCORE * NUM_OF_DCORES + 1) ; mod_idx++) {
|
|
if (prop->tpc_enabled_mask & BIT(mod_idx))
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, mod_idx, 0, NULL);
|
|
}
|
|
|
|
/* check all MMEs */
|
|
for (mod_idx = 0 ; mod_idx < (NUM_OF_MME_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
|
|
for (sub_mod = MME_WAP0 ; sub_mod < MME_INITIATORS_MAX ; sub_mod++)
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mod_idx,
|
|
sub_mod, NULL);
|
|
|
|
/* check all EDMAs */
|
|
for (mod_idx = 0 ; mod_idx < (NUM_OF_EDMA_PER_DCORE * NUM_OF_DCORES) ; mod_idx++)
|
|
if (prop->edma_enabled_mask & BIT(mod_idx))
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_EDMA, mod_idx, 0, NULL);
|
|
|
|
/* check all PDMAs */
|
|
for (mod_idx = 0 ; mod_idx < NUM_OF_PDMA ; mod_idx++)
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, mod_idx, 0, NULL);
|
|
|
|
/* check all NICs */
|
|
for (mod_idx = 0 ; mod_idx < NIC_NUMBER_OF_PORTS ; mod_idx++)
|
|
if (hdev->nic_ports_mask & BIT(mod_idx))
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_NIC, mod_idx >> 1, 0,
|
|
NULL);
|
|
|
|
/* check all DECs */
|
|
for (mod_idx = 0 ; mod_idx < NUMBER_OF_DEC ; mod_idx++)
|
|
if (prop->decoder_enabled_mask & BIT(mod_idx))
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, mod_idx, 0, NULL);
|
|
|
|
/* check all ROTs */
|
|
for (mod_idx = 0 ; mod_idx < NUM_OF_ROT ; mod_idx++)
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, mod_idx, 0, NULL);
|
|
}
|
|
|
|
static const char *gaudi2_get_initiators_name(u32 rtr_id)
|
|
{
|
|
switch (rtr_id) {
|
|
case DCORE0_RTR0:
|
|
return "DEC0/1/8/9, TPC24, PDMA0/1, PMMU, PCIE_IF, EDMA0/2, HMMU0/2/4/6, CPU";
|
|
case DCORE0_RTR1:
|
|
return "TPC0/1";
|
|
case DCORE0_RTR2:
|
|
return "TPC2/3";
|
|
case DCORE0_RTR3:
|
|
return "TPC4/5";
|
|
case DCORE0_RTR4:
|
|
return "MME0_SBTE0/1";
|
|
case DCORE0_RTR5:
|
|
return "MME0_WAP0/SBTE2";
|
|
case DCORE0_RTR6:
|
|
return "MME0_CTRL_WR/SBTE3";
|
|
case DCORE0_RTR7:
|
|
return "MME0_WAP1/CTRL_RD/SBTE4";
|
|
case DCORE1_RTR0:
|
|
return "MME1_WAP1/CTRL_RD/SBTE4";
|
|
case DCORE1_RTR1:
|
|
return "MME1_CTRL_WR/SBTE3";
|
|
case DCORE1_RTR2:
|
|
return "MME1_WAP0/SBTE2";
|
|
case DCORE1_RTR3:
|
|
return "MME1_SBTE0/1";
|
|
case DCORE1_RTR4:
|
|
return "TPC10/11";
|
|
case DCORE1_RTR5:
|
|
return "TPC8/9";
|
|
case DCORE1_RTR6:
|
|
return "TPC6/7";
|
|
case DCORE1_RTR7:
|
|
return "DEC2/3, NIC0/1/2/3/4, ARC_FARM, KDMA, EDMA1/3, HMMU1/3/5/7";
|
|
case DCORE2_RTR0:
|
|
return "DEC4/5, NIC5/6/7/8, EDMA4/6, HMMU8/10/12/14, ROT0";
|
|
case DCORE2_RTR1:
|
|
return "TPC16/17";
|
|
case DCORE2_RTR2:
|
|
return "TPC14/15";
|
|
case DCORE2_RTR3:
|
|
return "TPC12/13";
|
|
case DCORE2_RTR4:
|
|
return "MME2_SBTE0/1";
|
|
case DCORE2_RTR5:
|
|
return "MME2_WAP0/SBTE2";
|
|
case DCORE2_RTR6:
|
|
return "MME2_CTRL_WR/SBTE3";
|
|
case DCORE2_RTR7:
|
|
return "MME2_WAP1/CTRL_RD/SBTE4";
|
|
case DCORE3_RTR0:
|
|
return "MME3_WAP1/CTRL_RD/SBTE4";
|
|
case DCORE3_RTR1:
|
|
return "MME3_CTRL_WR/SBTE3";
|
|
case DCORE3_RTR2:
|
|
return "MME3_WAP0/SBTE2";
|
|
case DCORE3_RTR3:
|
|
return "MME3_SBTE0/1";
|
|
case DCORE3_RTR4:
|
|
return "TPC18/19";
|
|
case DCORE3_RTR5:
|
|
return "TPC20/21";
|
|
case DCORE3_RTR6:
|
|
return "TPC22/23";
|
|
case DCORE3_RTR7:
|
|
return "DEC6/7, NIC9/10/11, EDMA5/7, HMMU9/11/13/15, ROT1, PSOC";
|
|
default:
|
|
return "N/A";
|
|
}
|
|
}
|
|
|
|
static void gaudi2_razwi_unmapped_addr_hbw_printf_info(struct hl_device *hdev, u32 rtr_id,
|
|
u64 rtr_ctrl_base_addr, bool is_write)
|
|
{
|
|
u32 razwi_hi, razwi_lo;
|
|
|
|
if (is_write) {
|
|
razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_HI);
|
|
razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_ADDR_LO);
|
|
|
|
/* Clear set indication */
|
|
WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET, 0x1);
|
|
} else {
|
|
razwi_hi = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_HI);
|
|
razwi_lo = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_ADDR_LO);
|
|
|
|
/* Clear set indication */
|
|
WREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET, 0x1);
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"RAZWI PSOC unmapped HBW %s error, rtr id %u, address %#llx\n",
|
|
is_write ? "WR" : "RD", rtr_id, (u64)razwi_hi << 32 | razwi_lo);
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
|
|
}
|
|
|
|
static void gaudi2_razwi_unmapped_addr_lbw_printf_info(struct hl_device *hdev, u32 rtr_id,
|
|
u64 rtr_ctrl_base_addr, bool is_write)
|
|
{
|
|
u32 razwi_addr;
|
|
|
|
if (is_write) {
|
|
razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_ADDR);
|
|
|
|
/* Clear set indication */
|
|
WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET, 0x1);
|
|
} else {
|
|
razwi_addr = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_ADDR);
|
|
|
|
/* Clear set indication */
|
|
WREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET, 0x1);
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"RAZWI PSOC unmapped LBW %s error, rtr id %u, address %#x\n",
|
|
is_write ? "WR" : "RD", rtr_id, razwi_addr);
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Initiators: %s\n", gaudi2_get_initiators_name(rtr_id));
|
|
}
|
|
|
|
/* PSOC RAZWI interrupt occurs only when trying to access a bad address */
|
|
static void gaudi2_ack_psoc_razwi_event_handler(struct hl_device *hdev)
|
|
{
|
|
u32 hbw_aw_set, hbw_ar_set, lbw_aw_set, lbw_ar_set, rtr_id, dcore_id, dcore_rtr_id, xy,
|
|
razwi_mask_info, razwi_intr = 0;
|
|
int rtr_map_arr_len = NUM_OF_RTR_PER_DCORE * NUM_OF_DCORES;
|
|
u64 rtr_ctrl_base_addr;
|
|
|
|
if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX)) {
|
|
razwi_intr = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT);
|
|
if (!razwi_intr)
|
|
return;
|
|
}
|
|
|
|
razwi_mask_info = RREG32(mmPSOC_GLOBAL_CONF_RAZWI_MASK_INFO);
|
|
xy = FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_L_MASK, razwi_mask_info);
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"PSOC RAZWI interrupt: Mask %d, AR %d, AW %d, AXUSER_L 0x%x AXUSER_H 0x%x\n",
|
|
FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_MASK_MASK, razwi_mask_info),
|
|
FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AR_MASK, razwi_mask_info),
|
|
FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_WAS_AW_MASK, razwi_mask_info),
|
|
xy,
|
|
FIELD_GET(PSOC_GLOBAL_CONF_RAZWI_MASK_INFO_AXUSER_H_MASK, razwi_mask_info));
|
|
|
|
if (xy == 0) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"PSOC RAZWI interrupt: received event from 0 rtr coordinates\n");
|
|
goto clear;
|
|
}
|
|
|
|
/* Find router id by router coordinates */
|
|
for (rtr_id = 0 ; rtr_id < rtr_map_arr_len ; rtr_id++)
|
|
if (rtr_coordinates_to_rtr_id[rtr_id] == xy)
|
|
break;
|
|
|
|
if (rtr_id == rtr_map_arr_len) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"PSOC RAZWI interrupt: invalid rtr coordinates (0x%x)\n", xy);
|
|
goto clear;
|
|
}
|
|
|
|
/* Find router mstr_if register base */
|
|
dcore_id = rtr_id / NUM_OF_RTR_PER_DCORE;
|
|
dcore_rtr_id = rtr_id % NUM_OF_RTR_PER_DCORE;
|
|
rtr_ctrl_base_addr = mmDCORE0_RTR0_CTRL_BASE + dcore_id * DCORE_OFFSET +
|
|
dcore_rtr_id * DCORE_RTR_OFFSET;
|
|
|
|
hbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AW_SET);
|
|
hbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_HBW_AR_SET);
|
|
lbw_aw_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AW_SET);
|
|
lbw_ar_set = RREG32(rtr_ctrl_base_addr + DEC_RAZWI_LBW_AR_SET);
|
|
|
|
if (hbw_aw_set)
|
|
gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
|
|
rtr_ctrl_base_addr, true);
|
|
|
|
if (hbw_ar_set)
|
|
gaudi2_razwi_unmapped_addr_hbw_printf_info(hdev, rtr_id,
|
|
rtr_ctrl_base_addr, false);
|
|
|
|
if (lbw_aw_set)
|
|
gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
|
|
rtr_ctrl_base_addr, true);
|
|
|
|
if (lbw_ar_set)
|
|
gaudi2_razwi_unmapped_addr_lbw_printf_info(hdev, rtr_id,
|
|
rtr_ctrl_base_addr, false);
|
|
|
|
clear:
|
|
/* Clear Interrupts only on pldm or if f/w doesn't handle interrupts */
|
|
if (hdev->pldm || !(hdev->fw_components & FW_TYPE_LINUX))
|
|
WREG32(mmPSOC_GLOBAL_CONF_RAZWI_INTERRUPT, razwi_intr);
|
|
}
|
|
|
|
static void _gaudi2_handle_qm_sei_err(struct hl_device *hdev, u64 qman_base)
|
|
{
|
|
u32 i, sts_val, sts_clr_val = 0;
|
|
|
|
sts_val = RREG32(qman_base + QM_SEI_STATUS_OFFSET);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_QM_SEI_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "QM SEI. err cause: %s\n",
|
|
gaudi2_qm_sei_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
WREG32(qman_base + QM_SEI_STATUS_OFFSET, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_qm_sei_err(struct hl_device *hdev, u16 event_type,
|
|
struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u64 qman_base;
|
|
u8 index;
|
|
|
|
switch (event_type) {
|
|
case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC23_AXI_ERR_RSP:
|
|
index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
|
|
qman_base = mmDCORE0_TPC0_QM_BASE +
|
|
(index / NUM_OF_TPC_PER_DCORE) * DCORE_OFFSET +
|
|
(index % NUM_OF_TPC_PER_DCORE) * DCORE_TPC_OFFSET;
|
|
break;
|
|
case GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
|
|
qman_base = mmDCORE0_TPC6_QM_BASE;
|
|
break;
|
|
case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
|
|
index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
|
|
(GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
|
|
GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
|
|
qman_base = mmDCORE0_MME_QM_BASE + index * DCORE_OFFSET;
|
|
break;
|
|
case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
|
|
index = event_type - GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP;
|
|
qman_base = mmPDMA0_QM_BASE + index * PDMA_OFFSET;
|
|
break;
|
|
case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
|
|
index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
|
|
qman_base = mmROT0_QM_BASE + index * ROT_OFFSET;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
_gaudi2_handle_qm_sei_err(hdev, qman_base);
|
|
|
|
/* There is a single event per NIC macro, so should check its both QMAN blocks */
|
|
if (event_type >= GAUDI2_EVENT_NIC0_AXI_ERROR_RESPONSE &&
|
|
event_type <= GAUDI2_EVENT_NIC11_AXI_ERROR_RESPONSE)
|
|
_gaudi2_handle_qm_sei_err(hdev, qman_base + NIC_QM_OFFSET);
|
|
|
|
/* check if RAZWI happened */
|
|
if (razwi_info)
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_PDMA, 0, 0, razwi_info);
|
|
}
|
|
|
|
static void gaudi2_handle_qman_err(struct hl_device *hdev, u16 event_type)
|
|
{
|
|
u32 qid_base;
|
|
u64 qman_base;
|
|
char desc[32];
|
|
u8 index;
|
|
|
|
switch (event_type) {
|
|
case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_TPC5_QM:
|
|
index = event_type - GAUDI2_EVENT_TPC0_QM;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 + index * QMAN_STREAMS;
|
|
qman_base = mmDCORE0_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_TPC%d_QM", index);
|
|
break;
|
|
case GAUDI2_EVENT_TPC6_QM ... GAUDI2_EVENT_TPC11_QM:
|
|
index = event_type - GAUDI2_EVENT_TPC6_QM;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 + index * QMAN_STREAMS;
|
|
qman_base = mmDCORE1_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_TPC%d_QM", index);
|
|
break;
|
|
case GAUDI2_EVENT_TPC12_QM ... GAUDI2_EVENT_TPC17_QM:
|
|
index = event_type - GAUDI2_EVENT_TPC12_QM;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 + index * QMAN_STREAMS;
|
|
qman_base = mmDCORE2_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_TPC%d_QM", index);
|
|
break;
|
|
case GAUDI2_EVENT_TPC18_QM ... GAUDI2_EVENT_TPC23_QM:
|
|
index = event_type - GAUDI2_EVENT_TPC18_QM;
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 + index * QMAN_STREAMS;
|
|
qman_base = mmDCORE3_TPC0_QM_BASE + index * DCORE_TPC_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_TPC%d_QM", index);
|
|
break;
|
|
case GAUDI2_EVENT_TPC24_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_TPC_6_0;
|
|
qman_base = mmDCORE0_TPC6_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_TPC6_QM");
|
|
break;
|
|
case GAUDI2_EVENT_MME0_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_MME_0_0;
|
|
qman_base = mmDCORE0_MME_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_MME_QM");
|
|
break;
|
|
case GAUDI2_EVENT_MME1_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE1_MME_0_0;
|
|
qman_base = mmDCORE1_MME_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_MME_QM");
