linuxdebug/drivers/media/platform/amphion/vpu_windsor.c

1175 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2020-2021 NXP
*/
#include <linux/init.h>
#include <linux/interconnect.h>
#include <linux/ioctl.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/time64.h>
#include <media/videobuf2-v4l2.h>
#include <media/videobuf2-dma-contig.h>
#include "vpu.h"
#include "vpu_rpc.h"
#include "vpu_defs.h"
#include "vpu_helpers.h"
#include "vpu_cmds.h"
#include "vpu_v4l2.h"
#include "vpu_imx8q.h"
#include "vpu_windsor.h"
#define CMD_SIZE 2560
#define MSG_SIZE 25600
#define WINDSOR_USER_DATA_WORDS 16
#define WINDSOR_MAX_SRC_FRAMES 0x6
#define WINDSOR_MAX_REF_FRAMES 0x3
#define WINDSOR_BITRATE_UNIT 1024
#define WINDSOR_H264_EXTENDED_SAR 255
enum {
GTB_ENC_CMD_NOOP = 0x0,
GTB_ENC_CMD_STREAM_START,
GTB_ENC_CMD_FRAME_ENCODE,
GTB_ENC_CMD_FRAME_SKIP,
GTB_ENC_CMD_STREAM_STOP,
GTB_ENC_CMD_PARAMETER_UPD,
GTB_ENC_CMD_TERMINATE,
GTB_ENC_CMD_SNAPSHOT,
GTB_ENC_CMD_ROLL_SNAPSHOT,
GTB_ENC_CMD_LOCK_SCHEDULER,
GTB_ENC_CMD_UNLOCK_SCHEDULER,
GTB_ENC_CMD_CONFIGURE_CODEC,
GTB_ENC_CMD_DEAD_MARK,
GTB_ENC_CMD_FIRM_RESET,
GTB_ENC_CMD_FW_STATUS,
GTB_ENC_CMD_RESERVED
};
enum {
VID_API_EVENT_UNDEFINED = 0x0,
VID_API_ENC_EVENT_RESET_DONE = 0x1,
VID_API_ENC_EVENT_START_DONE,
VID_API_ENC_EVENT_STOP_DONE,
VID_API_ENC_EVENT_TERMINATE_DONE,
VID_API_ENC_EVENT_FRAME_INPUT_DONE,
VID_API_ENC_EVENT_FRAME_DONE,
VID_API_ENC_EVENT_FRAME_RELEASE,
VID_API_ENC_EVENT_PARA_UPD_DONE,
VID_API_ENC_EVENT_MEM_REQUEST,
VID_API_ENC_EVENT_FIRMWARE_XCPT,
VID_API_ENC_EVENT_RESERVED
};
enum {
MEDIAIP_ENC_PIC_TYPE_B_FRAME = 0,
MEDIAIP_ENC_PIC_TYPE_P_FRAME,
MEDIAIP_ENC_PIC_TYPE_I_FRAME,
MEDIAIP_ENC_PIC_TYPE_IDR_FRAME,
MEDIAIP_ENC_PIC_TYPE_BI_FRAME
};
struct windsor_iface {
u32 exec_base_addr;
u32 exec_area_size;
struct vpu_rpc_buffer_desc cmd_buffer_desc;
struct vpu_rpc_buffer_desc msg_buffer_desc;
u32 cmd_int_enable[VID_API_NUM_STREAMS];
u32 fw_version;
u32 mvd_fw_offset;
u32 max_streams;
u32 ctrl_iface[VID_API_NUM_STREAMS];
struct vpu_rpc_system_config system_config;
u32 api_version;
struct vpu_rpc_buffer_desc log_buffer_desc;
};
struct windsor_ctrl_iface {
u32 enc_yuv_buffer_desc;
u32 enc_stream_buffer_desc;
u32 enc_expert_mode_param;
u32 enc_param;
u32 enc_mem_pool;
u32 enc_encoding_status;
u32 enc_dsa_status;
};
struct vpu_enc_yuv_desc {
u32 frame_id;
u32 luma_base;
u32 chroma_base;
u32 param_idx;
u32 key_frame;
};
struct vpu_enc_calib_params {
u32 use_ame;
u32 cme_mvx_max;
u32 cme_mvy_max;
u32 ame_prefresh_y0;
u32 ame_prefresh_y1;
u32 fme_min_sad;
u32 cme_min_sad;
u32 fme_pred_int_weight;
u32 fme_pred_hp_weight;
u32 fme_pred_qp_weight;
u32 fme_cost_weight;
u32 fme_act_thold;
u32 fme_sad_thold;
u32 fme_zero_sad_thold;
u32 fme_lrg_mvx_lmt;
u32 fme_lrg_mvy_lmt;
u32 fme_force_mode;
u32 fme_force4mvcost;
u32 fme_force2mvcost;
u32 h264_inter_thrd;
u32 i16x16_mode_cost;
u32 i4x4_mode_lambda;
u32 i8x8_mode_lambda;
u32 inter_mod_mult;
u32 inter_sel_mult;
u32 inter_bid_cost;
u32 inter_bwd_cost;
u32 inter_4mv_cost;
s32 one_mv_i16_cost;
s32 one_mv_i4x4_cost;
s32 one_mv_i8x8_cost;
s32 two_mv_i16_cost;
s32 two_mv_i4x4_cost;
s32 two_mv_i8x8_cost;
s32 four_mv_i16_cost;
s32 four_mv_i4x4_cost;
s32 four_mv_i8x8_cost;
u32 intra_pred_enab;
u32 intra_chr_pred;
u32 intra16_pred;
u32 intra4x4_pred;
u32 intra8x8_pred;
u32 cb_base;
u32 cb_size;
u32 cb_head_room;
u32 mem_page_width;
u32 mem_page_height;
u32 mem_total_size;
u32 mem_chunk_phys_addr;
u32 mem_chunk_virt_addr;
u32 mem_chunk_size;
u32 mem_y_stride;
u32 mem_uv_stride;
u32 split_wr_enab;
u32 split_wr_req_size;
u32 split_rd_enab;
