linuxdebug/drivers/infiniband/hw/qib/qib_driver.c

805 lines
21 KiB
C

/*
* Copyright (c) 2021 Cornelis Networks. All rights reserved.
* Copyright (c) 2013 Intel Corporation. All rights reserved.
* Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved.
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/prefetch.h>
#include "qib.h"
/*
* The size has to be longer than this string, so we can append
* board/chip information to it in the init code.
*/
const char ib_qib_version[] = QIB_DRIVER_VERSION "\n";
DEFINE_MUTEX(qib_mutex); /* general driver use */
unsigned qib_ibmtu;
module_param_named(ibmtu, qib_ibmtu, uint, S_IRUGO);
MODULE_PARM_DESC(ibmtu, "Set max IB MTU (0=2KB, 1=256, 2=512, ... 5=4096");
unsigned qib_compat_ddr_negotiate = 1;
module_param_named(compat_ddr_negotiate, qib_compat_ddr_negotiate, uint,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(compat_ddr_negotiate,
"Attempt pre-IBTA 1.2 DDR speed negotiation");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Cornelis <support@cornelisnetworks.com>");
MODULE_DESCRIPTION("Cornelis IB driver");
/*
* QIB_PIO_MAXIBHDR is the max IB header size allowed for in our
* PIO send buffers. This is well beyond anything currently
* defined in the InfiniBand spec.
*/
#define QIB_PIO_MAXIBHDR 128
/*
* QIB_MAX_PKT_RCV is the max # if packets processed per receive interrupt.
*/
#define QIB_MAX_PKT_RECV 64
struct qlogic_ib_stats qib_stats;
struct pci_dev *qib_get_pci_dev(struct rvt_dev_info *rdi)
{
struct qib_ibdev *ibdev = container_of(rdi, struct qib_ibdev, rdi);
struct qib_devdata *dd = container_of(ibdev,
struct qib_devdata, verbs_dev);
return dd->pcidev;
}
/*
* Return count of units with at least one port ACTIVE.
*/
int qib_count_active_units(void)
{
struct qib_devdata *dd;
struct qib_pportdata *ppd;
unsigned long index, flags;
int pidx, nunits_active = 0;
xa_lock_irqsave(&qib_dev_table, flags);
xa_for_each(&qib_dev_table, index, dd) {
if (!(dd->flags & QIB_PRESENT) || !dd->kregbase)
continue;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->lid && (ppd->lflags & (QIBL_LINKINIT |
QIBL_LINKARMED | QIBL_LINKACTIVE))) {
nunits_active++;
break;
}
}
}
xa_unlock_irqrestore(&qib_dev_table, flags);
return nunits_active;
}
/*
* Return count of all units, optionally return in arguments
* the number of usable (present) units, and the number of
* ports that are up.
*/
int qib_count_units(int *npresentp, int *nupp)
{
int nunits = 0, npresent = 0, nup = 0;
struct qib_devdata *dd;
unsigned long index, flags;
int pidx;
struct qib_pportdata *ppd;
xa_lock_irqsave(&qib_dev_table, flags);
xa_for_each(&qib_dev_table, index, dd) {
nunits++;
if ((dd->flags & QIB_PRESENT) && dd->kregbase)
npresent++;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->lid && (ppd->lflags & (QIBL_LINKINIT |
QIBL_LINKARMED | QIBL_LINKACTIVE)))
nup++;
}
}
xa_unlock_irqrestore(&qib_dev_table, flags);
if (npresentp)
*npresentp = npresent;
if (nupp)
*nupp = nup;
return nunits;
}
/**
* qib_wait_linkstate - wait for an IB link state change to occur
* @ppd: the qlogic_ib device
* @state: the state to wait for
* @msecs: the number of milliseconds to wait
*
* wait up to msecs milliseconds for IB link state change to occur for
* now, take the easy polling route. Currently used only by
* qib_set_linkstate. Returns 0 if state reached, otherwise
* -ETIMEDOUT state can have multiple states set, for any of several
* transitions.