|
|
break;
|
|
case GAUDI2_EVENT_MME2_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE2_MME_0_0;
|
|
qman_base = mmDCORE2_MME_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_MME_QM");
|
|
break;
|
|
case GAUDI2_EVENT_MME3_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE3_MME_0_0;
|
|
qman_base = mmDCORE3_MME_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_MME_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA0_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0;
|
|
qman_base = mmDCORE0_EDMA0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_EDMA0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA1_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0;
|
|
qman_base = mmDCORE0_EDMA1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_EDMA1_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA2_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0;
|
|
qman_base = mmDCORE1_EDMA0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_EDMA0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA3_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0;
|
|
qman_base = mmDCORE1_EDMA1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_EDMA1_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA4_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0;
|
|
qman_base = mmDCORE2_EDMA0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_EDMA0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA5_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0;
|
|
qman_base = mmDCORE2_EDMA1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_EDMA1_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA6_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0;
|
|
qman_base = mmDCORE3_EDMA0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_EDMA0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_HDMA7_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0;
|
|
qman_base = mmDCORE3_EDMA1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_EDMA1_QM");
|
|
break;
|
|
case GAUDI2_EVENT_PDMA0_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_PDMA_0_0;
|
|
qman_base = mmPDMA0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "PDMA0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_PDMA1_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_PDMA_1_0;
|
|
qman_base = mmPDMA1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "PDMA1_QM");
|
|
break;
|
|
case GAUDI2_EVENT_ROTATOR0_ROT0_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_ROT_0_0;
|
|
qman_base = mmROT0_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "ROTATOR0_QM");
|
|
break;
|
|
case GAUDI2_EVENT_ROTATOR1_ROT1_QM:
|
|
qid_base = GAUDI2_QUEUE_ID_ROT_1_0;
|
|
qman_base = mmROT1_QM_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "ROTATOR1_QM");
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
gaudi2_handle_qman_err_generic(hdev, desc, qman_base, qid_base);
|
|
|
|
/* Handle EDMA QM SEI here because there is no AXI error response event for EDMA */
|
|
if (event_type >= GAUDI2_EVENT_HDMA2_QM && event_type <= GAUDI2_EVENT_HDMA5_QM)
|
|
_gaudi2_handle_qm_sei_err(hdev, qman_base);
|
|
}
|
|
|
|
static void gaudi2_handle_arc_farm_sei_err(struct hl_device *hdev)
|
|
{
|
|
u32 i, sts_val, sts_clr_val = 0;
|
|
|
|
sts_val = RREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_STS);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_ARC_SEI_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "ARC SEI. err cause: %s\n",
|
|
gaudi2_arc_sei_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
WREG32(mmARC_FARM_ARC0_AUX_ARC_SEI_INTR_CLR, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_cpu_sei_err(struct hl_device *hdev)
|
|
{
|
|
u32 i, sts_val, sts_clr_val = 0;
|
|
|
|
sts_val = RREG32(mmCPU_IF_CPU_SEI_INTR_STS);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_CPU_SEI_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "CPU SEI. err cause: %s\n",
|
|
gaudi2_cpu_sei_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
WREG32(mmCPU_IF_CPU_SEI_INTR_CLR, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_rot_err(struct hl_device *hdev, u8 rot_index,
|
|
struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause)
|
|
{
|
|
u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_ROT_ERR_CAUSE ; i++)
|
|
if (intr_cause_data & BIT(i))
|
|
dev_err_ratelimited(hdev->dev, "ROT%u. err cause: %s\n",
|
|
rot_index, guadi2_rot_error_cause[i]);
|
|
|
|
/* check if RAZWI happened */
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_ROT, rot_index, 0,
|
|
&razwi_with_intr_cause->razwi_info);
|
|
}
|
|
|
|
static void gaudi2_tpc_ack_interrupts(struct hl_device *hdev, u8 tpc_index, char *interrupt_name,
|
|
struct hl_eq_razwi_with_intr_cause *razwi_with_intr_cause)
|
|
{
|
|
u64 intr_cause_data = le64_to_cpu(razwi_with_intr_cause->intr_cause.intr_cause_data);
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_TPC_INTR_CAUSE ; i++)
|
|
if (intr_cause_data & BIT(i))
|
|
dev_err_ratelimited(hdev->dev, "TPC%d_%s interrupt cause: %s\n",
|
|
tpc_index, interrupt_name, gaudi2_tpc_interrupts_cause[i]);
|
|
|
|
/* check if RAZWI happened */
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_TPC, tpc_index, 0,
|
|
&razwi_with_intr_cause->razwi_info);
|
|
}
|
|
|
|
static void gaudi2_handle_dec_err(struct hl_device *hdev, u8 dec_index, const char *interrupt_name,
|
|
struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u32 sts_addr, sts_val, sts_clr_val = 0;
|
|
int i;
|
|
|
|
if (dec_index < NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES)
|
|
/* DCORE DEC */
|
|
sts_addr = mmDCORE0_VDEC0_BRDG_CTRL_CAUSE_INTR +
|
|
DCORE_OFFSET * (dec_index / NUM_OF_DEC_PER_DCORE) +
|
|
DCORE_VDEC_OFFSET * (dec_index % NUM_OF_DEC_PER_DCORE);
|
|
else
|
|
/* PCIE DEC */
|
|
sts_addr = mmPCIE_VDEC0_BRDG_CTRL_CAUSE_INTR + PCIE_VDEC_OFFSET *
|
|
(dec_index - NUM_OF_VDEC_PER_DCORE * NUM_OF_DCORES);
|
|
|
|
sts_val = RREG32(sts_addr);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_DEC_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "DEC%u_%s err cause: %s\n",
|
|
dec_index, interrupt_name, gaudi2_dec_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
/* check if RAZWI happened */
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_DEC, dec_index, 0, razwi_info);
|
|
|
|
/* Write 1 clear errors */
|
|
WREG32(sts_addr, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_mme_err(struct hl_device *hdev, u8 mme_index, const char *interrupt_name,
|
|
struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0;
|
|
int i;
|
|
|
|
sts_addr = mmDCORE0_MME_CTRL_LO_INTR_CAUSE + DCORE_OFFSET * mme_index;
|
|
sts_clr_addr = mmDCORE0_MME_CTRL_LO_INTR_CLEAR + DCORE_OFFSET * mme_index;
|
|
|
|
sts_val = RREG32(sts_addr);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_MME_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "MME%u_%s err cause: %s\n",
|
|
mme_index, interrupt_name, guadi2_mme_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
/* check if RAZWI happened */
|
|
for (i = MME_WRITE ; i < MME_INITIATORS_MAX ; i++)
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, i, razwi_info);
|
|
|
|
WREG32(sts_clr_addr, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_mme_sbte_err(struct hl_device *hdev, u8 mme_index, u8 sbte_index,
|
|
u64 intr_cause_data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_MME_SBTE_ERR_CAUSE ; i++)
|
|
if (intr_cause_data & BIT(i))
|
|
dev_err_ratelimited(hdev->dev, "MME%uSBTE%u_AXI_ERR_RSP err cause: %s\n",
|
|
mme_index, sbte_index, guadi2_mme_sbte_error_cause[i]);
|
|
}
|
|
|
|
static void gaudi2_handle_mme_wap_err(struct hl_device *hdev, u8 mme_index,
|
|
struct hl_eq_razwi_info *razwi_info)
|
|
{
|
|
u32 sts_addr, sts_val, sts_clr_addr, sts_clr_val = 0;
|
|
int i;
|
|
|
|
sts_addr = mmDCORE0_MME_ACC_INTR_CAUSE + DCORE_OFFSET * mme_index;
|
|
sts_clr_addr = mmDCORE0_MME_ACC_INTR_CLEAR + DCORE_OFFSET * mme_index;
|
|
|
|
sts_val = RREG32(sts_addr);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_MME_WAP_ERR_CAUSE ; i++) {
|
|
if (sts_val & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"MME%u_WAP_SOURCE_RESULT_INVALID err cause: %s\n",
|
|
mme_index, guadi2_mme_wap_error_cause[i]);
|
|
sts_clr_val |= BIT(i);
|
|
}
|
|
}
|
|
|
|
/* check if RAZWI happened on WAP0/1 */
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP0, razwi_info);
|
|
gaudi2_ack_module_razwi_event_handler(hdev, RAZWI_MME, mme_index, MME_WAP1, razwi_info);
|
|
|
|
WREG32(sts_clr_addr, sts_clr_val);
|
|
}
|
|
|
|
static void gaudi2_handle_kdma_core_event(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
int i;
|
|
|
|
/* If an AXI read or write error is received, an error is reported and
|
|
* interrupt message is sent. Due to an HW errata, when reading the cause
|
|
* register of the KDMA engine, the reported error is always HBW even if
|
|
* the actual error caused by a LBW KDMA transaction.
|
|
*/
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
|
|
if (intr_cause_data & BIT(i))
|
|
dev_err_ratelimited(hdev->dev, "kdma core err cause: %s\n",
|
|
gaudi2_kdma_core_interrupts_cause[i]);
|
|
}
|
|
|
|
static void gaudi2_handle_dma_core_event(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_DMA_CORE_INTR_CAUSE ; i++)
|
|
if (intr_cause_data & BIT(i))
|
|
dev_err_ratelimited(hdev->dev, "dma core err cause: %s\n",
|
|
gaudi2_dma_core_interrupts_cause[i]);
|
|
}
|
|
|
|
static void gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(struct hl_device *hdev)
|
|
{
|
|
u32 mstr_if_base_addr = mmPCIE_MSTR_RR_MSTR_IF_RR_SHRD_HBW_BASE, razwi_happened_addr;
|
|
|
|
razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AW_RAZWI_HAPPENED;
|
|
if (RREG32(razwi_happened_addr)) {
|
|
gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true,
|
|
NULL);
|
|
WREG32(razwi_happened_addr, 0x1);
|
|
}
|
|
|
|
razwi_happened_addr = mstr_if_base_addr + RR_SHRD_HBW_AR_RAZWI_HAPPENED;
|
|
if (RREG32(razwi_happened_addr)) {
|
|
gaudi2_razwi_rr_hbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true,
|
|
NULL);
|
|
WREG32(razwi_happened_addr, 0x1);
|
|
}
|
|
|
|
razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AW_RAZWI_HAPPENED;
|
|
if (RREG32(razwi_happened_addr)) {
|
|
gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, true, "PCIE", true,
|
|
NULL);
|
|
WREG32(razwi_happened_addr, 0x1);
|
|
}
|
|
|
|
razwi_happened_addr = mstr_if_base_addr + RR_SHRD_LBW_AR_RAZWI_HAPPENED;
|
|
if (RREG32(razwi_happened_addr)) {
|
|
gaudi2_razwi_rr_lbw_shared_printf_info(hdev, mstr_if_base_addr, false, "PCIE", true,
|
|
NULL);
|
|
WREG32(razwi_happened_addr, 0x1);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_print_pcie_addr_dec_info(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_PCIE_ADDR_DEC_ERR_CAUSE ; i++) {
|
|
if (!(intr_cause_data & BIT_ULL(i)))
|
|
continue;
|
|
|
|
dev_err_ratelimited(hdev->dev, "PCIE ADDR DEC Error: %s\n",
|
|
gaudi2_pcie_addr_dec_error_cause[i]);
|
|
|
|
switch (intr_cause_data & BIT_ULL(i)) {
|
|
case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_AXI_LBW_ERR_INTR_MASK:
|
|
break;
|
|
case PCIE_WRAP_PCIE_IC_SEI_INTR_IND_BAD_ACCESS_INTR_MASK:
|
|
gaudi2_print_pcie_mstr_rr_mstr_if_razwi_info(hdev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gaudi2_handle_pif_fatal(struct hl_device *hdev, u64 intr_cause_data)
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_PMMU_FATAL_ERR_CAUSE ; i++) {
|
|
if (intr_cause_data & BIT_ULL(i))
|
|
dev_err_ratelimited(hdev->dev, "PMMU PIF err cause: %s\n",
|
|
gaudi2_pmmu_fatal_interrupts_cause[i]);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_handle_hif_fatal(struct hl_device *hdev, u16 event_type, u64 intr_cause_data)
|
|
{
|
|
u32 dcore_id, hif_id;
|
|
int i;
|
|
|
|
dcore_id = (event_type - GAUDI2_EVENT_HIF0_FATAL) / 4;
|
|
hif_id = (event_type - GAUDI2_EVENT_HIF0_FATAL) % 4;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_HIF_FATAL_ERR_CAUSE ; i++) {
|
|
if (intr_cause_data & BIT_ULL(i))
|
|
dev_err_ratelimited(hdev->dev, "DCORE%u_HIF%u: %s\n", dcore_id, hif_id,
|
|
gaudi2_hif_fatal_interrupts_cause[i]);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_handle_page_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu)
|
|
{
|
|
u32 valid, val;
|
|
u64 addr;
|
|
|
|
valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));
|
|
|
|
if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_PAGE_ERR_VALID_ENTRY_MASK))
|
|