u32 split_rd_req_size;
};
struct vpu_enc_config_params {
u32 param_change;
u32 start_frame;
u32 end_frame;
u32 userdata_enable;
u32 userdata_id[4];
u32 userdata_message[WINDSOR_USER_DATA_WORDS];
u32 userdata_length;
u32 h264_profile_idc;
u32 h264_level_idc;
u32 h264_au_delimiter;
u32 h264_seq_end_code;
u32 h264_recovery_points;
u32 h264_vui_parameters;
u32 h264_aspect_ratio_present;
u32 h264_aspect_ratio_sar_width;
u32 h264_aspect_ratio_sar_height;
u32 h264_overscan_present;
u32 h264_video_type_present;
u32 h264_video_format;
u32 h264_video_full_range;
u32 h264_video_colour_descriptor;
u32 h264_video_colour_primaries;
u32 h264_video_transfer_char;
u32 h264_video_matrix_coeff;
u32 h264_chroma_loc_info_present;
u32 h264_chroma_loc_type_top;
u32 h264_chroma_loc_type_bot;
u32 h264_timing_info_present;
u32 h264_buffering_period_present;
u32 h264_low_delay_hrd_flag;
u32 aspect_ratio;
u32 test_mode; // Automated firmware test mode
u32 dsa_test_mode; // Automated test mode for the DSA.
u32 fme_test_mode; // Automated test mode for the fme
u32 cbr_row_mode; //0: FW mode; 1: HW mode
u32 windsor_mode; //0: normal mode; 1: intra only mode; 2: intra+0MV mode
u32 encode_mode; // H264, VC1, MPEG2, DIVX
u32 frame_width; // display width
u32 frame_height; // display height
u32 enc_frame_width; // encoding width, should be 16-pix align
u32 enc_frame_height; // encoding height, should be 16-pix aligned
u32 frame_rate_num;
u32 frame_rate_den;
u32 vi_field_source;
u32 vi_frame_width;
u32 vi_frame_height;
u32 crop_frame_width;
u32 crop_frame_height;
u32 crop_x_start_posn;
u32 crop_y_start_posn;
u32 mode422;
u32 mode_yuy2;
u32 dsa_luma_en;
u32 dsa_chroma_en;
u32 dsa_ext_hfilt_en;
u32 dsa_di_en;
u32 dsa_di_top_ref;
u32 dsa_vertf_disable;
u32 dsa_disable_pwb;
u32 dsa_hor_phase;
u32 dsa_ver_phase;
u32 dsa_iac_enable;
u32 iac_sc_threshold;
u32 iac_vm_threshold;
u32 iac_skip_mode;
u32 iac_grp_width;
u32 iac_grp_height;
u32 rate_control_mode;
u32 rate_control_resolution;
u32 buffer_size;
u32 buffer_level_init;
u32 buffer_I_bit_budget;
u32 top_field_first;
u32 intra_lum_qoffset;
u32 intra_chr_qoffset;
u32 inter_lum_qoffset;
u32 inter_chr_qoffset;
u32 use_def_scaling_mtx;
u32 inter_8x8_enab;
u32 inter_4x4_enab;
u32 fme_enable_qpel;
u32 fme_enable_hpel;
u32 fme_nozeromv;
u32 fme_predmv_en;
u32 fme_pred_2mv4mv;
u32 fme_smallsadthresh;
u32 ame_en_lmvc;
u32 ame_x_mult;
u32 cme_enable_4mv;
u32 cme_enable_1mv;
u32 hme_enable_16x8mv;
u32 hme_enable_8x16mv;
u32 cme_mv_weight;
u32 cme_mv_cost;
u32 ame_mult_mv;
u32 ame_shift_mv;
u32 hme_forceto1mv_en;
u32 hme_2mv_cost;
u32 hme_pred_mode;
u32 hme_sc_rnge;
u32 hme_sw_rnge;
u32 output_format;
u32 timestamp_enab;
u32 initial_pts_enab;
u32 initial_pts;
};
struct vpu_enc_static_params {
u32 param_change;
u32 gop_length;
u32 rate_control_bitrate;
u32 rate_control_bitrate_min;
u32 rate_control_bitrate_max;
u32 rate_control_content_models;
u32 rate_control_iframe_maxsize;
u32 rate_control_qp_init;
u32 rate_control_islice_qp;
u32 rate_control_pslice_qp;
u32 rate_control_bslice_qp;
u32 adaptive_quantization;
u32 aq_variance;
u32 cost_optimization;
u32 fdlp_mode;
u32 enable_isegbframes;
u32 enable_adaptive_keyratio;
u32 keyratio_imin;
u32 keyratio_imax;
u32 keyratio_pmin;
u32 keyratio_pmax;
u32 keyratio_bmin;
u32 keyratio_bmax;
s32 keyratio_istep;
s32 keyratio_pstep;
s32 keyratio_bstep;
u32 enable_paff;
u32 enable_b_frame_ref;
u32 enable_adaptive_gop;
u32 enable_closed_gop;
u32 open_gop_refresh_freq;
u32 enable_adaptive_sc;
u32 enable_fade_detection;
s32 fade_detection_threshold;
u32 enable_repeat_b;
u32 enable_low_delay_b;