return;
|
|
|
|
val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE));
|
|
addr = val & DCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA_63_32_MASK;
|
|
addr <<= 32;
|
|
addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE_VA));
|
|
|
|
dev_err_ratelimited(hdev->dev, "%s page fault on va 0x%llx\n",
|
|
is_pmmu ? "PMMU" : "HMMU", addr);
|
|
|
|
WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_PAGE_ERROR_CAPTURE), 0);
|
|
}
|
|
|
|
static void gaudi2_handle_access_error(struct hl_device *hdev, u64 mmu_base, bool is_pmmu)
|
|
{
|
|
u32 valid, val;
|
|
u64 addr;
|
|
|
|
valid = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID));
|
|
|
|
if (!(valid & DCORE0_HMMU0_MMU_ACCESS_PAGE_ERROR_VALID_ACCESS_ERR_VALID_ENTRY_MASK))
|
|
return;
|
|
|
|
val = RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE));
|
|
addr = val & DCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA_63_32_MASK;
|
|
addr <<= 32;
|
|
addr |= RREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE_VA));
|
|
|
|
dev_err_ratelimited(hdev->dev, "%s access error on va 0x%llx\n",
|
|
is_pmmu ? "PMMU" : "HMMU", addr);
|
|
WREG32(mmu_base + MMU_OFFSET(mmDCORE0_HMMU0_MMU_ACCESS_ERROR_CAPTURE), 0);
|
|
}
|
|
|
|
static void gaudi2_handle_mmu_spi_sei_generic(struct hl_device *hdev, const char *mmu_name,
|
|
u64 mmu_base, bool is_pmmu)
|
|
{
|
|
u32 spi_sei_cause, interrupt_clr = 0x0;
|
|
int i;
|
|
|
|
spi_sei_cause = RREG32(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_MMU_SPI_SEI_CAUSE ; i++) {
|
|
if (spi_sei_cause & BIT(i)) {
|
|
dev_err_ratelimited(hdev->dev, "%s SPI_SEI ERR. err cause: %s\n",
|
|
mmu_name, gaudi2_mmu_spi_sei[i].cause);
|
|
|
|
if (i == 0)
|
|
gaudi2_handle_page_error(hdev, mmu_base, is_pmmu);
|
|
else if (i == 1)
|
|
gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);
|
|
|
|
if (gaudi2_mmu_spi_sei[i].clear_bit >= 0)
|
|
interrupt_clr |= BIT(gaudi2_mmu_spi_sei[i].clear_bit);
|
|
}
|
|
}
|
|
|
|
/* Clear cause */
|
|
WREG32_AND(mmu_base + MMU_SPI_SEI_CAUSE_OFFSET, ~spi_sei_cause);
|
|
|
|
/* Clear interrupt */
|
|
WREG32(mmu_base + MMU_INTERRUPT_CLR_OFFSET, interrupt_clr);
|
|
}
|
|
|
|
static bool gaudi2_handle_sm_err(struct hl_device *hdev, u8 sm_index)
|
|
{
|
|
u32 sei_cause_addr, sei_cause_val, sei_cause_cause, sei_cause_log;
|
|
u32 cq_intr_addr, cq_intr_val, cq_intr_queue_index;
|
|
bool reset = true;
|
|
int i;
|
|
|
|
sei_cause_addr = mmDCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE + DCORE_OFFSET * sm_index;
|
|
cq_intr_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_INTR + DCORE_OFFSET * sm_index;
|
|
|
|
sei_cause_val = RREG32(sei_cause_addr);
|
|
sei_cause_cause = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_CAUSE_MASK, sei_cause_val);
|
|
cq_intr_val = RREG32(cq_intr_addr);
|
|
|
|
/* SEI interrupt */
|
|
if (sei_cause_cause) {
|
|
/* There are corresponding SEI_CAUSE_log bits for every SEI_CAUSE_cause bit */
|
|
sei_cause_log = FIELD_GET(DCORE0_SYNC_MNGR_GLBL_SM_SEI_CAUSE_LOG_MASK,
|
|
sei_cause_val);
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_SM_SEI_ERR_CAUSE ; i++) {
|
|
if (!(sei_cause_cause & BIT(i)))
|
|
continue;
|
|
|
|
dev_err_ratelimited(hdev->dev, "SM%u SEI ERR. err cause: %s. %s: 0x%X\n",
|
|
sm_index,
|
|
gaudi2_sm_sei_cause[i].cause_name,
|
|
gaudi2_sm_sei_cause[i].log_name,
|
|
sei_cause_log & gaudi2_sm_sei_cause[i].log_mask);
|
|
|
|
/* Due to a potential H/W issue, do not reset upon BRESP errors */
|
|
if (i == 2)
|
|
reset = false;
|
|
break;
|
|
}
|
|
|
|
/* Clear SM_SEI_CAUSE */
|
|
WREG32(sei_cause_addr, 0);
|
|
}
|
|
|
|
/* CQ interrupt */
|
|
if (cq_intr_val & DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_SEC_INTR_MASK) {
|
|
cq_intr_queue_index =
|
|
FIELD_GET(DCORE0_SYNC_MNGR_GLBL_CQ_INTR_CQ_INTR_QUEUE_INDEX_MASK,
|
|
cq_intr_val);
|
|
|
|
dev_err_ratelimited(hdev->dev, "SM%u err. err cause: CQ_INTR. queue index: %u\n",
|
|
sm_index, cq_intr_queue_index);
|
|
|
|
/* Clear CQ_INTR */
|
|
WREG32(cq_intr_addr, 0);
|
|
}
|
|
|
|
return reset;
|
|
}
|
|
|
|
static void gaudi2_handle_mmu_spi_sei_err(struct hl_device *hdev, u16 event_type)
|
|
{
|
|
bool is_pmmu = false;
|
|
char desc[32];
|
|
u64 mmu_base;
|
|
u8 index;
|
|
|
|
switch (event_type) {
|
|
case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU3_SECURITY_ERROR:
|
|
index = (event_type - GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM) / 3;
|
|
mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_3_AXI_ERR_RSP:
|
|
index = (event_type - GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP);
|
|
mmu_base = mmDCORE0_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE0_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU11_SECURITY_ERROR:
|
|
index = (event_type - GAUDI2_EVENT_HMMU8_PAGE_FAULT_WR_PERM) / 3;
|
|
mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_11_AXI_ERR_RSP:
|
|
index = (event_type - GAUDI2_EVENT_HMMU_8_AXI_ERR_RSP);
|
|
mmu_base = mmDCORE1_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE1_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU4_SECURITY_ERROR:
|
|
index = (event_type - GAUDI2_EVENT_HMMU7_PAGE_FAULT_WR_PERM) / 3;
|
|
mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_4_AXI_ERR_RSP:
|
|
index = (event_type - GAUDI2_EVENT_HMMU_7_AXI_ERR_RSP);
|
|
mmu_base = mmDCORE2_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE2_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
|
|
index = (event_type - GAUDI2_EVENT_HMMU15_PAGE_FAULT_WR_PERM) / 3;
|
|
mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
|
|
index = (event_type - GAUDI2_EVENT_HMMU_15_AXI_ERR_RSP);
|
|
mmu_base = mmDCORE3_HMMU0_MMU_BASE + index * DCORE_HMMU_OFFSET;
|
|
snprintf(desc, ARRAY_SIZE(desc), "DCORE3_HMMU%d", index);
|
|
break;
|
|
case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
|
|
case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
|
|
is_pmmu = true;
|
|
mmu_base = mmPMMU_HBW_MMU_BASE;
|
|
snprintf(desc, ARRAY_SIZE(desc), "PMMU");
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
gaudi2_handle_mmu_spi_sei_generic(hdev, desc, mmu_base, is_pmmu);
|
|
}
|
|
|
|
|
|
/* returns true if hard reset is required (ECC DERR or Read parity), false otherwise (ECC SERR) */
|
|
static bool gaudi2_hbm_sei_handle_read_err(struct hl_device *hdev,
|
|
struct hl_eq_hbm_sei_read_err_intr_info *rd_err_data, u32 err_cnt)
|
|
{
|
|
u32 addr, beat, beat_shift;
|
|
bool rc = false;
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"READ ERROR count: ECC SERR: %d, ECC DERR: %d, RD_PARITY: %d\n",
|
|
FIELD_GET(HBM_ECC_SERR_CNTR_MASK, err_cnt),
|
|
FIELD_GET(HBM_ECC_DERR_CNTR_MASK, err_cnt),
|
|
FIELD_GET(HBM_RD_PARITY_CNTR_MASK, err_cnt));
|
|
|
|
addr = le32_to_cpu(rd_err_data->dbg_rd_err_addr.rd_addr_val);
|
|
dev_err_ratelimited(hdev->dev,
|
|
"READ ERROR address: sid(%u), bg(%u), ba(%u), col(%u), row(%u)\n",
|
|
FIELD_GET(HBM_RD_ADDR_SID_MASK, addr),
|
|
FIELD_GET(HBM_RD_ADDR_BG_MASK, addr),
|
|
FIELD_GET(HBM_RD_ADDR_BA_MASK, addr),
|
|
FIELD_GET(HBM_RD_ADDR_COL_MASK, addr),
|
|
FIELD_GET(HBM_RD_ADDR_ROW_MASK, addr));
|
|
|
|
/* For each beat (RDQS edge), look for possible errors and print relevant info */
|
|
for (beat = 0 ; beat < 4 ; beat++) {
|
|
if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
|
|
(HBM_RD_ERR_SERR_BEAT0_MASK << beat))
|
|
dev_err_ratelimited(hdev->dev, "Beat%d ECC SERR: DM: %#x, Syndrome: %#x\n",
|
|
beat,
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_dm),
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));
|
|
|
|
if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
|
|
(HBM_RD_ERR_DERR_BEAT0_MASK << beat)) {
|
|
dev_err_ratelimited(hdev->dev, "Beat%d ECC DERR: DM: %#x, Syndrome: %#x\n",
|
|
beat,
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_dm),
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_syndrome));
|
|
rc |= true;
|
|
}
|
|
|
|
beat_shift = beat * HBM_RD_ERR_BEAT_SHIFT;
|
|
if (le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
|
|
(HBM_RD_ERR_PAR_ERR_BEAT0_MASK << beat_shift)) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Beat%d read PARITY: DM: %#x, PAR data: %#x\n",
|
|
beat,
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_dm),
|
|
(le32_to_cpu(rd_err_data->dbg_rd_err_misc) &
|
|
(HBM_RD_ERR_PAR_DATA_BEAT0_MASK << beat_shift)) >>
|
|
(HBM_RD_ERR_PAR_DATA_BEAT0_SHIFT + beat_shift));
|
|
rc |= true;
|
|
}
|
|
|
|
dev_err_ratelimited(hdev->dev, "Beat%d DQ data:\n", beat);
|
|
dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2]));
|
|
dev_err_ratelimited(hdev->dev, "\t0x%08x\n",
|
|
le32_to_cpu(rd_err_data->dbg_rd_err_data[beat * 2 + 1]));
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_hbm_sei_print_wr_par_info(struct hl_device *hdev,
|
|
struct hl_eq_hbm_sei_wr_par_intr_info *wr_par_err_data, u32 err_cnt)
|
|
{
|
|
struct hbm_sei_wr_cmd_address *wr_cmd_addr = wr_par_err_data->dbg_last_wr_cmds;
|
|
u32 i, curr_addr, derr = wr_par_err_data->dbg_derr;
|
|
|
|
dev_err_ratelimited(hdev->dev, "WRITE PARITY ERROR count: %d\n", err_cnt);
|
|
|
|
dev_err_ratelimited(hdev->dev, "CK-0 DERR: 0x%02x, CK-1 DERR: 0x%02x\n",
|
|
derr & 0x3, derr & 0xc);
|
|
|
|
/* JIRA H6-3286 - the following prints may not be valid */
|
|
dev_err_ratelimited(hdev->dev, "Last latched write commands addresses:\n");
|
|
for (i = 0 ; i < HBM_WR_PAR_CMD_LIFO_LEN ; i++) {
|
|
curr_addr = le32_to_cpu(wr_cmd_addr[i].dbg_wr_cmd_addr);
|
|
dev_err_ratelimited(hdev->dev,
|
|
"\twrite cmd[%u]: Address: SID(%u) BG(%u) BA(%u) COL(%u).\n",
|
|
i,
|
|
FIELD_GET(WR_PAR_LAST_CMD_SID_MASK, curr_addr),
|
|
FIELD_GET(WR_PAR_LAST_CMD_BG_MASK, curr_addr),
|
|
FIELD_GET(WR_PAR_LAST_CMD_BA_MASK, curr_addr),
|
|
FIELD_GET(WR_PAR_LAST_CMD_COL_MASK, curr_addr));
|
|
}
|
|
}
|
|
|
|
static void gaudi2_hbm_sei_print_ca_par_info(struct hl_device *hdev,
|
|
struct hl_eq_hbm_sei_ca_par_intr_info *ca_par_err_data, u32 err_cnt)
|
|
{
|
|
__le32 *col_cmd = ca_par_err_data->dbg_col;
|
|
__le16 *row_cmd = ca_par_err_data->dbg_row;
|
|
u32 i;
|
|
|
|
dev_err_ratelimited(hdev->dev, "CA ERROR count: %d\n", err_cnt);
|
|
|
|
dev_err_ratelimited(hdev->dev, "Last latched C&R bus commands:\n");
|
|
for (i = 0 ; i < HBM_CA_ERR_CMD_LIFO_LEN ; i++)
|
|
dev_err_ratelimited(hdev->dev, "cmd%u: ROW(0x%04x) COL(0x%05x)\n", i,
|
|
le16_to_cpu(row_cmd[i]) & (u16)GENMASK(13, 0),
|
|
le32_to_cpu(col_cmd[i]) & (u32)GENMASK(17, 0));
|
|
}
|
|
|
|
/* Returns true if hard reset is needed or false otherwise */
|
|
static bool gaudi2_handle_hbm_mc_sei_err(struct hl_device *hdev, u16 event_type,
|
|
struct hl_eq_hbm_sei_data *sei_data)
|
|
{
|
|
bool require_hard_reset = false;
|
|
u32 hbm_id, mc_id, cause_idx;
|
|
|
|
hbm_id = (event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 4;
|
|
mc_id = ((event_type - GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE) / 2) % 2;
|
|
|
|
cause_idx = sei_data->hdr.sei_cause;
|
|
if (cause_idx > GAUDI2_NUM_OF_HBM_SEI_CAUSE - 1) {
|
|
dev_err_ratelimited(hdev->dev, "Invalid HBM SEI event cause (%d) provided by FW\n",
|
|
cause_idx);
|
|
return true;
|
|
}
|
|
|
|
if (sei_data->hdr.is_critical)
|
|
dev_err(hdev->dev,
|
|
"System Critical Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n",
|
|
hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel,
|
|
hbm_mc_sei_cause[cause_idx]);
|
|
|
|
else
|
|
dev_err_ratelimited(hdev->dev,
|
|
"System Non-Critical Error Interrupt - HBM(%u) MC(%u) MC_CH(%u) MC_PC(%u). Error cause: %s\n",
|
|
hbm_id, mc_id, sei_data->hdr.mc_channel, sei_data->hdr.mc_pseudo_channel,
|
|
hbm_mc_sei_cause[cause_idx]);
|
|
|
|
/* Print error-specific info */
|
|
switch (cause_idx) {
|
|
case HBM_SEI_CATTRIP:
|
|
require_hard_reset = true;
|
|
break;
|
|
|
|
case HBM_SEI_CMD_PARITY_EVEN:
|
|
gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_even_info,
|
|
le32_to_cpu(sei_data->hdr.cnt));
|
|
require_hard_reset = true;
|
|
break;
|
|
|
|
case HBM_SEI_CMD_PARITY_ODD:
|
|
gaudi2_hbm_sei_print_ca_par_info(hdev, &sei_data->ca_parity_odd_info,
|
|
le32_to_cpu(sei_data->hdr.cnt));
|
|
require_hard_reset = true;
|
|
break;
|
|
|
|
case HBM_SEI_WRITE_DATA_PARITY_ERR:
|
|
gaudi2_hbm_sei_print_wr_par_info(hdev, &sei_data->wr_parity_info,
|
|
le32_to_cpu(sei_data->hdr.cnt));
|
|
require_hard_reset = true;
|
|
break;
|
|
|
|
case HBM_SEI_READ_ERR:
|
|
/* Unlike other SEI events, read error requires further processing of the
|
|
* raw data in order to determine the root cause.
|
|
*/
|
|
require_hard_reset = gaudi2_hbm_sei_handle_read_err(hdev,
|
|
&sei_data->read_err_info,
|
|
le32_to_cpu(sei_data->hdr.cnt));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
require_hard_reset |= !!sei_data->hdr.is_critical;
|
|
|
|
return require_hard_reset;
|
|
}
|
|
|
|
static void gaudi2_handle_hbm_cattrip(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
dev_err(hdev->dev,
|
|
"HBM catastrophic temperature error (CATTRIP) cause %#llx\n",
|
|
intr_cause_data);
|
|
}
|
|
|
|
static void gaudi2_handle_hbm_mc_spi(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_HBM_MC_SPI_CAUSE ; i++)
|
|
if (intr_cause_data & hbm_mc_spi[i].mask)
|
|
dev_dbg(hdev->dev, "HBM spi event: notification cause(%s)\n",
|
|
hbm_mc_spi[i].cause);
|
|
}
|
|
|
|
static void gaudi2_print_clk_change_info(struct hl_device *hdev, u16 event_type)
|
|
{
|
|
ktime_t zero_time = ktime_set(0, 0);
|
|
|
|
mutex_lock(&hdev->clk_throttling.lock);
|
|
|
|
switch (event_type) {
|
|
case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
|
|
hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_POWER;
|
|
hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_POWER;
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get();
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time;
|
|
dev_info_ratelimited(hdev->dev, "Clock throttling due to power consumption\n");
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
|
|
hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_POWER;
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get();
|
|
dev_info_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n");
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
|
|
hdev->clk_throttling.current_reason |= HL_CLK_THROTTLE_THERMAL;
|
|
hdev->clk_throttling.aggregated_reason |= HL_CLK_THROTTLE_THERMAL;
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get();
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time;
|
|
dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n");
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
|
|
hdev->clk_throttling.current_reason &= ~HL_CLK_THROTTLE_THERMAL;
|
|
hdev->clk_throttling.timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get();
|
|
dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n");
|
|
break;
|
|
|
|
default:
|
|
dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type);
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&hdev->clk_throttling.lock);
|
|
}
|
|
|
|
static void gaudi2_print_out_of_sync_info(struct hl_device *hdev,
|
|
struct cpucp_pkt_sync_err *sync_err)
|
|
{
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
|
|
|
|
dev_err(hdev->dev, "Out of sync with FW, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%u\n",
|
|
sync_err->pi, sync_err->ci, q->pi, atomic_read(&q->ci));
|
|
}
|
|
|
|
static void gaudi2_handle_pcie_p2p_msix(struct hl_device *hdev)
|
|
{
|
|
u32 p2p_intr, msix_gw_intr;
|
|
|
|
p2p_intr = RREG32(mmPCIE_WRAP_P2P_INTR);
|
|
msix_gw_intr = RREG32(mmPCIE_WRAP_MSIX_GW_INTR);
|
|
|
|
if (p2p_intr) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"pcie p2p transaction terminated due to security, req_id(0x%x)\n",
|
|
RREG32(mmPCIE_WRAP_P2P_REQ_ID));
|
|
|
|
WREG32(mmPCIE_WRAP_P2P_INTR, 0x1);
|
|
}
|
|
|
|
if (msix_gw_intr) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"pcie msi-x gen denied due to vector num check failure, vec(0x%X)\n",
|
|
RREG32(mmPCIE_WRAP_MSIX_GW_VEC));
|
|
|
|
WREG32(mmPCIE_WRAP_MSIX_GW_INTR, 0x1);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_handle_pcie_drain(struct hl_device *hdev,
|
|
struct hl_eq_pcie_drain_ind_data *drain_data)
|
|
{
|
|
u64 lbw_rd, lbw_wr, hbw_rd, hbw_wr, cause;
|
|
|
|
cause = le64_to_cpu(drain_data->intr_cause.intr_cause_data);
|
|
lbw_rd = le64_to_cpu(drain_data->drain_rd_addr_lbw);
|
|
lbw_wr = le64_to_cpu(drain_data->drain_wr_addr_lbw);
|
|
hbw_rd = le64_to_cpu(drain_data->drain_rd_addr_hbw);
|
|
hbw_wr = le64_to_cpu(drain_data->drain_wr_addr_hbw);
|
|
|
|
if (cause & BIT_ULL(0))
|
|
dev_err_ratelimited(hdev->dev,
|
|
"PCIE AXI drain LBW completed, read_err %u, write_err %u\n",
|
|
!!lbw_rd, !!lbw_wr);
|
|
|
|
if (cause & BIT_ULL(1))
|
|
dev_err_ratelimited(hdev->dev,
|
|
"PCIE AXI drain HBW completed, raddr %#llx, waddr %#llx\n",
|
|
hbw_rd, hbw_wr);
|
|
}
|
|
|
|
static void gaudi2_handle_psoc_drain(struct hl_device *hdev, u64 intr_cause_data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0 ; i < GAUDI2_NUM_OF_AXI_DRAIN_ERR_CAUSE ; i++) {
|
|
if (intr_cause_data & BIT_ULL(i))
|
|
dev_err_ratelimited(hdev->dev, "PSOC %s completed\n",
|
|
gaudi2_psoc_axi_drain_interrupts_cause[i]);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_print_cpu_pkt_failure_info(struct hl_device *hdev,
|
|
struct cpucp_pkt_sync_err *sync_err)
|
|
{
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[GAUDI2_QUEUE_ID_CPU_PQ];
|
|
|
|
dev_warn(hdev->dev,
|
|
"FW reported sanity check failure, FW: pi=%u, ci=%u, LKD: pi=%u, ci=%u\n",
|
|
sync_err->pi, sync_err->ci, q->pi, atomic_read(&q->ci));
|
|
}
|
|
|
|
static void hl_arc_event_handle(struct hl_device *hdev,
|
|
struct hl_eq_engine_arc_intr_data *data)
|
|
{
|
|
struct hl_engine_arc_dccm_queue_full_irq *q;
|
|
u32 intr_type, engine_id;
|
|
u64 payload;
|
|
|
|
intr_type = le32_to_cpu(data->intr_type);
|
|
engine_id = le32_to_cpu(data->engine_id);
|
|
payload = le64_to_cpu(data->payload);
|
|
|
|
switch (intr_type) {
|
|
case ENGINE_ARC_DCCM_QUEUE_FULL_IRQ:
|
|
q = (struct hl_engine_arc_dccm_queue_full_irq *) &payload;
|
|
|
|
dev_err_ratelimited(hdev->dev,
|
|
"ARC DCCM Full event: EngId: %u, Intr_type: %u, Qidx: %u\n",
|
|
engine_id, intr_type, q->queue_index);
|
|
break;
|
|
default:
|
|
dev_err_ratelimited(hdev->dev, "Unknown ARC event type\n");
|
|
}
|
|
}
|
|
|
|
static void gaudi2_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
|
|
{
|
|
u32 ctl, reset_flags = HL_DRV_RESET_HARD | HL_DRV_RESET_DELAY;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
bool reset_required = false, skip_reset = false;
|
|
int index, sbte_index;
|
|
u64 event_mask = 0;
|
|
u16 event_type;
|
|
|
|
ctl = le32_to_cpu(eq_entry->hdr.ctl);
|
|
event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
|
|
|
|
if (event_type >= GAUDI2_EVENT_SIZE) {
|
|
dev_err(hdev->dev, "Event type %u exceeds maximum of %u",
|
|
event_type, GAUDI2_EVENT_SIZE - 1);
|
|
return;
|
|
}
|
|
|
|
gaudi2->events_stat[event_type]++;
|
|
gaudi2->events_stat_aggregate[event_type]++;
|
|
|
|
gaudi2_print_irq_info(hdev, event_type);
|
|
|
|
switch (event_type) {
|
|
case GAUDI2_EVENT_PCIE_CORE_SERR ... GAUDI2_EVENT_ARC0_ECC_DERR:
|
|
fallthrough;
|
|
case GAUDI2_EVENT_ROTATOR0_SERR ... GAUDI2_EVENT_ROTATOR1_DERR:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
reset_required = gaudi2_handle_ecc_event(hdev, event_type, &eq_entry->ecc_data);
|
|
break;
|
|
|
|
case GAUDI2_EVENT_TPC0_QM ... GAUDI2_EVENT_PDMA1_QM:
|
|
fallthrough;
|
|
case GAUDI2_EVENT_ROTATOR0_ROT0_QM ... GAUDI2_EVENT_ROTATOR1_ROT1_QM:
|
|
fallthrough;
|
|
case GAUDI2_EVENT_NIC0_QM0 ... GAUDI2_EVENT_NIC11_QM1:
|
|
gaudi2_handle_qman_err(hdev, event_type);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_ARC_AXI_ERROR_RESPONSE_0:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
gaudi2_handle_arc_farm_sei_err(hdev);
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_AXI_ERR_RSP:
|
|
gaudi2_handle_cpu_sei_err(hdev);
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PDMA_CH0_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_PDMA_CH1_AXI_ERR_RSP:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
gaudi2_handle_qm_sei_err(hdev, event_type, &eq_entry->razwi_info);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_ROTATOR1_AXI_ERROR_RESPONSE:
|
|
index = event_type - GAUDI2_EVENT_ROTATOR0_AXI_ERROR_RESPONSE;
|
|
gaudi2_handle_rot_err(hdev, index, &eq_entry->razwi_with_intr_cause);
|
|
gaudi2_handle_qm_sei_err(hdev, event_type, NULL);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_TPC0_AXI_ERR_RSP ... GAUDI2_EVENT_TPC24_AXI_ERR_RSP:
|
|
index = event_type - GAUDI2_EVENT_TPC0_AXI_ERR_RSP;
|
|
gaudi2_tpc_ack_interrupts(hdev, index, "AXI_ERR_RSP",
|
|
&eq_entry->razwi_with_intr_cause);
|
|
gaudi2_handle_qm_sei_err(hdev, event_type, NULL);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE ... GAUDI2_EVENT_DEC9_AXI_ERR_RSPONSE:
|
|
index = event_type - GAUDI2_EVENT_DEC0_AXI_ERR_RSPONSE;
|
|
gaudi2_handle_dec_err(hdev, index, "AXI_ERR_RESPONSE", &eq_entry->razwi_info);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_TPC0_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC1_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC2_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC3_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC4_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC5_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC6_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC7_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC8_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC9_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC10_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC11_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC12_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC13_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC14_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC15_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC16_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC17_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC18_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC19_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC20_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC21_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC22_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC23_KERNEL_ERR:
|
|
case GAUDI2_EVENT_TPC24_KERNEL_ERR:
|
|
index = (event_type - GAUDI2_EVENT_TPC0_KERNEL_ERR) /
|
|
(GAUDI2_EVENT_TPC1_KERNEL_ERR - GAUDI2_EVENT_TPC0_KERNEL_ERR);
|
|
gaudi2_tpc_ack_interrupts(hdev, index, "KRN_ERR", &eq_entry->razwi_with_intr_cause);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_DEC0_SPI:
|
|
case GAUDI2_EVENT_DEC1_SPI:
|
|
case GAUDI2_EVENT_DEC2_SPI:
|
|
case GAUDI2_EVENT_DEC3_SPI:
|
|
case GAUDI2_EVENT_DEC4_SPI:
|
|
case GAUDI2_EVENT_DEC5_SPI:
|
|
case GAUDI2_EVENT_DEC6_SPI:
|
|
case GAUDI2_EVENT_DEC7_SPI:
|
|
case GAUDI2_EVENT_DEC8_SPI:
|
|
case GAUDI2_EVENT_DEC9_SPI:
|
|
index = (event_type - GAUDI2_EVENT_DEC0_SPI) /
|
|
(GAUDI2_EVENT_DEC1_SPI - GAUDI2_EVENT_DEC0_SPI);
|
|
gaudi2_handle_dec_err(hdev, index, "SPI", &eq_entry->razwi_info);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME2_CTRL_AXI_ERROR_RESPONSE:
|
|
case GAUDI2_EVENT_MME3_CTRL_AXI_ERROR_RESPONSE:
|
|
index = (event_type - GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE) /
|
|
(GAUDI2_EVENT_MME1_CTRL_AXI_ERROR_RESPONSE -
|
|
GAUDI2_EVENT_MME0_CTRL_AXI_ERROR_RESPONSE);
|
|
gaudi2_handle_mme_err(hdev, index,
|
|
"CTRL_AXI_ERROR_RESPONSE", &eq_entry->razwi_info);
|
|
gaudi2_handle_qm_sei_err(hdev, event_type, NULL);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_MME0_QMAN_SW_ERROR:
|
|
case GAUDI2_EVENT_MME1_QMAN_SW_ERROR:
|
|
case GAUDI2_EVENT_MME2_QMAN_SW_ERROR:
|
|
case GAUDI2_EVENT_MME3_QMAN_SW_ERROR:
|
|
index = (event_type - GAUDI2_EVENT_MME0_QMAN_SW_ERROR) /
|
|
(GAUDI2_EVENT_MME1_QMAN_SW_ERROR -
|
|
GAUDI2_EVENT_MME0_QMAN_SW_ERROR);
|
|
gaudi2_handle_mme_err(hdev, index, "QMAN_SW_ERROR", &eq_entry->razwi_info);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID:
|
|
case GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID:
|
|
case GAUDI2_EVENT_MME2_WAP_SOURCE_RESULT_INVALID:
|
|
case GAUDI2_EVENT_MME3_WAP_SOURCE_RESULT_INVALID:
|
|
index = (event_type - GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID) /
|
|
(GAUDI2_EVENT_MME1_WAP_SOURCE_RESULT_INVALID -
|
|
GAUDI2_EVENT_MME0_WAP_SOURCE_RESULT_INVALID);
|
|
gaudi2_handle_mme_wap_err(hdev, index, &eq_entry->razwi_info);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_KDMA_CH0_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_KDMA0_CORE:
|
|
gaudi2_handle_kdma_core_event(hdev,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HDMA2_CORE ... GAUDI2_EVENT_PDMA1_CORE:
|
|
gaudi2_handle_dma_core_event(hdev,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PCIE_ADDR_DEC_ERR:
|
|
gaudi2_print_pcie_addr_dec_info(hdev,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HMMU0_PAGE_FAULT_OR_WR_PERM ... GAUDI2_EVENT_HMMU12_SECURITY_ERROR:
|
|
case GAUDI2_EVENT_HMMU_0_AXI_ERR_RSP ... GAUDI2_EVENT_HMMU_12_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_PMMU0_PAGE_FAULT_WR_PERM ... GAUDI2_EVENT_PMMU0_SECURITY_ERROR:
|
|
case GAUDI2_EVENT_PMMU_AXI_ERR_RSP_0:
|
|
gaudi2_handle_mmu_spi_sei_err(hdev, event_type);
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HIF0_FATAL ... GAUDI2_EVENT_HIF12_FATAL:
|
|
gaudi2_handle_hif_fatal(hdev, event_type,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PMMU_FATAL_0:
|
|
gaudi2_handle_pif_fatal(hdev,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PSOC63_RAZWI_OR_PID_MIN_MAX_INTERRUPT:
|
|
gaudi2_ack_psoc_razwi_event_handler(hdev);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HBM0_MC0_SEI_SEVERE ... GAUDI2_EVENT_HBM5_MC1_SEI_NON_SEVERE:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
if (gaudi2_handle_hbm_mc_sei_err(hdev, event_type, &eq_entry->sei_data)) {