};
struct vpu_enc_dynamic_params {
u32 param_change;
u32 rows_per_slice;
u32 mbaff_enable;
u32 dbf_enable;
u32 field_source;
u32 gop_b_length;
u32 mb_group_size;
u32 cbr_rows_per_group;
u32 skip_enable;
u32 pts_bits_0_to_31;
u32 pts_bit_32;
u32 rm_expsv_cff;
u32 const_ipred;
s32 chr_qp_offset;
u32 intra_mb_qp_offset;
u32 h264_cabac_init_method;
u32 h264_cabac_init_idc;
u32 h264_cabac_enable;
s32 alpha_c0_offset_div2;
s32 beta_offset_div2;
u32 intra_prefresh_y0;
u32 intra_prefresh_y1;
u32 dbg_dump_rec_src;
};
struct vpu_enc_expert_mode_param {
struct vpu_enc_calib_params calib_param;
struct vpu_enc_config_params config_param;
struct vpu_enc_static_params static_param;
struct vpu_enc_dynamic_params dynamic_param;
};
enum MEDIAIP_ENC_FMT {
MEDIAIP_ENC_FMT_H264 = 0,
MEDIAIP_ENC_FMT_VC1,
MEDIAIP_ENC_FMT_MPEG2,
MEDIAIP_ENC_FMT_MPEG4SP,
MEDIAIP_ENC_FMT_H263,
MEDIAIP_ENC_FMT_MPEG1,
MEDIAIP_ENC_FMT_SHORT_HEADER,
MEDIAIP_ENC_FMT_NULL
};
enum MEDIAIP_ENC_PROFILE {
MEDIAIP_ENC_PROF_MPEG2_SP = 0,
MEDIAIP_ENC_PROF_MPEG2_MP,
MEDIAIP_ENC_PROF_MPEG2_HP,
MEDIAIP_ENC_PROF_H264_BP,
MEDIAIP_ENC_PROF_H264_MP,
MEDIAIP_ENC_PROF_H264_HP,
MEDIAIP_ENC_PROF_MPEG4_SP,
MEDIAIP_ENC_PROF_MPEG4_ASP,
MEDIAIP_ENC_PROF_VC1_SP,
MEDIAIP_ENC_PROF_VC1_MP,
MEDIAIP_ENC_PROF_VC1_AP
};
enum MEDIAIP_ENC_BITRATE_MODE {
MEDIAIP_ENC_BITRATE_MODE_VBR = 0x00000001,
MEDIAIP_ENC_BITRATE_MODE_CBR = 0x00000002,
MEDIAIP_ENC_BITRATE_MODE_CONSTANT_QP = 0x00000004
};
struct vpu_enc_memory_resource {
u32 phys;
u32 virt;
u32 size;
};
struct vpu_enc_param {
enum MEDIAIP_ENC_FMT codec_mode;
enum MEDIAIP_ENC_PROFILE profile;
u32 level;
struct vpu_enc_memory_resource enc_mem_desc;
u32 frame_rate;
u32 src_stride;
u32 src_width;
u32 src_height;
u32 src_offset_x;
u32 src_offset_y;
u32 src_crop_width;
u32 src_crop_height;
u32 out_width;
u32 out_height;
u32 iframe_interval;
u32 bframes;
u32 low_latency_mode;
enum MEDIAIP_ENC_BITRATE_MODE bitrate_mode;
u32 target_bitrate;
u32 max_bitrate;
u32 min_bitrate;
u32 init_slice_qp;
};
struct vpu_enc_mem_pool {
struct vpu_enc_memory_resource enc_frames[WINDSOR_MAX_SRC_FRAMES];
struct vpu_enc_memory_resource ref_frames[WINDSOR_MAX_REF_FRAMES];
struct vpu_enc_memory_resource act_frame;
};
struct vpu_enc_encoding_status {
u32 frame_id;
u32 error_flag; //Error type
u32 mb_y;
u32 mb_x;
u32 reserved[12];
};
struct vpu_enc_dsa_status {
u32 frame_id;
u32 dsa_cyle;
u32 mb_y;
u32 mb_x;
u32 reserved[4];
};
struct vpu_enc_ctrl {
struct vpu_enc_yuv_desc *yuv_desc;
struct vpu_rpc_buffer_desc *stream_desc;
struct vpu_enc_expert_mode_param *expert;
struct vpu_enc_param *param;
struct vpu_enc_mem_pool *pool;
struct vpu_enc_encoding_status *status;
struct vpu_enc_dsa_status *dsa;
};
struct vpu_enc_host_ctrls {
struct vpu_enc_ctrl ctrls[VID_API_NUM_STREAMS];
};
struct windsor_pic_info {
u32 frame_id;
u32 pic_encod_done;
u32 pic_type;
u32 skipped_frame;
u32 error_flag;
u32 psnr;
u32 flush_done;
u32 mb_y;
u32 mb_x;
u32 frame_size;
u32 frame_enc_ttl_cycles;
u32 frame_enc_ttl_frm_cycles;
u32 frame_enc_ttl_slc_cycles;
u32 frame_enc_ttl_enc_cycles;
u32 frame_enc_ttl_hme_cycles;
u32 frame_enc_ttl_dsa_cycles;
u32 frame_enc_fw_cycles;
u32 frame_crc;
u32 num_interrupts_1;
u32 num_interrupts_2;
u32 poc;
u32 ref_info;
u32 pic_num;
u32 pic_activity;
u32 scene_change;
u32 mb_stats;
u32 enc_cache_count0;
u32 enc_cache_count1;
u32 mtl_wr_strb_cnt;
u32 mtl_rd_strb_cnt;
u32 str_buff_wptr;
u32 diagnosticEvents;
u32 proc_iacc_tot_rd_cnt;
u32 proc_dacc_tot_rd_cnt;
u32 proc_dacc_tot_wr_cnt;
u32 proc_dacc_reg_rd_cnt;
u32 proc_dacc_reg_wr_cnt;
u32 proc_dacc_rng_rd_cnt;