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
reset_required = true;
|
|
}
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HBM_CATTRIP_0 ... GAUDI2_EVENT_HBM_CATTRIP_5:
|
|
gaudi2_handle_hbm_cattrip(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_HBM0_MC0_SPI ... GAUDI2_EVENT_HBM5_MC1_SPI:
|
|
gaudi2_handle_hbm_mc_spi(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PCIE_DRAIN_COMPLETE:
|
|
gaudi2_handle_pcie_drain(hdev, &eq_entry->pcie_drain_ind_data);
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PSOC59_RPM_ERROR_OR_DRAIN:
|
|
gaudi2_handle_psoc_drain(hdev, le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_AXI_ECC:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_CPU_L2_RAM_ECC:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME0_SBTE4_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME1_SBTE4_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_MME2_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME2_SBTE4_AXI_ERR_RSP:
|
|
case GAUDI2_EVENT_MME3_SBTE0_AXI_ERR_RSP ... GAUDI2_EVENT_MME3_SBTE4_AXI_ERR_RSP:
|
|
index = (event_type - GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP) /
|
|
(GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP -
|
|
GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP);
|
|
sbte_index = (event_type - GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP) %
|
|
(GAUDI2_EVENT_MME1_SBTE0_AXI_ERR_RSP -
|
|
GAUDI2_EVENT_MME0_SBTE0_AXI_ERR_RSP);
|
|
gaudi2_handle_mme_sbte_err(hdev, index, sbte_index,
|
|
le64_to_cpu(eq_entry->intr_cause.intr_cause_data));
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_VM0_ALARM_A ... GAUDI2_EVENT_VM3_ALARM_B:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_PSOC_AXI_ERR_RSP:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_PSOC_PRSTN_FALL:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_PCIE_APB_TIMEOUT:
|
|
reset_flags |= HL_DRV_RESET_FW_FATAL_ERR;
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_PCIE_FATAL_ERR:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_TPC0_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC1_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC2_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC3_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC4_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC5_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC6_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC7_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC8_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC9_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC10_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC11_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC12_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC13_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC14_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC15_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC16_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC17_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC18_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC19_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC20_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC21_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC22_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC23_BMON_SPMU:
|
|
case GAUDI2_EVENT_TPC24_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME0_CTRL_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME0_SBTE_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME0_WAP_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME1_CTRL_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME1_SBTE_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME1_WAP_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME2_CTRL_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME2_SBTE_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME2_WAP_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME3_CTRL_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME3_SBTE_BMON_SPMU:
|
|
case GAUDI2_EVENT_MME3_WAP_BMON_SPMU:
|
|
case GAUDI2_EVENT_HDMA2_BM_SPMU ... GAUDI2_EVENT_PDMA1_BM_SPMU:
|
|
fallthrough;
|
|
case GAUDI2_EVENT_DEC0_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC1_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC2_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC3_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC4_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC5_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC6_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC7_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC8_BMON_SPMU:
|
|
case GAUDI2_EVENT_DEC9_BMON_SPMU:
|
|
case GAUDI2_EVENT_ROTATOR0_BMON_SPMU ... GAUDI2_EVENT_SM3_BMON_SPMU:
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_FIX_POWER_ENV_S:
|
|
case GAUDI2_EVENT_CPU_FIX_POWER_ENV_E:
|
|
case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_S:
|
|
case GAUDI2_EVENT_CPU_FIX_THERMAL_ENV_E:
|
|
gaudi2_print_clk_change_info(hdev, event_type);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_PKT_QUEUE_OUT_SYNC:
|
|
gaudi2_print_out_of_sync_info(hdev, &eq_entry->pkt_sync_err);
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PCIE_FLR_REQUESTED:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
/* Do nothing- FW will handle it */
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PCIE_P2P_MSIX:
|
|
gaudi2_handle_pcie_p2p_msix(hdev);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE ... GAUDI2_EVENT_SM3_AXI_ERROR_RESPONSE:
|
|
index = event_type - GAUDI2_EVENT_SM0_AXI_ERROR_RESPONSE;
|
|
skip_reset = !gaudi2_handle_sm_err(hdev, index);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_PSOC_MME_PLL_LOCK_ERR ... GAUDI2_EVENT_DCORE2_HBM_PLL_LOCK_ERR:
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_CAUSE:
|
|
dev_info(hdev->dev, "CPLD shutdown cause, reset reason: 0x%llx\n",
|
|
le64_to_cpu(eq_entry->data[0]));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
case GAUDI2_EVENT_CPU_CPLD_SHUTDOWN_EVENT:
|
|
dev_err(hdev->dev, "CPLD shutdown event, reset reason: 0x%llx\n",
|
|
le64_to_cpu(eq_entry->data[0]));
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_CPU_PKT_SANITY_FAILED:
|
|
gaudi2_print_cpu_pkt_failure_info(hdev, &eq_entry->pkt_sync_err);
|
|
event_mask |= HL_NOTIFIER_EVENT_GENERAL_HW_ERR;
|
|
break;
|
|
|
|
case GAUDI2_EVENT_ARC_DCCM_FULL:
|
|
hl_arc_event_handle(hdev, &eq_entry->arc_data);
|
|
event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR;
|
|
break;
|
|
|
|
default:
|
|
if (gaudi2_irq_map_table[event_type].valid)
|
|
dev_err_ratelimited(hdev->dev, "Cannot find handler for event %d\n",
|
|
event_type);
|
|
}
|
|
|
|
if ((gaudi2_irq_map_table[event_type].reset || reset_required) && !skip_reset)
|
|
goto reset_device;
|
|
|
|
/* Send unmask irq only for interrupts not classified as MSG */
|
|
if (!gaudi2_irq_map_table[event_type].msg)
|
|
hl_fw_unmask_irq(hdev, event_type);
|
|
|
|
if (event_mask)
|
|
hl_notifier_event_send_all(hdev, event_mask);
|
|
|
|
return;
|
|
|
|
reset_device:
|
|
if (hdev->hard_reset_on_fw_events) {
|
|
hl_device_reset(hdev, reset_flags);
|
|
event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
|
|
} else {
|
|
if (!gaudi2_irq_map_table[event_type].msg)
|
|
hl_fw_unmask_irq(hdev, event_type);
|
|
}
|
|
|
|
if (event_mask)
|
|
hl_notifier_event_send_all(hdev, event_mask);
|
|
}
|
|
|
|
static int gaudi2_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size, u64 val)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 comp_addr, cur_addr = addr, end_addr = addr + size;
|
|
u32 chunk_size, busy, dcore, edma_idx, sob_offset, sob_addr, comp_val, edma_commit;
|
|
u32 old_mmubp, mmubp;
|
|
int rc = 0;
|
|
|
|
sob_offset = hdev->asic_prop.first_available_user_sob[0] * 4;
|
|
sob_addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + sob_offset;
|
|
comp_addr = CFG_BASE + sob_addr;
|
|
comp_val = FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_INC_MASK, 1) |
|
|
FIELD_PREP(DCORE0_SYNC_MNGR_OBJS_SOB_OBJ_VAL_MASK, 1);
|
|
|
|
edma_commit = FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_LIN_MASK, 1) |
|
|
FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_MEM_SET_MASK, 1) |
|
|
FIELD_PREP(ARC_FARM_KDMA_CTX_COMMIT_WR_COMP_EN_MASK, 1);
|
|
mmubp = FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_WR_MASK, 1) |
|
|
FIELD_PREP(ARC_FARM_KDMA_CTX_AXUSER_HB_MMU_BP_RD_MASK, 1);
|
|
|
|
if (prop->edma_enabled_mask == 0) {
|
|
dev_info(hdev->dev, "non of the EDMA engines is enabled - skip dram scrubbing\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* set mmu bypass for the scrubbing - all ddmas are configured the same so save
|
|
* only the first one to restore later
|
|
*/
|
|
old_mmubp = RREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP);
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
|
|
u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
|
|
u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
|
|
|
|
if (!(prop->edma_enabled_mask & BIT(edma_bit)))
|
|
continue;
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP +
|
|
edma_offset, mmubp);
|
|
}
|
|
}
|
|
|
|
while (cur_addr < end_addr) {
|
|
int dma_num = 0;
|
|
|
|
WREG32(sob_addr, 0);
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
|
|
u32 edma_offset = dcore * DCORE_OFFSET +
|
|
edma_idx * DCORE_EDMA_OFFSET;
|
|
u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
|
|
|
|
if (!(prop->edma_enabled_mask & BIT(edma_bit)))
|
|
continue;
|
|
|
|
chunk_size = min_t(u64, SZ_2G, end_addr - cur_addr);
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_SRC_BASE_LO + edma_offset,
|
|
lower_32_bits(val));
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_SRC_BASE_HI + edma_offset,
|
|
upper_32_bits(val));
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_DST_BASE_LO + edma_offset,
|
|
lower_32_bits(cur_addr));
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_DST_BASE_HI + edma_offset,
|
|
upper_32_bits(cur_addr));
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_LO + edma_offset,
|
|
lower_32_bits(comp_addr));
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_ADDR_HI + edma_offset,
|
|
upper_32_bits(comp_addr));
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_WR_COMP_WDATA + edma_offset,
|
|
comp_val);
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_DST_TSIZE_0 + edma_offset,
|
|
chunk_size);
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_COMMIT + edma_offset, edma_commit);
|
|
|
|
dma_num++;
|
|
|
|
cur_addr += chunk_size;
|
|
|
|
if (cur_addr == end_addr)
|
|
goto poll;
|
|
}
|
|
}
|
|
poll:
|
|
rc = hl_poll_timeout(hdev, sob_addr, busy, (busy == dma_num), 1000, 1000000);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "DMA Timeout during HBM scrubbing\n");
|
|
goto end;
|
|
}
|
|
}
|
|
end:
|
|
for (dcore = 0 ; dcore < NUM_OF_DCORES ; dcore++) {
|
|
for (edma_idx = 0 ; edma_idx < NUM_OF_EDMA_PER_DCORE ; edma_idx++) {
|
|
u32 edma_offset = dcore * DCORE_OFFSET + edma_idx * DCORE_EDMA_OFFSET;
|
|
u32 edma_bit = dcore * NUM_OF_EDMA_PER_DCORE + edma_idx;
|
|
|
|
if (!(prop->edma_enabled_mask & BIT(edma_bit)))
|
|
continue;
|
|
|
|
WREG32(mmDCORE0_EDMA0_CORE_CTX_AXUSER_HB_MMU_BP + edma_offset, old_mmubp);
|
|
}
|
|
}
|
|
|
|
WREG32(sob_addr, 0);
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_scrub_device_dram(struct hl_device *hdev, u64 val)
|
|
{
|
|
int rc;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 size = prop->dram_end_address - prop->dram_user_base_address;
|
|
|
|
rc = gaudi2_memset_device_memory(hdev, prop->dram_user_base_address, size, val);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to scrub dram, address: 0x%llx size: %llu\n",
|
|
prop->dram_user_base_address, size);
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_scrub_device_mem(struct hl_device *hdev)
|
|
{
|
|
int rc;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 val = hdev->memory_scrub_val;
|
|
u64 addr, size;
|
|
|
|
if (!hdev->memory_scrub)
|
|
return 0;
|
|
|
|
/* scrub SRAM */
|
|
addr = prop->sram_user_base_address;
|
|
size = hdev->pldm ? 0x10000 : (prop->sram_size - SRAM_USER_BASE_OFFSET);
|
|
dev_dbg(hdev->dev, "Scrubbing SRAM: 0x%09llx - 0x%09llx, val: 0x%llx\n",
|
|
addr, addr + size, val);
|
|
rc = gaudi2_memset_device_memory(hdev, addr, size, val);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "scrubbing SRAM failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* scrub DRAM */
|
|
rc = gaudi2_scrub_device_dram(hdev, val);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "scrubbing DRAM failed (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_restore_user_sm_registers(struct hl_device *hdev)
|
|
{
|
|
u64 addr, mon_sts_addr, mon_cfg_addr, cq_lbw_l_addr, cq_lbw_h_addr,
|
|
cq_lbw_data_addr, cq_base_l_addr, cq_base_h_addr, cq_size_addr;
|
|
u32 val, size, offset;
|
|
int dcore_id;
|
|
|
|
offset = hdev->asic_prop.first_available_cq[0] * 4;
|
|
cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset;
|
|
cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + offset;
|
|
cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + offset;
|
|
cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + offset;
|
|
cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + offset;
|
|
cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + offset;