u32 proc_dacc_rng_wr_cnt;
s32 tv_s;
u32 tv_ns;
};
u32 vpu_windsor_get_data_size(void)
{
return sizeof(struct vpu_enc_host_ctrls);
}
static struct vpu_enc_yuv_desc *get_yuv_desc(struct vpu_shared_addr *shared,
u32 instance)
{
struct vpu_enc_host_ctrls *hcs = shared->priv;
return hcs->ctrls[instance].yuv_desc;
}
static struct vpu_enc_mem_pool *get_mem_pool(struct vpu_shared_addr *shared,
u32 instance)
{
struct vpu_enc_host_ctrls *hcs = shared->priv;
return hcs->ctrls[instance].pool;
}
static struct vpu_rpc_buffer_desc *get_stream_buf_desc(struct vpu_shared_addr *shared,
u32 instance)
{
struct vpu_enc_host_ctrls *hcs = shared->priv;
return hcs->ctrls[instance].stream_desc;
}
static struct vpu_enc_expert_mode_param *get_expert_param(struct vpu_shared_addr *shared,
u32 instance)
{
struct vpu_enc_host_ctrls *hcs = shared->priv;
return hcs->ctrls[instance].expert;
}
static struct vpu_enc_param *get_enc_param(struct vpu_shared_addr *shared, u32 instance)
{
struct vpu_enc_host_ctrls *hcs = shared->priv;
return hcs->ctrls[instance].param;
}
static u32 get_ptr(u32 ptr)
{
return (ptr | 0x80000000);
}
void vpu_windsor_init_rpc(struct vpu_shared_addr *shared,
struct vpu_buffer *rpc, dma_addr_t boot_addr)
{
unsigned long base_phy_addr;
unsigned long phy_addr;
unsigned long offset;
struct windsor_iface *iface;
struct windsor_ctrl_iface *ctrl;
struct vpu_enc_host_ctrls *hcs;
unsigned int i;
if (rpc->phys < boot_addr)
return;
base_phy_addr = rpc->phys - boot_addr;
iface = rpc->virt;
shared->iface = iface;
shared->boot_addr = boot_addr;
hcs = shared->priv;
iface->exec_base_addr = base_phy_addr;
iface->exec_area_size = rpc->length;
offset = sizeof(struct windsor_iface);
phy_addr = base_phy_addr + offset;
shared->cmd_desc = &iface->cmd_buffer_desc;
shared->cmd_mem_vir = rpc->virt + offset;
iface->cmd_buffer_desc.start =
iface->cmd_buffer_desc.rptr =
iface->cmd_buffer_desc.wptr = phy_addr;
iface->cmd_buffer_desc.end = iface->cmd_buffer_desc.start + CMD_SIZE;
offset += CMD_SIZE;
phy_addr = base_phy_addr + offset;
shared->msg_desc = &iface->msg_buffer_desc;
shared->msg_mem_vir = rpc->virt + offset;
iface->msg_buffer_desc.start =
iface->msg_buffer_desc.wptr =
iface->msg_buffer_desc.rptr = phy_addr;
iface->msg_buffer_desc.end = iface->msg_buffer_desc.start + MSG_SIZE;
offset += MSG_SIZE;
for (i = 0; i < ARRAY_SIZE(iface->ctrl_iface); i++) {
iface->ctrl_iface[i] = base_phy_addr + offset;
offset += sizeof(struct windsor_ctrl_iface);
}
for (i = 0; i < ARRAY_SIZE(iface->ctrl_iface); i++) {
ctrl = rpc->virt + (iface->ctrl_iface[i] - base_phy_addr);
ctrl->enc_yuv_buffer_desc = base_phy_addr + offset;
hcs->ctrls[i].yuv_desc = rpc->virt + offset;
offset += sizeof(struct vpu_enc_yuv_desc);
ctrl->enc_stream_buffer_desc = base_phy_addr + offset;
hcs->ctrls[i].stream_desc = rpc->virt + offset;
offset += sizeof(struct vpu_rpc_buffer_desc);
ctrl->enc_expert_mode_param = base_phy_addr + offset;
hcs->ctrls[i].expert = rpc->virt + offset;
offset += sizeof(struct vpu_enc_expert_mode_param);
ctrl->enc_param = base_phy_addr + offset;
hcs->ctrls[i].param = rpc->virt + offset;
offset += sizeof(struct vpu_enc_param);
ctrl->enc_mem_pool = base_phy_addr + offset;
hcs->ctrls[i].pool = rpc->virt + offset;
offset += sizeof(struct vpu_enc_mem_pool);
ctrl->enc_encoding_status = base_phy_addr + offset;
hcs->ctrls[i].status = rpc->virt + offset;
offset += sizeof(struct vpu_enc_encoding_status);
ctrl->enc_dsa_status = base_phy_addr + offset;
hcs->ctrls[i].dsa = rpc->virt + offset;
offset += sizeof(struct vpu_enc_dsa_status);
}
rpc->bytesused = offset;
}
void vpu_windsor_set_log_buf(struct vpu_shared_addr *shared, struct vpu_buffer *log)
{
struct windsor_iface *iface = shared->iface;
iface->log_buffer_desc.start =
iface->log_buffer_desc.wptr =
iface->log_buffer_desc.rptr = log->phys - shared->boot_addr;
iface->log_buffer_desc.end = iface->log_buffer_desc.start + log->length;
}
void vpu_windsor_set_system_cfg(struct vpu_shared_addr *shared,
u32 regs_base, void __iomem *regs, u32 core_id)
{
struct windsor_iface *iface = shared->iface;
struct vpu_rpc_system_config *config = &iface->system_config;
vpu_imx8q_set_system_cfg_common(config, regs_base, core_id);
}
int vpu_windsor_get_stream_buffer_size(struct vpu_shared_addr *shared)
{
return 0x300000;
}
static struct vpu_pair windsor_cmds[] = {
{VPU_CMD_ID_NOOP, GTB_ENC_CMD_NOOP},
{VPU_CMD_ID_CONFIGURE_CODEC, GTB_ENC_CMD_CONFIGURE_CODEC},
{VPU_CMD_ID_START, GTB_ENC_CMD_STREAM_START},
{VPU_CMD_ID_STOP, GTB_ENC_CMD_STREAM_STOP},
{VPU_CMD_ID_FRAME_ENCODE, GTB_ENC_CMD_FRAME_ENCODE},
{VPU_CMD_ID_SNAPSHOT, GTB_ENC_CMD_SNAPSHOT},
{VPU_CMD_ID_FIRM_RESET, GTB_ENC_CMD_FIRM_RESET},
{VPU_CMD_ID_UPDATE_PARAMETER, GTB_ENC_CMD_PARAMETER_UPD},
{VPU_CMD_ID_DEBUG, GTB_ENC_CMD_FW_STATUS}
};
static struct vpu_pair windsor_msgs[] = {
{VPU_MSG_ID_RESET_DONE, VID_API_ENC_EVENT_RESET_DONE},
{VPU_MSG_ID_START_DONE, VID_API_ENC_EVENT_START_DONE},
{VPU_MSG_ID_STOP_DONE, VID_API_ENC_EVENT_STOP_DONE},
{VPU_MSG_ID_FRAME_INPUT_DONE, VID_API_ENC_EVENT_FRAME_INPUT_DONE},
{VPU_MSG_ID_ENC_DONE, VID_API_ENC_EVENT_FRAME_DONE},
{VPU_MSG_ID_FRAME_RELEASE, VID_API_ENC_EVENT_FRAME_RELEASE},
{VPU_MSG_ID_MEM_REQUEST, VID_API_ENC_EVENT_MEM_REQUEST},
{VPU_MSG_ID_PARAM_UPD_DONE, VID_API_ENC_EVENT_PARA_UPD_DONE},
{VPU_MSG_ID_FIRMWARE_XCPT, VID_API_ENC_EVENT_FIRMWARE_XCPT},
};
int vpu_windsor_pack_cmd(struct vpu_rpc_event *pkt, u32 index, u32 id, void *data)
{
int ret;
ret = vpu_find_dst_by_src(windsor_cmds, ARRAY_SIZE(windsor_cmds), id);
if (ret < 0)
return ret;
pkt->hdr.id = ret;
pkt->hdr.num = 0;
pkt->hdr.index = index;
if (id == VPU_CMD_ID_FRAME_ENCODE) {
s64 timestamp = *(s64 *)data;
struct timespec64 ts = ns_to_timespec64(timestamp);
pkt->hdr.num = 2;
pkt->data[0] = ts.tv_sec;
pkt->data[1] = ts.tv_nsec;
}
return 0;
}
int vpu_windsor_convert_msg_id(u32 id)
{
return vpu_find_src_by_dst(windsor_msgs, ARRAY_SIZE(windsor_msgs), id);
}
static void vpu_windsor_unpack_pic_info(struct vpu_rpc_event *pkt, void *data)
{
struct vpu_enc_pic_info *info = data;
struct windsor_pic_info *windsor = (struct windsor_pic_info *)pkt->data;
struct timespec64 ts = { windsor->tv_s, windsor->tv_ns };
info->frame_id = windsor->frame_id;
switch (windsor->pic_type) {
case MEDIAIP_ENC_PIC_TYPE_I_FRAME:
case MEDIAIP_ENC_PIC_TYPE_IDR_FRAME:
info->pic_type = V4L2_BUF_FLAG_KEYFRAME;
break;
case MEDIAIP_ENC_PIC_TYPE_P_FRAME:
info->pic_type = V4L2_BUF_FLAG_PFRAME;
break;
case MEDIAIP_ENC_PIC_TYPE_B_FRAME:
info->pic_type = V4L2_BUF_FLAG_BFRAME;
break;
default:
break;
}
info->skipped_frame = windsor->skipped_frame;
info->error_flag = windsor->error_flag;
info->psnr = windsor->psnr;
info->frame_size = windsor->frame_size;
info->wptr = get_ptr(windsor->str_buff_wptr);
info->crc = windsor->frame_crc;
info->timestamp = timespec64_to_ns(&ts);
}
static void vpu_windsor_unpack_mem_req(struct vpu_rpc_event *pkt, void *data)
{
struct vpu_pkt_mem_req_data *req_data = data;
req_data->enc_frame_size = pkt->data[0];
req_data->enc_frame_num = pkt->data[1];
req_data->ref_frame_size = pkt->data[2];
req_data->ref_frame_num = pkt->data[3];
req_data->act_buf_size = pkt->data[4];
req_data->act_buf_num = 1;
}