|
|
size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 -
|
|
(mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + offset);
|
|
|
|
/* memset dcore0 CQ registers */
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
|
|
|
|
cq_lbw_l_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0 + DCORE_OFFSET;
|
|
cq_lbw_h_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 + DCORE_OFFSET;
|
|
cq_lbw_data_addr = mmDCORE0_SYNC_MNGR_GLBL_LBW_DATA_0 + DCORE_OFFSET;
|
|
cq_base_l_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_L_0 + DCORE_OFFSET;
|
|
cq_base_h_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_BASE_ADDR_H_0 + DCORE_OFFSET;
|
|
cq_size_addr = mmDCORE0_SYNC_MNGR_GLBL_CQ_SIZE_LOG2_0 + DCORE_OFFSET;
|
|
size = mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_H_0 - mmDCORE0_SYNC_MNGR_GLBL_LBW_ADDR_L_0;
|
|
|
|
for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_l_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_h_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_lbw_data_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_base_l_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_base_h_addr, size, 0);
|
|
gaudi2_memset_device_lbw(hdev, cq_size_addr, size, 0);
|
|
|
|
cq_lbw_l_addr += DCORE_OFFSET;
|
|
cq_lbw_h_addr += DCORE_OFFSET;
|
|
cq_lbw_data_addr += DCORE_OFFSET;
|
|
cq_base_l_addr += DCORE_OFFSET;
|
|
cq_base_h_addr += DCORE_OFFSET;
|
|
cq_size_addr += DCORE_OFFSET;
|
|
}
|
|
|
|
offset = hdev->asic_prop.first_available_user_mon[0] * 4;
|
|
addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset;
|
|
val = 1 << DCORE0_SYNC_MNGR_OBJS_MON_STATUS_PROT_SHIFT;
|
|
size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - (mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + offset);
|
|
|
|
/* memset dcore0 monitors */
|
|
gaudi2_memset_device_lbw(hdev, addr, size, val);
|
|
|
|
addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + offset;
|
|
gaudi2_memset_device_lbw(hdev, addr, size, 0);
|
|
|
|
mon_sts_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0 + DCORE_OFFSET;
|
|
mon_cfg_addr = mmDCORE0_SYNC_MNGR_OBJS_MON_CONFIG_0 + DCORE_OFFSET;
|
|
size = mmDCORE0_SYNC_MNGR_OBJS_SM_SEC_0 - mmDCORE0_SYNC_MNGR_OBJS_MON_STATUS_0;
|
|
|
|
for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
|
|
gaudi2_memset_device_lbw(hdev, mon_sts_addr, size, val);
|
|
gaudi2_memset_device_lbw(hdev, mon_cfg_addr, size, 0);
|
|
mon_sts_addr += DCORE_OFFSET;
|
|
mon_cfg_addr += DCORE_OFFSET;
|
|
}
|
|
|
|
offset = hdev->asic_prop.first_available_user_sob[0] * 4;
|
|
addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset;
|
|
val = 0;
|
|
size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 -
|
|
(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);
|
|
|
|
/* memset dcore0 sobs */
|
|
gaudi2_memset_device_lbw(hdev, addr, size, val);
|
|
|
|
addr = mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + DCORE_OFFSET;
|
|
size = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 - mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0;
|
|
|
|
for (dcore_id = 1 ; dcore_id < NUM_OF_DCORES ; dcore_id++) {
|
|
gaudi2_memset_device_lbw(hdev, addr, size, val);
|
|
addr += DCORE_OFFSET;
|
|
}
|
|
|
|
/* Flush all WREG to prevent race */
|
|
val = RREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + offset);
|
|
}
|
|
|
|
static void gaudi2_restore_user_qm_registers(struct hl_device *hdev)
|
|
{
|
|
u32 reg_base, hw_queue_id;
|
|
|
|
for (hw_queue_id = GAUDI2_QUEUE_ID_PDMA_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_ROT_1_0;
|
|
hw_queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
|
|
continue;
|
|
|
|
gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
|
|
WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
|
|
}
|
|
|
|
/* Flush all WREG to prevent race */
|
|
RREG32(mmPDMA0_QM_ARB_CFG_0);
|
|
}
|
|
|
|
static void gaudi2_restore_nic_qm_registers(struct hl_device *hdev)
|
|
{
|
|
u32 reg_base, hw_queue_id;
|
|
|
|
for (hw_queue_id = GAUDI2_QUEUE_ID_NIC_0_0 ; hw_queue_id <= GAUDI2_QUEUE_ID_NIC_23_3;
|
|
hw_queue_id += NUM_OF_PQ_PER_QMAN) {
|
|
if (!gaudi2_is_queue_enabled(hdev, hw_queue_id))
|
|
continue;
|
|
|
|
gaudi2_clear_qm_fence_counters_common(hdev, hw_queue_id, false);
|
|
|
|
reg_base = gaudi2_qm_blocks_bases[hw_queue_id];
|
|
WREG32(reg_base + QM_ARB_CFG_0_OFFSET, 0);
|
|
}
|
|
|
|
/* Flush all WREG to prevent race */
|
|
RREG32(mmPDMA0_QM_ARB_CFG_0);
|
|
}
|
|
|
|
static int gaudi2_context_switch(struct hl_device *hdev, u32 asid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_restore_phase_topology(struct hl_device *hdev)
|
|
{
|
|
}
|
|
|
|
static void gaudi2_init_block_instances(struct hl_device *hdev, u32 block_idx,
|
|
struct dup_block_ctx *cfg_ctx)
|
|
{
|
|
u64 block_base = cfg_ctx->base + block_idx * cfg_ctx->block_off;
|
|
u8 seq;
|
|
int i;
|
|
|
|
for (i = 0 ; i < cfg_ctx->instances ; i++) {
|
|
seq = block_idx * cfg_ctx->instances + i;
|
|
|
|
/* skip disabled instance */
|
|
if (!(cfg_ctx->enabled_mask & BIT_ULL(seq)))
|
|
continue;
|
|
|
|
cfg_ctx->instance_cfg_fn(hdev, block_base + i * cfg_ctx->instance_off,
|
|
cfg_ctx->data);
|
|
}
|
|
}
|
|
|
|
static void gaudi2_init_blocks_with_mask(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx,
|
|
u64 mask)
|
|
{
|
|
int i;
|
|
|
|
cfg_ctx->enabled_mask = mask;
|
|
|
|
for (i = 0 ; i < cfg_ctx->blocks ; i++)
|
|
gaudi2_init_block_instances(hdev, i, cfg_ctx);
|
|
}
|
|
|
|
void gaudi2_init_blocks(struct hl_device *hdev, struct dup_block_ctx *cfg_ctx)
|
|
{
|
|
gaudi2_init_blocks_with_mask(hdev, cfg_ctx, U64_MAX);
|
|
}
|
|
|
|
static int gaudi2_debugfs_read_dma(struct hl_device *hdev, u64 addr, u32 size, void *blob_addr)
|
|
{
|
|
void *host_mem_virtual_addr;
|
|
dma_addr_t host_mem_dma_addr;
|
|
u64 reserved_va_base;
|
|
u32 pos, size_left, size_to_dma;
|
|
struct hl_ctx *ctx;
|
|
int rc = 0;
|
|
|
|
/* Fetch the ctx */
|
|
ctx = hl_get_compute_ctx(hdev);
|
|
if (!ctx) {
|
|
dev_err(hdev->dev, "No ctx available\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate buffers for read and for poll */
|
|
host_mem_virtual_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &host_mem_dma_addr,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (host_mem_virtual_addr == NULL) {
|
|
dev_err(hdev->dev, "Failed to allocate memory for KDMA read\n");
|
|
rc = -ENOMEM;
|
|
goto put_ctx;
|
|
}
|
|
|
|
/* Reserve VM region on asic side */
|
|
reserved_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, SZ_2M,
|
|
HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
|
|
if (!reserved_va_base) {
|
|
dev_err(hdev->dev, "Failed to reserve vmem on asic\n");
|
|
rc = -ENOMEM;
|
|
goto free_data_buffer;
|
|
}
|
|
|
|
/* Create mapping on asic side */
|
|
mutex_lock(&hdev->mmu_lock);
|
|
rc = hl_mmu_map_contiguous(ctx, reserved_va_base, host_mem_dma_addr, SZ_2M);
|
|
hl_mmu_invalidate_cache_range(hdev, false,
|
|
MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV,
|
|
ctx->asid, reserved_va_base, SZ_2M);
|
|
mutex_unlock(&hdev->mmu_lock);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to create mapping on asic mmu\n");
|
|
goto unreserve_va;
|
|
}
|
|
|
|
/* Enable MMU on KDMA */
|
|
gaudi2_kdma_set_mmbp_asid(hdev, false, ctx->asid);
|
|
|
|
pos = 0;
|
|
size_left = size;
|
|
size_to_dma = SZ_2M;
|
|
|
|
while (size_left > 0) {
|
|
if (size_left < SZ_2M)
|
|
size_to_dma = size_left;
|
|
|
|
rc = gaudi2_send_job_to_kdma(hdev, addr, reserved_va_base, size_to_dma, false);
|
|
if (rc)
|
|
break;
|
|
|
|
memcpy(blob_addr + pos, host_mem_virtual_addr, size_to_dma);
|
|
|
|
if (size_left <= SZ_2M)
|
|
break;
|
|
|
|
pos += SZ_2M;
|
|
addr += SZ_2M;
|
|
size_left -= SZ_2M;
|
|
}
|
|
|
|
gaudi2_kdma_set_mmbp_asid(hdev, true, HL_KERNEL_ASID_ID);
|
|
|
|
mutex_lock(&hdev->mmu_lock);
|
|
hl_mmu_unmap_contiguous(ctx, reserved_va_base, SZ_2M);
|
|
hl_mmu_invalidate_cache_range(hdev, false, MMU_OP_USERPTR,
|
|
ctx->asid, reserved_va_base, SZ_2M);
|
|
mutex_unlock(&hdev->mmu_lock);
|
|
unreserve_va:
|
|
hl_unreserve_va_block(hdev, ctx, reserved_va_base, SZ_2M);
|
|
free_data_buffer:
|
|
hl_asic_dma_free_coherent(hdev, SZ_2M, host_mem_virtual_addr, host_mem_dma_addr);
|
|
put_ctx:
|
|
hl_ctx_put(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int gaudi2_internal_cb_pool_init(struct hl_device *hdev, struct hl_ctx *ctx)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int min_alloc_order, rc;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
|
|
return 0;
|
|
|
|
hdev->internal_cb_pool_virt_addr = hl_asic_dma_alloc_coherent(hdev,
|
|
HOST_SPACE_INTERNAL_CB_SZ,
|
|
&hdev->internal_cb_pool_dma_addr,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (!hdev->internal_cb_pool_virt_addr)
|
|
return -ENOMEM;
|
|
|
|
min_alloc_order = ilog2(min(gaudi2_get_signal_cb_size(hdev),
|
|
gaudi2_get_wait_cb_size(hdev)));
|
|
|
|
hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
|
|
if (!hdev->internal_cb_pool) {
|
|
dev_err(hdev->dev, "Failed to create internal CB pool\n");
|
|
rc = -ENOMEM;
|
|
goto free_internal_cb_pool;
|
|
}
|
|
|
|
rc = gen_pool_add(hdev->internal_cb_pool, (uintptr_t) hdev->internal_cb_pool_virt_addr,
|
|
HOST_SPACE_INTERNAL_CB_SZ, -1);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to add memory to internal CB pool\n");
|
|
rc = -EFAULT;
|
|
goto destroy_internal_cb_pool;
|
|
}
|
|
|
|
hdev->internal_cb_va_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST,
|
|
HOST_SPACE_INTERNAL_CB_SZ, HL_MMU_VA_ALIGNMENT_NOT_NEEDED);
|
|
|
|
if (!hdev->internal_cb_va_base) {
|
|
rc = -ENOMEM;
|
|
goto destroy_internal_cb_pool;
|
|
}
|
|
|
|
mutex_lock(&hdev->mmu_lock);
|
|
rc = hl_mmu_map_contiguous(ctx, hdev->internal_cb_va_base, hdev->internal_cb_pool_dma_addr,
|
|
HOST_SPACE_INTERNAL_CB_SZ);
|
|
hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR);
|
|
mutex_unlock(&hdev->mmu_lock);
|
|
|
|
if (rc)
|
|
goto unreserve_internal_cb_pool;
|
|
|
|
return 0;
|
|
|
|
unreserve_internal_cb_pool:
|
|
hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
|
|
destroy_internal_cb_pool:
|
|
gen_pool_destroy(hdev->internal_cb_pool);
|
|
free_internal_cb_pool:
|
|
hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
|
|
hdev->internal_cb_pool_dma_addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_internal_cb_pool_fini(struct hl_device *hdev, struct hl_ctx *ctx)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_PMMU))
|
|
return;
|
|
|
|
mutex_lock(&hdev->mmu_lock);
|
|
hl_mmu_unmap_contiguous(ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
|
|
hl_unreserve_va_block(hdev, ctx, hdev->internal_cb_va_base, HOST_SPACE_INTERNAL_CB_SZ);
|
|
hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
|
|
mutex_unlock(&hdev->mmu_lock);
|
|
|
|
gen_pool_destroy(hdev->internal_cb_pool);
|
|
|
|
hl_asic_dma_free_coherent(hdev, HOST_SPACE_INTERNAL_CB_SZ, hdev->internal_cb_pool_virt_addr,
|
|
hdev->internal_cb_pool_dma_addr);
|
|
}
|
|
|
|
static void gaudi2_restore_user_registers(struct hl_device *hdev)
|
|
{
|
|
gaudi2_restore_user_sm_registers(hdev);
|
|
gaudi2_restore_user_qm_registers(hdev);
|
|
}
|
|
|
|
static int gaudi2_map_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int rc;
|
|
|
|
rc = hl_mmu_map_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
|
|
gaudi2->virt_msix_db_dma_addr, prop->pmmu.page_size, true);
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to map VA %#llx for virtual MSI-X doorbell memory\n",
|
|
RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_unmap_virtual_msix_doorbell_memory(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int rc;
|
|
|
|
rc = hl_mmu_unmap_page(ctx, RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START,
|
|
prop->pmmu.page_size, true);
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to unmap VA %#llx of virtual MSI-X doorbell memory\n",
|
|
RESERVED_VA_FOR_VIRTUAL_MSIX_DOORBELL_START);
|
|
}
|
|
|
|
static int gaudi2_ctx_init(struct hl_ctx *ctx)
|
|
{
|
|
int rc;
|
|
|
|
rc = gaudi2_mmu_prepare(ctx->hdev, ctx->asid);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* No need to clear user registers if the device has just
|
|
* performed reset, we restore only nic qm registers
|
|
*/
|
|
if (ctx->hdev->reset_upon_device_release)
|
|
gaudi2_restore_nic_qm_registers(ctx->hdev);
|
|
else
|
|
gaudi2_restore_user_registers(ctx->hdev);
|
|
|
|
rc = gaudi2_internal_cb_pool_init(ctx->hdev, ctx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = gaudi2_map_virtual_msix_doorbell_memory(ctx);
|
|
if (rc)
|
|
gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_ctx_fini(struct hl_ctx *ctx)
|
|
{
|
|
if (ctx->asid == HL_KERNEL_ASID_ID)
|
|
return;
|
|
|
|
gaudi2_internal_cb_pool_fini(ctx->hdev, ctx);
|
|
|
|
gaudi2_unmap_virtual_msix_doorbell_memory(ctx);
|
|
}
|
|
|
|
static int gaudi2_pre_schedule_cs(struct hl_cs *cs)
|
|
{
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
int index = cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
|
|
u32 mon_payload, sob_id, mon_id;
|
|
|
|
if (!cs_needs_completion(cs))
|
|
return 0;
|
|
|
|
/*
|
|
* First 64 SOB/MON are reserved for driver for QMAN auto completion
|
|
* mechanism. Each SOB/MON pair are used for a pending CS with the same
|
|
* cyclic index. The SOB value is increased when each of the CS jobs is
|
|
* completed. When the SOB reaches the number of CS jobs, the monitor
|
|
* generates MSI-X interrupt.