int vpu_windsor_unpack_msg_data(struct vpu_rpc_event *pkt, void *data)
{
if (!pkt || !data)
return -EINVAL;
switch (pkt->hdr.id) {
case VID_API_ENC_EVENT_FRAME_DONE:
vpu_windsor_unpack_pic_info(pkt, data);
break;
case VID_API_ENC_EVENT_MEM_REQUEST:
vpu_windsor_unpack_mem_req(pkt, data);
break;
case VID_API_ENC_EVENT_FRAME_RELEASE:
*(u32 *)data = pkt->data[0];
break;
default:
break;
}
return 0;
}
static int vpu_windsor_fill_yuv_frame(struct vpu_shared_addr *shared,
u32 instance,
struct vb2_buffer *vb)
{
struct vpu_enc_yuv_desc *desc;
struct vb2_v4l2_buffer *vbuf;
if (instance >= VID_API_NUM_STREAMS)
return -EINVAL;
desc = get_yuv_desc(shared, instance);
vbuf = to_vb2_v4l2_buffer(vb);
desc->frame_id = vbuf->sequence;
if (vbuf->flags & V4L2_BUF_FLAG_KEYFRAME)
desc->key_frame = 1;
else
desc->key_frame = 0;
desc->luma_base = vpu_get_vb_phy_addr(vb, 0);
desc->chroma_base = vpu_get_vb_phy_addr(vb, 1);
return 0;
}
int vpu_windsor_input_frame(struct vpu_shared_addr *shared,
struct vpu_inst *inst, struct vb2_buffer *vb)
{
vpu_windsor_fill_yuv_frame(shared, inst->id, vb);
return vpu_session_encode_frame(inst, vb->timestamp);
}
int vpu_windsor_config_memory_resource(struct vpu_shared_addr *shared,
u32 instance,
u32 type,
u32 index,
struct vpu_buffer *buf)
{
struct vpu_enc_mem_pool *pool;
struct vpu_enc_memory_resource *res;
if (instance >= VID_API_NUM_STREAMS)
return -EINVAL;
pool = get_mem_pool(shared, instance);
switch (type) {
case MEM_RES_ENC:
if (index >= ARRAY_SIZE(pool->enc_frames))
return -EINVAL;
res = &pool->enc_frames[index];
break;
case MEM_RES_REF:
if (index >= ARRAY_SIZE(pool->ref_frames))
return -EINVAL;
res = &pool->ref_frames[index];
break;
case MEM_RES_ACT:
if (index)
return -EINVAL;
res = &pool->act_frame;
break;
default:
return -EINVAL;
}
res->phys = buf->phys;
res->virt = buf->phys - shared->boot_addr;
res->size = buf->length;
return 0;
}
int vpu_windsor_config_stream_buffer(struct vpu_shared_addr *shared,
u32 instance,
struct vpu_buffer *buf)
{
struct vpu_rpc_buffer_desc *desc;
struct vpu_enc_expert_mode_param *expert;
desc = get_stream_buf_desc(shared, instance);
expert = get_expert_param(shared, instance);
desc->start = buf->phys;
desc->wptr = buf->phys;
desc->rptr = buf->phys;
desc->end = buf->phys + buf->length;
expert->calib_param.mem_chunk_phys_addr = 0;
expert->calib_param.mem_chunk_virt_addr = 0;
expert->calib_param.mem_chunk_size = 0;
expert->calib_param.cb_base = buf->phys;
expert->calib_param.cb_size = buf->length;
return 0;
}
int vpu_windsor_update_stream_buffer(struct vpu_shared_addr *shared,
u32 instance, u32 ptr, bool write)
{
struct vpu_rpc_buffer_desc *desc;
desc = get_stream_buf_desc(shared, instance);
/*update wptr/rptr after data is written or read*/
mb();
if (write)
desc->wptr = ptr;
else
desc->rptr = ptr;
return 0;
}
int vpu_windsor_get_stream_buffer_desc(struct vpu_shared_addr *shared,
u32 instance, struct vpu_rpc_buffer_desc *desc)
{
struct vpu_rpc_buffer_desc *rpc_desc;
rpc_desc = get_stream_buf_desc(shared, instance);
if (desc) {
desc->wptr = get_ptr(rpc_desc->wptr);
desc->rptr = get_ptr(rpc_desc->rptr);
desc->start = get_ptr(rpc_desc->start);
desc->end = get_ptr(rpc_desc->end);
}
return 0;
}
u32 vpu_windsor_get_version(struct vpu_shared_addr *shared)
{
struct windsor_iface *iface = shared->iface;
return iface->fw_version;
}
static int vpu_windsor_set_frame_rate(struct vpu_enc_expert_mode_param *expert,
struct vpu_encode_params *params)
{
expert->config_param.frame_rate_num = params->frame_rate.numerator;
expert->config_param.frame_rate_den = params->frame_rate.denominator;
return 0;
}