|
|
*/
|
|
|
|
sob_id = mon_id = index;
|
|
mon_payload = (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
|
|
(1 << CQ_ENTRY_READY_SHIFT) | index;
|
|
|
|
gaudi2_arm_cq_monitor(hdev, sob_id, mon_id, GAUDI2_RESERVED_CQ_CS_COMPLETION, mon_payload,
|
|
cs->jobs_cnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 gaudi2_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
|
|
{
|
|
return HL_INVALID_QUEUE;
|
|
}
|
|
|
|
static u32 gaudi2_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id, u32 size, bool eb)
|
|
{
|
|
struct hl_cb *cb = data;
|
|
struct packet_msg_short *pkt;
|
|
u32 value, ctl, pkt_size = sizeof(*pkt);
|
|
|
|
pkt = (struct packet_msg_short *) (uintptr_t) (cb->kernel_address + size);
|
|
memset(pkt, 0, pkt_size);
|
|
|
|
/* Inc by 1, Mode ADD */
|
|
value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_SYNC_VAL_MASK, 1);
|
|
value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_SOB_MOD_MASK, 1);
|
|
|
|
ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, sob_id * 4);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 1); /* SOB base */
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, eb);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
|
|
|
|
pkt->value = cpu_to_le32(value);
|
|
pkt->ctl = cpu_to_le32(ctl);
|
|
|
|
return size + pkt_size;
|
|
}
|
|
|
|
static u32 gaudi2_add_mon_msg_short(struct packet_msg_short *pkt, u32 value, u16 addr)
|
|
{
|
|
u32 ctl, pkt_size = sizeof(*pkt);
|
|
|
|
memset(pkt, 0, pkt_size);
|
|
|
|
ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 0);
|
|
|
|
pkt->value = cpu_to_le32(value);
|
|
pkt->ctl = cpu_to_le32(ctl);
|
|
|
|
return pkt_size;
|
|
}
|
|
|
|
static u32 gaudi2_add_arm_monitor_pkt(struct hl_device *hdev, struct packet_msg_short *pkt,
|
|
u16 sob_base, u8 sob_mask, u16 sob_val, u16 addr)
|
|
{
|
|
u32 ctl, value, pkt_size = sizeof(*pkt);
|
|
u8 mask;
|
|
|
|
if (hl_gen_sob_mask(sob_base, sob_mask, &mask)) {
|
|
dev_err(hdev->dev, "sob_base %u (mask %#x) is not valid\n", sob_base, sob_mask);
|
|
return 0;
|
|
}
|
|
|
|
memset(pkt, 0, pkt_size);
|
|
|
|
value = FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_GID_MASK, sob_base / 8);
|
|
value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_SYNC_VAL_MASK, sob_val);
|
|
value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MODE_MASK, 0); /* GREATER OR EQUAL*/
|
|
value |= FIELD_PREP(GAUDI2_PKT_SHORT_VAL_MON_MASK_MASK, mask);
|
|
|
|
ctl = FIELD_PREP(GAUDI2_PKT_SHORT_CTL_ADDR_MASK, addr);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_SHORT_CTL_BASE_MASK, 0); /* MON base */
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_MSG_SHORT);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
|
|
|
|
pkt->value = cpu_to_le32(value);
|
|
pkt->ctl = cpu_to_le32(ctl);
|
|
|
|
return pkt_size;
|
|
}
|
|
|
|
static u32 gaudi2_add_fence_pkt(struct packet_fence *pkt)
|
|
{
|
|
u32 ctl, cfg, pkt_size = sizeof(*pkt);
|
|
|
|
memset(pkt, 0, pkt_size);
|
|
|
|
cfg = FIELD_PREP(GAUDI2_PKT_FENCE_CFG_DEC_VAL_MASK, 1);
|
|
cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_TARGET_VAL_MASK, 1);
|
|
cfg |= FIELD_PREP(GAUDI2_PKT_FENCE_CFG_ID_MASK, 2);
|
|
|
|
ctl = FIELD_PREP(GAUDI2_PKT_CTL_OPCODE_MASK, PACKET_FENCE);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_EB_MASK, 0);
|
|
ctl |= FIELD_PREP(GAUDI2_PKT_CTL_MB_MASK, 1);
|
|
|
|
pkt->cfg = cpu_to_le32(cfg);
|
|
pkt->ctl = cpu_to_le32(ctl);
|
|
|
|
return pkt_size;
|
|
}
|
|
|
|
static u32 gaudi2_gen_wait_cb(struct hl_device *hdev, struct hl_gen_wait_properties *prop)
|
|
{
|
|
struct hl_cb *cb = prop->data;
|
|
void *buf = (void *) (uintptr_t) (cb->kernel_address);
|
|
|
|
u64 monitor_base, fence_addr = 0;
|
|
u32 stream_index, size = prop->size;
|
|
u16 msg_addr_offset;
|
|
|
|
stream_index = prop->q_idx % 4;
|
|
fence_addr = CFG_BASE + gaudi2_qm_blocks_bases[prop->q_idx] +
|
|
QM_FENCE2_OFFSET + stream_index * 4;
|
|
|
|
/*
|
|
* monitor_base should be the content of the base0 address registers,
|
|
* so it will be added to the msg short offsets
|
|
*/
|
|
monitor_base = mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0;
|
|
|
|
/* First monitor config packet: low address of the sync */
|
|
msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0 + prop->mon_id * 4) -
|
|
monitor_base;
|
|
|
|
size += gaudi2_add_mon_msg_short(buf + size, (u32) fence_addr, msg_addr_offset);
|
|
|
|
/* Second monitor config packet: high address of the sync */
|
|
msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_ADDRH_0 + prop->mon_id * 4) -
|
|
monitor_base;
|
|
|
|
size += gaudi2_add_mon_msg_short(buf + size, (u32) (fence_addr >> 32), msg_addr_offset);
|
|
|
|
/*
|
|
* Third monitor config packet: the payload, i.e. what to write when the
|
|
* sync triggers
|
|
*/
|
|
msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_PAY_DATA_0 + prop->mon_id * 4) -
|
|
monitor_base;
|
|
|
|
size += gaudi2_add_mon_msg_short(buf + size, 1, msg_addr_offset);
|
|
|
|
/* Fourth monitor config packet: bind the monitor to a sync object */
|
|
msg_addr_offset = (mmDCORE0_SYNC_MNGR_OBJS_MON_ARM_0 + prop->mon_id * 4) - monitor_base;
|
|
|
|
size += gaudi2_add_arm_monitor_pkt(hdev, buf + size, prop->sob_base, prop->sob_mask,
|
|
prop->sob_val, msg_addr_offset);
|
|
|
|
/* Fence packet */
|
|
size += gaudi2_add_fence_pkt(buf + size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static void gaudi2_reset_sob(struct hl_device *hdev, void *data)
|
|
{
|
|
struct hl_hw_sob *hw_sob = data;
|
|
|
|
dev_dbg(hdev->dev, "reset SOB, q_idx: %d, sob_id: %d\n", hw_sob->q_idx, hw_sob->sob_id);
|
|
|
|
WREG32(mmDCORE0_SYNC_MNGR_OBJS_SOB_OBJ_0 + hw_sob->sob_id * 4, 0);
|
|
|
|
kref_init(&hw_sob->kref);
|
|
}
|
|
|
|
static void gaudi2_reset_sob_group(struct hl_device *hdev, u16 sob_group)
|
|
{
|
|
}
|
|
|
|
static u64 gaudi2_get_device_time(struct hl_device *hdev)
|
|
{
|
|
u64 device_time = ((u64) RREG32(mmPSOC_TIMESTAMP_CNTCVU)) << 32;
|
|
|
|
return device_time | RREG32(mmPSOC_TIMESTAMP_CNTCVL);
|
|
}
|
|
|
|
static int gaudi2_collective_wait_init_cs(struct hl_cs *cs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_collective_wait_create_jobs(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
struct hl_cs *cs, u32 wait_queue_id,
|
|
u32 collective_engine_id, u32 encaps_signal_offset)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_scramble - converts a dram (non power of 2) page-size aligned address
|
|
* to DMMU page-size address (64MB) before mapping it in
|
|
* the MMU.
|
|
* The operation is performed on both the virtual and physical addresses.
|
|
* for device with 6 HBMs the scramble is:
|
|
* (addr[47:0] / 48M) * 64M + addr % 48M + addr[63:48]
|
|
*
|
|
* Example:
|
|
* =============================================================================
|
|
* Allocated DRAM Reserved VA scrambled VA for MMU mapping Scrambled PA
|
|
* Phys address in MMU last
|
|
* HOP
|
|
* =============================================================================
|
|
* PA1 0x3000000 VA1 0x9C000000 SVA1= (VA1/48M)*64M 0xD0000000 <- PA1/48M 0x1
|
|
* PA2 0x9000000 VA2 0x9F000000 SVA2= (VA2/48M)*64M 0xD4000000 <- PA2/48M 0x3
|
|
* =============================================================================
|
|
*/
|
|
static u64 gaudi2_mmu_scramble_addr(struct hl_device *hdev, u64 raw_addr)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 divisor, mod_va;
|
|
u64 div_va;
|
|
|
|
/* accept any address in the DRAM address space */
|
|
if (hl_mem_area_inside_range(raw_addr, sizeof(raw_addr), DRAM_PHYS_BASE,
|
|
VA_HBM_SPACE_END)) {
|
|
|
|
divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
|
|
div_va = div_u64_rem(raw_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK, divisor, &mod_va);
|
|
return (raw_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) |
|
|
(div_va << GAUDI2_HBM_MMU_SCRM_DIV_SHIFT) |
|
|
(mod_va << GAUDI2_HBM_MMU_SCRM_MOD_SHIFT);
|
|
}
|
|
|
|
return raw_addr;
|
|
}
|
|
|
|
static u64 gaudi2_mmu_descramble_addr(struct hl_device *hdev, u64 scrambled_addr)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 divisor, mod_va;
|
|
u64 div_va;
|
|
|
|
/* accept any address in the DRAM address space */
|
|
if (hl_mem_area_inside_range(scrambled_addr, sizeof(scrambled_addr), DRAM_PHYS_BASE,
|
|
VA_HBM_SPACE_END)) {
|
|
|
|
divisor = prop->num_functional_hbms * GAUDI2_HBM_MMU_SCRM_MEM_SIZE;
|
|
div_va = div_u64_rem(scrambled_addr & GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK,
|
|
PAGE_SIZE_64MB, &mod_va);
|
|
|
|
return ((scrambled_addr & ~GAUDI2_HBM_MMU_SCRM_ADDRESS_MASK) +
|
|
(div_va * divisor + mod_va));
|
|
}
|
|
|
|
return scrambled_addr;
|
|
}
|
|
|
|
static u32 gaudi2_get_dec_base_addr(struct hl_device *hdev, u32 core_id)
|
|
{
|
|
u32 base = 0, dcore_id, dec_id;
|
|
|
|
if (core_id >= NUMBER_OF_DEC) {
|
|
dev_err(hdev->dev, "Unexpected core number %d for DEC\n", core_id);
|
|
goto out;
|
|
}
|
|
|
|
if (core_id < 8) {
|
|
dcore_id = core_id / NUM_OF_DEC_PER_DCORE;
|
|
dec_id = core_id % NUM_OF_DEC_PER_DCORE;
|
|
|
|
base = mmDCORE0_DEC0_CMD_BASE + dcore_id * DCORE_OFFSET +
|
|
dec_id * DCORE_VDEC_OFFSET;
|
|
} else {
|
|
/* PCIe Shared Decoder */
|
|
base = mmPCIE_DEC0_CMD_BASE + ((core_id % 8) * PCIE_VDEC_OFFSET);
|
|
}
|
|
out:
|
|
return base;
|
|
}
|
|
|
|
static int gaudi2_get_hw_block_id(struct hl_device *hdev, u64 block_addr,
|
|
u32 *block_size, u32 *block_id)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
int i;
|
|
|
|
for (i = 0 ; i < NUM_USER_MAPPED_BLOCKS ; i++) {
|
|
if (block_addr == CFG_BASE + gaudi2->mapped_blocks[i].address) {
|
|
*block_id = i;
|
|
if (block_size)
|
|
*block_size = gaudi2->mapped_blocks[i].size;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dev_err(hdev->dev, "Invalid block address %#llx", block_addr);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int gaudi2_block_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
|
|
u32 block_id, u32 block_size)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u64 offset_in_bar;
|
|
u64 address;
|
|
int rc;
|
|
|
|
if (block_id >= NUM_USER_MAPPED_BLOCKS) {
|
|
dev_err(hdev->dev, "Invalid block id %u", block_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* we allow mapping only an entire block */
|
|
if (block_size != gaudi2->mapped_blocks[block_id].size) {
|
|
dev_err(hdev->dev, "Invalid block size %u", block_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset_in_bar = CFG_BASE + gaudi2->mapped_blocks[block_id].address - STM_FLASH_BASE_ADDR;
|
|
|
|
address = pci_resource_start(hdev->pdev, SRAM_CFG_BAR_ID) + offset_in_bar;
|
|
|
|
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
|
|
VM_DONTCOPY | VM_NORESERVE;
|
|
|
|
rc = remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT,
|
|
block_size, vma->vm_page_prot);
|
|
if (rc)
|
|
dev_err(hdev->dev, "remap_pfn_range error %d", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void gaudi2_enable_events_from_fw(struct hl_device *hdev)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
struct cpu_dyn_regs *dyn_regs = &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
u32 irq_handler_offset = le32_to_cpu(dyn_regs->gic_host_ints_irq);
|
|
|
|
if (gaudi2->hw_cap_initialized & HW_CAP_CPU_Q)
|
|
WREG32(irq_handler_offset,
|
|
gaudi2_irq_map_table[GAUDI2_EVENT_CPU_INTS_REGISTER].cpu_id);
|
|
}
|
|
|
|
static int gaudi2_get_mmu_base(struct hl_device *hdev, u64 mmu_id, u32 *mmu_base)
|
|
{
|
|
switch (mmu_id) {
|
|
case HW_CAP_DCORE0_DMMU0:
|
|
*mmu_base = mmDCORE0_HMMU0_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE0_DMMU1:
|
|
*mmu_base = mmDCORE0_HMMU1_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE0_DMMU2:
|
|
*mmu_base = mmDCORE0_HMMU2_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE0_DMMU3:
|
|
*mmu_base = mmDCORE0_HMMU3_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE1_DMMU0:
|
|
*mmu_base = mmDCORE1_HMMU0_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE1_DMMU1:
|
|
*mmu_base = mmDCORE1_HMMU1_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE1_DMMU2:
|
|
*mmu_base = mmDCORE1_HMMU2_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE1_DMMU3:
|
|
*mmu_base = mmDCORE1_HMMU3_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE2_DMMU0:
|
|
*mmu_base = mmDCORE2_HMMU0_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE2_DMMU1:
|
|
*mmu_base = mmDCORE2_HMMU1_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE2_DMMU2:
|
|
*mmu_base = mmDCORE2_HMMU2_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE2_DMMU3:
|
|
*mmu_base = mmDCORE2_HMMU3_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE3_DMMU0:
|
|
*mmu_base = mmDCORE3_HMMU0_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE3_DMMU1:
|
|
*mmu_base = mmDCORE3_HMMU1_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE3_DMMU2:
|
|
*mmu_base = mmDCORE3_HMMU2_MMU_BASE;
|
|
break;
|
|
case HW_CAP_DCORE3_DMMU3:
|
|
*mmu_base = mmDCORE3_HMMU3_MMU_BASE;
|
|
break;
|
|
case HW_CAP_PMMU:
|
|
*mmu_base = mmPMMU_HBW_MMU_BASE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_ack_mmu_error(struct hl_device *hdev, u64 mmu_id)
|
|
{
|
|
bool is_pmmu = (mmu_id == HW_CAP_PMMU);
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
u32 mmu_base;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & mmu_id))
|
|
return;
|
|
|
|
if (gaudi2_get_mmu_base(hdev, mmu_id, &mmu_base))
|
|
return;
|
|
|
|
gaudi2_handle_page_error(hdev, mmu_base, is_pmmu);
|
|
gaudi2_handle_access_error(hdev, mmu_base, is_pmmu);
|
|
}
|
|
|
|
static int gaudi2_ack_mmu_page_fault_or_access_error(struct hl_device *hdev, u64 mmu_cap_mask)
|
|
{
|
|
u32 i, mmu_id, num_of_hmmus = NUM_OF_HMMU_PER_DCORE * NUM_OF_DCORES;
|
|
|
|
/* check all HMMUs */
|
|
for (i = 0 ; i < num_of_hmmus ; i++) {
|
|
mmu_id = HW_CAP_DCORE0_DMMU0 << i;
|
|
|
|
if (mmu_cap_mask & mmu_id)
|
|
gaudi2_ack_mmu_error(hdev, mmu_id);
|
|
}
|
|
|
|
/* check PMMU */
|
|
if (mmu_cap_mask & HW_CAP_PMMU)
|
|
gaudi2_ack_mmu_error(hdev, HW_CAP_PMMU);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gaudi2_get_msi_info(__le32 *table)
|
|
{
|
|
table[CPUCP_EVENT_QUEUE_MSI_TYPE] = cpu_to_le32(GAUDI2_EVENT_QUEUE_MSIX_IDX);
|
|
}
|
|
|
|
static int gaudi2_map_pll_idx_to_fw_idx(u32 pll_idx)
|
|
{
|
|
switch (pll_idx) {
|
|
case HL_GAUDI2_CPU_PLL: return CPU_PLL;
|
|
case HL_GAUDI2_PCI_PLL: return PCI_PLL;
|
|
case HL_GAUDI2_NIC_PLL: return NIC_PLL;
|
|
case HL_GAUDI2_DMA_PLL: return DMA_PLL;
|
|
case HL_GAUDI2_MESH_PLL: return MESH_PLL;
|
|
case HL_GAUDI2_MME_PLL: return MME_PLL;
|
|
case HL_GAUDI2_TPC_PLL: return TPC_PLL;
|
|
case HL_GAUDI2_IF_PLL: return IF_PLL;
|
|
case HL_GAUDI2_SRAM_PLL: return SRAM_PLL;
|
|
case HL_GAUDI2_HBM_PLL: return HBM_PLL;
|
|
case HL_GAUDI2_VID_PLL: return VID_PLL;
|
|
case HL_GAUDI2_MSS_PLL: return MSS_PLL;
|
|
default: return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int gaudi2_gen_sync_to_engine_map(struct hl_device *hdev, struct hl_sync_to_engine_map *map)
|
|
{
|
|
/* Not implemented */
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_monitor_valid(struct hl_mon_state_dump *mon)
|
|
{
|
|
/* Not implemented */
|
|
return 0;
|
|
}
|
|
|
|
static int gaudi2_print_single_monitor(char **buf, size_t *size, size_t *offset,
|
|
struct hl_device *hdev, struct hl_mon_state_dump *mon)
|
|
{
|
|
/* Not implemented */
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int gaudi2_print_fences_single_engine(struct hl_device *hdev, u64 base_offset,
|
|
u64 status_base_offset, enum hl_sync_engine_type engine_type,
|
|
u32 engine_id, char **buf, size_t *size, size_t *offset)
|
|
{
|
|
/* Not implemented */
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct hl_state_dump_specs_funcs gaudi2_state_dump_funcs = {
|
|
.monitor_valid = gaudi2_monitor_valid,
|
|
.print_single_monitor = gaudi2_print_single_monitor,
|
|
.gen_sync_to_engine_map = gaudi2_gen_sync_to_engine_map,
|
|
.print_fences_single_engine = gaudi2_print_fences_single_engine,
|
|
};
|
|
|
|
static void gaudi2_state_dump_init(struct hl_device *hdev)
|
|
{
|
|
/* Not implemented */
|
|
hdev->state_dump_specs.props = gaudi2_state_dump_specs_props;
|
|
hdev->state_dump_specs.funcs = gaudi2_state_dump_funcs;
|
|
}
|
|
|
|
static u32 gaudi2_get_sob_addr(struct hl_device *hdev, u32 sob_id)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 *gaudi2_get_stream_master_qid_arr(void)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void gaudi2_add_device_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
|
|
struct attribute_group *dev_vrm_attr_grp)
|
|
{
|
|
hl_sysfs_add_dev_clk_attr(hdev, dev_clk_attr_grp);
|
|
hl_sysfs_add_dev_vrm_attr(hdev, dev_vrm_attr_grp);
|
|
}
|
|
|
|
static int gaudi2_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
|
|
u32 page_size, u32 *real_page_size, bool is_dram_addr)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
/* for host pages the page size must be */
|
|
if (!is_dram_addr) {
|
|
if (page_size % mmu_prop->page_size)
|
|
goto page_size_err;
|
|
|
|
*real_page_size = mmu_prop->page_size;
|
|
return 0;
|
|
}
|
|
|
|
if ((page_size % prop->dram_page_size) || (prop->dram_page_size > mmu_prop->page_size))
|
|
goto page_size_err;
|
|
|
|
/*
|
|
* MMU page size is different from DRAM page size (more precisely, DMMU page is greater
|
|
* than DRAM page size).
|
|
* for this reason work with the DRAM page size and let the MMU scrambling routine handle
|
|
* this mismatch when calculating the address to place in the MMU page table.
|
|
* (in that case also make sure that the dram_page_size is not greater than the
|
|
* mmu page size)
|
|
*/
|
|
*real_page_size = prop->dram_page_size;
|
|
|
|
return 0;
|
|
|
|
page_size_err:
|
|
dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
|
|
page_size, mmu_prop->page_size >> 10);
|
|
return -EFAULT;
|
|
}
|
|
|
|
static int gaudi2_get_monitor_dump(struct hl_device *hdev, void *data)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
int gaudi2_send_device_activity(struct hl_device *hdev, bool open)
|
|
{
|
|
struct gaudi2_device *gaudi2 = hdev->asic_specific;
|
|
|
|
if (!(gaudi2->hw_cap_initialized & HW_CAP_CPU_Q) || hdev->fw_major_version < 37)
|
|
return 0;
|
|
|
|
/* TODO: add check for FW version using minor ver once it's known */
|
|
return hl_fw_send_device_activity(hdev, open);
|
|
}
|
|
|
|
static const struct hl_asic_funcs gaudi2_funcs = {
|
|
.early_init = gaudi2_early_init,
|
|
.early_fini = gaudi2_early_fini,
|
|
.late_init = gaudi2_late_init,
|
|
.late_fini = gaudi2_late_fini,
|
|
.sw_init = gaudi2_sw_init,
|
|
.sw_fini = gaudi2_sw_fini,
|
|
.hw_init = gaudi2_hw_init,
|
|
.hw_fini = gaudi2_hw_fini,
|
|
.halt_engines = gaudi2_halt_engines,
|
|
.suspend = gaudi2_suspend,
|
|
.resume = gaudi2_resume,
|
|
.mmap = gaudi2_mmap,
|
|
.ring_doorbell = gaudi2_ring_doorbell,
|
|
.pqe_write = gaudi2_pqe_write,
|
|
.asic_dma_alloc_coherent = gaudi2_dma_alloc_coherent,
|
|
.asic_dma_free_coherent = gaudi2_dma_free_coherent,
|
|
.scrub_device_mem = gaudi2_scrub_device_mem,
|
|
.scrub_device_dram = gaudi2_scrub_device_dram,
|
|
.get_int_queue_base = NULL,
|
|
.test_queues = gaudi2_test_queues,
|
|
.asic_dma_pool_zalloc = gaudi2_dma_pool_zalloc,
|
|
.asic_dma_pool_free = gaudi2_dma_pool_free,
|
|
.cpu_accessible_dma_pool_alloc = gaudi2_cpu_accessible_dma_pool_alloc,
|
|
.cpu_accessible_dma_pool_free = gaudi2_cpu_accessible_dma_pool_free,
|
|
.asic_dma_unmap_single = gaudi2_dma_unmap_single,
|
|
.asic_dma_map_single = gaudi2_dma_map_single,
|
|
.hl_dma_unmap_sgtable = hl_dma_unmap_sgtable,
|
|
.cs_parser = gaudi2_cs_parser,
|
|
.asic_dma_map_sgtable = hl_dma_map_sgtable,
|
|
.add_end_of_cb_packets = NULL,
|
|
.update_eq_ci = gaudi2_update_eq_ci,
|
|
.context_switch = gaudi2_context_switch,
|
|
.restore_phase_topology = gaudi2_restore_phase_topology,
|
|
.debugfs_read_dma = gaudi2_debugfs_read_dma,
|
|
.add_device_attr = gaudi2_add_device_attr,
|
|
.handle_eqe = gaudi2_handle_eqe,
|
|
.get_events_stat = gaudi2_get_events_stat,
|
|
.read_pte = NULL,
|
|
.write_pte = NULL,
|
|
.mmu_invalidate_cache = gaudi2_mmu_invalidate_cache,
|
|
.mmu_invalidate_cache_range = gaudi2_mmu_invalidate_cache_range,
|
|
.mmu_prefetch_cache_range = NULL,
|
|
.send_heartbeat = gaudi2_send_heartbeat,
|
|
.debug_coresight = gaudi2_debug_coresight,
|
|
.is_device_idle = gaudi2_is_device_idle,
|
|
.compute_reset_late_init = gaudi2_compute_reset_late_init,
|
|
.hw_queues_lock = gaudi2_hw_queues_lock,
|
|
.hw_queues_unlock = gaudi2_hw_queues_unlock,
|
|
.get_pci_id = gaudi2_get_pci_id,
|
|
.get_eeprom_data = gaudi2_get_eeprom_data,
|
|
.get_monitor_dump = gaudi2_get_monitor_dump,
|
|
.send_cpu_message = gaudi2_send_cpu_message,
|
|
.pci_bars_map = gaudi2_pci_bars_map,
|
|
.init_iatu = gaudi2_init_iatu,
|
|
.rreg = hl_rreg,
|
|
.wreg = hl_wreg,
|
|
.halt_coresight = gaudi2_halt_coresight,
|
|
.ctx_init = gaudi2_ctx_init,
|
|
.ctx_fini = gaudi2_ctx_fini,
|
|
.pre_schedule_cs = gaudi2_pre_schedule_cs,
|
|
.get_queue_id_for_cq = gaudi2_get_queue_id_for_cq,
|
|
.load_firmware_to_device = NULL,
|
|
.load_boot_fit_to_device = NULL,
|
|
.get_signal_cb_size = gaudi2_get_signal_cb_size,
|
|
.get_wait_cb_size = gaudi2_get_wait_cb_size,
|
|
.gen_signal_cb = gaudi2_gen_signal_cb,
|
|
.gen_wait_cb = gaudi2_gen_wait_cb,
|
|
.reset_sob = gaudi2_reset_sob,
|
|
.reset_sob_group = gaudi2_reset_sob_group,
|
|
.get_device_time = gaudi2_get_device_time,
|
|
.pb_print_security_errors = gaudi2_pb_print_security_errors,
|
|
.collective_wait_init_cs = gaudi2_collective_wait_init_cs,
|
|
.collective_wait_create_jobs = gaudi2_collective_wait_create_jobs,
|
|
.get_dec_base_addr = gaudi2_get_dec_base_addr,
|
|
.scramble_addr = gaudi2_mmu_scramble_addr,
|
|
.descramble_addr = gaudi2_mmu_descramble_addr,
|
|
.ack_protection_bits_errors = gaudi2_ack_protection_bits_errors,
|
|
.get_hw_block_id = gaudi2_get_hw_block_id,
|
|
.hw_block_mmap = gaudi2_block_mmap,
|
|
.enable_events_from_fw = gaudi2_enable_events_from_fw,
|
|
.ack_mmu_errors = gaudi2_ack_mmu_page_fault_or_access_error,
|
|
.get_msi_info = gaudi2_get_msi_info,
|
|
.map_pll_idx_to_fw_idx = gaudi2_map_pll_idx_to_fw_idx,
|
|
.init_firmware_preload_params = gaudi2_init_firmware_preload_params,
|
|
.init_firmware_loader = gaudi2_init_firmware_loader,
|
|
.init_cpu_scrambler_dram = gaudi2_init_scrambler_hbm,
|
|
.state_dump_init = gaudi2_state_dump_init,
|
|
.get_sob_addr = &gaudi2_get_sob_addr,
|
|
.set_pci_memory_regions = gaudi2_set_pci_memory_regions,
|
|
.get_stream_master_qid_arr = gaudi2_get_stream_master_qid_arr,
|
|
.check_if_razwi_happened = gaudi2_check_if_razwi_happened,
|
|
.mmu_get_real_page_size = gaudi2_mmu_get_real_page_size,
|
|
.access_dev_mem = hl_access_dev_mem,
|
|
.set_dram_bar_base = gaudi2_set_hbm_bar_base,
|
|
.set_engine_cores = gaudi2_set_engine_cores,
|
|
.send_device_activity = gaudi2_send_device_activity,
|
|
};
|
|
|
|
void gaudi2_set_asic_funcs(struct hl_device *hdev)
|
|
{
|
|
hdev->asic_funcs = &gaudi2_funcs;
|
|
}
|