static int vpu_windsor_set_format(struct vpu_enc_param *param, u32 pixelformat)
{
switch (pixelformat) {
case V4L2_PIX_FMT_H264:
param->codec_mode = MEDIAIP_ENC_FMT_H264;
break;
default:
return -EINVAL;
}
return 0;
}
static int vpu_windsor_set_profile(struct vpu_enc_param *param, u32 profile)
{
switch (profile) {
case V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE:
param->profile = MEDIAIP_ENC_PROF_H264_BP;
break;
case V4L2_MPEG_VIDEO_H264_PROFILE_MAIN:
param->profile = MEDIAIP_ENC_PROF_H264_MP;
break;
case V4L2_MPEG_VIDEO_H264_PROFILE_HIGH:
param->profile = MEDIAIP_ENC_PROF_H264_HP;
break;
default:
return -EINVAL;
}
return 0;
}
static const u32 h264_level[] = {
[V4L2_MPEG_VIDEO_H264_LEVEL_1_0] = 10,
[V4L2_MPEG_VIDEO_H264_LEVEL_1B] = 14,
[V4L2_MPEG_VIDEO_H264_LEVEL_1_1] = 11,
[V4L2_MPEG_VIDEO_H264_LEVEL_1_2] = 12,
[V4L2_MPEG_VIDEO_H264_LEVEL_1_3] = 13,
[V4L2_MPEG_VIDEO_H264_LEVEL_2_0] = 20,
[V4L2_MPEG_VIDEO_H264_LEVEL_2_1] = 21,
[V4L2_MPEG_VIDEO_H264_LEVEL_2_2] = 22,
[V4L2_MPEG_VIDEO_H264_LEVEL_3_0] = 30,
[V4L2_MPEG_VIDEO_H264_LEVEL_3_1] = 31,
[V4L2_MPEG_VIDEO_H264_LEVEL_3_2] = 32,
[V4L2_MPEG_VIDEO_H264_LEVEL_4_0] = 40,
[V4L2_MPEG_VIDEO_H264_LEVEL_4_1] = 41,
[V4L2_MPEG_VIDEO_H264_LEVEL_4_2] = 42,
[V4L2_MPEG_VIDEO_H264_LEVEL_5_0] = 50,
[V4L2_MPEG_VIDEO_H264_LEVEL_5_1] = 51
};
static int vpu_windsor_set_level(struct vpu_enc_param *param, u32 level)
{
if (level >= ARRAY_SIZE(h264_level))
return -EINVAL;
param->level = h264_level[level];
return 0;
}
static int vpu_windsor_set_size(struct vpu_enc_param *windsor,
struct vpu_encode_params *params)
{
windsor->src_stride = params->src_stride;
windsor->src_width = params->src_width;
windsor->src_height = params->src_height;
windsor->src_offset_x = params->crop.left;
windsor->src_offset_y = params->crop.top;
windsor->src_crop_width = params->crop.width;
windsor->src_crop_height = params->crop.height;
windsor->out_width = params->out_width;
windsor->out_height = params->out_height;
return 0;
}
static int vpu_windsor_set_gop(struct vpu_enc_param *param, u32 gop)
{
param->iframe_interval = gop;
return 0;
}
static int vpu_windsor_set_bframes(struct vpu_enc_param *param, u32 bframes)
{
if (bframes) {
param->low_latency_mode = 0;
param->bframes = bframes;
} else {
param->low_latency_mode = 1;
param->bframes = 0;
}
return 0;
}
static int vpu_windsor_set_bitrate_mode(struct vpu_enc_param *param, u32 rc_enable, u32 mode)
{
if (!rc_enable)
param->bitrate_mode = MEDIAIP_ENC_BITRATE_MODE_CONSTANT_QP;
else if (mode == V4L2_MPEG_VIDEO_BITRATE_MODE_VBR)
param->bitrate_mode = MEDIAIP_ENC_BITRATE_MODE_VBR;
else
param->bitrate_mode = MEDIAIP_ENC_BITRATE_MODE_CBR;
return 0;
}
static u32 vpu_windsor_bitrate(u32 bitrate)
{
return DIV_ROUND_CLOSEST(bitrate, WINDSOR_BITRATE_UNIT);
}
static int vpu_windsor_set_bitrate(struct vpu_enc_param *windsor,
struct vpu_encode_params *params)
{
windsor->target_bitrate = vpu_windsor_bitrate(params->bitrate);
windsor->min_bitrate = vpu_windsor_bitrate(params->bitrate_min);
windsor->max_bitrate = vpu_windsor_bitrate(params->bitrate_max);
return 0;
}
static int vpu_windsor_set_qp(struct vpu_enc_expert_mode_param *expert,
struct vpu_encode_params *params)
{
expert->static_param.rate_control_islice_qp = params->i_frame_qp;
expert->static_param.rate_control_pslice_qp = params->p_frame_qp;
expert->static_param.rate_control_bslice_qp = params->b_frame_qp;
return 0;
}
static int vpu_windsor_set_sar(struct vpu_enc_expert_mode_param *expert,
struct vpu_encode_params *params)
{
expert->config_param.h264_aspect_ratio_present = params->sar.enable;
if (params->sar.idc == V4L2_MPEG_VIDEO_H264_VUI_SAR_IDC_EXTENDED)
expert->config_param.aspect_ratio = WINDSOR_H264_EXTENDED_SAR;
else
expert->config_param.aspect_ratio = params->sar.idc;
expert->config_param.h264_aspect_ratio_sar_width = params->sar.width;
expert->config_param.h264_aspect_ratio_sar_height = params->sar.height;
return 0;
}
static int vpu_windsor_set_color(struct vpu_enc_expert_mode_param *expert,
struct vpu_encode_params *params)
{
expert->config_param.h264_video_type_present = 1;
expert->config_param.h264_video_format = 5;
expert->config_param.h264_video_colour_descriptor = 1;
expert->config_param.h264_video_colour_primaries =
vpu_color_cvrt_primaries_v2i(params->color.primaries);
expert->config_param.h264_video_transfer_char =
vpu_color_cvrt_transfers_v2i(params->color.transfer);
expert->config_param.h264_video_matrix_coeff =
vpu_color_cvrt_matrix_v2i(params->color.matrix);
expert->config_param.h264_video_full_range =
vpu_color_cvrt_full_range_v2i(params->color.full_range);
return 0;
}
static int vpu_windsor_update_bitrate(struct vpu_shared_addr *shared,
u32 instance, struct vpu_encode_params *params)
{
struct vpu_enc_param *windsor;
struct vpu_enc_expert_mode_param *expert;
windsor = get_enc_param(shared, instance);
expert = get_expert_param(shared, instance);
if (windsor->bitrate_mode != MEDIAIP_ENC_BITRATE_MODE_CBR)
return 0;
if (!params->rc_enable)
return 0;
if (vpu_windsor_bitrate(params->bitrate) == windsor->target_bitrate)
return 0;
vpu_windsor_set_bitrate(windsor, params);
expert->static_param.rate_control_bitrate = windsor->target_bitrate;
expert->static_param.rate_control_bitrate_min = windsor->min_bitrate;
expert->static_param.rate_control_bitrate_max = windsor->max_bitrate;
return 0;
}
static int vpu_windsor_set_params(struct vpu_shared_addr *shared,
u32 instance, struct vpu_encode_params *params)
{
struct vpu_enc_param *windsor;
int ret;
windsor = get_enc_param(shared, instance);
if (params->input_format != V4L2_PIX_FMT_NV12 &&
params->input_format != V4L2_PIX_FMT_NV12M)
return -EINVAL;
ret = vpu_windsor_set_format(windsor, params->codec_format);
if (ret)
return ret;
vpu_windsor_set_profile(windsor, params->profile);
vpu_windsor_set_level(windsor, params->level);
vpu_windsor_set_size(windsor, params);
vpu_windsor_set_gop(windsor, params->gop_length);
vpu_windsor_set_bframes(windsor, params->bframes);
vpu_windsor_set_bitrate_mode(windsor, params->rc_enable, params->rc_mode);
vpu_windsor_set_bitrate(windsor, params);
windsor->init_slice_qp = params->i_frame_qp;
if (!params->frame_rate.numerator)
return -EINVAL;
windsor->frame_rate = params->frame_rate.denominator / params->frame_rate.numerator;
return 0;
}
static int vpu_windsor_update_params(struct vpu_shared_addr *shared,
u32 instance, struct vpu_encode_params *params)
{
struct vpu_enc_expert_mode_param *expert;
expert = get_expert_param(shared, instance);
vpu_windsor_set_frame_rate(expert, params);
vpu_windsor_set_qp(expert, params);
vpu_windsor_set_sar(expert, params);
vpu_windsor_set_color(expert, params);
vpu_windsor_update_bitrate(shared, instance, params);
/*expert->config_param.iac_sc_threshold = 0;*/
return 0;
}
int vpu_windsor_set_encode_params(struct vpu_shared_addr *shared,
u32 instance, struct vpu_encode_params *params, u32 update)
{
if (!params)
return -EINVAL;
if (!update)
return vpu_windsor_set_params(shared, instance, params);
else
return vpu_windsor_update_params(shared, instance, params);
}
u32 vpu_windsor_get_max_instance_count(struct vpu_shared_addr *shared)
{
struct windsor_iface *iface = shared->iface;
return iface->max_streams;
}