*/
int qib_wait_linkstate(struct qib_pportdata *ppd, u32 state, int msecs)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&ppd->lflags_lock, flags);
if (ppd->state_wanted) {
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
ret = -EBUSY;
goto bail;
}
ppd->state_wanted = state;
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
wait_event_interruptible_timeout(ppd->state_wait,
(ppd->lflags & state),
msecs_to_jiffies(msecs));
spin_lock_irqsave(&ppd->lflags_lock, flags);
ppd->state_wanted = 0;
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
if (!(ppd->lflags & state))
ret = -ETIMEDOUT;
else
ret = 0;
bail:
return ret;
}
int qib_set_linkstate(struct qib_pportdata *ppd, u8 newstate)
{
u32 lstate;
int ret;
struct qib_devdata *dd = ppd->dd;
unsigned long flags;
switch (newstate) {
case QIB_IB_LINKDOWN_ONLY:
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_DOWN | IB_LINKINITCMD_NOP);
/* don't wait */
ret = 0;
goto bail;
case QIB_IB_LINKDOWN:
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_DOWN | IB_LINKINITCMD_POLL);
/* don't wait */
ret = 0;
goto bail;
case QIB_IB_LINKDOWN_SLEEP:
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_DOWN | IB_LINKINITCMD_SLEEP);
/* don't wait */
ret = 0;
goto bail;
case QIB_IB_LINKDOWN_DISABLE:
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_DOWN | IB_LINKINITCMD_DISABLE);
/* don't wait */
ret = 0;
goto bail;
case QIB_IB_LINKARM:
if (ppd->lflags & QIBL_LINKARMED) {
ret = 0;
goto bail;
}
if (!(ppd->lflags & (QIBL_LINKINIT | QIBL_LINKACTIVE))) {
ret = -EINVAL;
goto bail;
}
/*
* Since the port can be ACTIVE when we ask for ARMED,
* clear QIBL_LINKV so we can wait for a transition.
* If the link isn't ARMED, then something else happened
* and there is no point waiting for ARMED.
*/
spin_lock_irqsave(&ppd->lflags_lock, flags);
ppd->lflags &= ~QIBL_LINKV;
spin_unlock_irqrestore(&ppd->lflags_lock, flags);
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_ARMED | IB_LINKINITCMD_NOP);
lstate = QIBL_LINKV;
break;
case QIB_IB_LINKACTIVE:
if (ppd->lflags & QIBL_LINKACTIVE) {
ret = 0;
goto bail;
}
if (!(ppd->lflags & QIBL_LINKARMED)) {
ret = -EINVAL;
goto bail;
}
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LSTATE,
IB_LINKCMD_ACTIVE | IB_LINKINITCMD_NOP);
lstate = QIBL_LINKACTIVE;
break;
default:
ret = -EINVAL;
goto bail;
}
ret = qib_wait_linkstate(ppd, lstate, 10);
bail:
return ret;
}
/*
* Get address of eager buffer from it's index (allocated in chunks, not
* contiguous).
*/
static inline void *qib_get_egrbuf(const struct qib_ctxtdata *rcd, u32 etail)
{
const u32 chunk = etail >> rcd->rcvegrbufs_perchunk_shift;
const u32 idx = etail & ((u32)rcd->rcvegrbufs_perchunk - 1);
return rcd->rcvegrbuf[chunk] + (idx << rcd->dd->rcvegrbufsize_shift);
}
/*
* Returns 1 if error was a CRC, else 0.
* Needed for some chip's synthesized error counters.
*/
static u32 qib_rcv_hdrerr(struct qib_ctxtdata *rcd, struct qib_pportdata *ppd,
u32 ctxt, u32 eflags, u32 l, u32 etail,
__le32 *rhf_addr, struct qib_message_header *rhdr)
{
u32 ret = 0;
if (eflags & (QLOGIC_IB_RHF_H_ICRCERR | QLOGIC_IB_RHF_H_VCRCERR))
ret = 1;
else if (eflags == QLOGIC_IB_RHF_H_TIDERR) {
/* For TIDERR and RC QPs premptively schedule a NAK */
struct ib_header *hdr = (struct ib_header *)rhdr;
struct ib_other_headers *ohdr = NULL;
struct qib_ibport *ibp = &ppd->ibport_data;
struct qib_devdata *dd = ppd->dd;
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
struct rvt_qp *qp = NULL;
u32 tlen = qib_hdrget_length_in_bytes(rhf_addr);
u16 lid = be16_to_cpu(hdr->lrh[1]);
int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
u32 qp_num;
u32 opcode;
u32 psn;
int diff;
/* Sanity check packet */
if (tlen < 24)
goto drop;
if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
lid &= ~((1 << ppd->lmc) - 1);
if (unlikely(lid != ppd->lid))
goto drop;
}
/* Check for GRH */
if (lnh == QIB_LRH_BTH)
ohdr = &hdr->u.oth;
else if (lnh == QIB_LRH_GRH) {
u32 vtf;
ohdr = &hdr->u.l.oth;
if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
} else
goto drop;
/* Get opcode and PSN from packet */
opcode = be32_to_cpu(ohdr->bth[0]);
opcode >>= 24;
psn = be32_to_cpu(ohdr->bth[2]);
/* Get the destination QP number. */
qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
if (qp_num != QIB_MULTICAST_QPN) {
int ruc_res;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
if (!qp) {
rcu_read_unlock();
goto drop;
}
/*
* Handle only RC QPs - for other QP types drop error
* packet.
*/
spin_lock(&qp->r_lock);
/* Check for valid receive state. */
if (!(ib_rvt_state_ops[qp->state] &
RVT_PROCESS_RECV_OK)) {
ibp->rvp.n_pkt_drops++;
goto unlock;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
ruc_res =
qib_ruc_check_hdr(
ibp, hdr,
lnh == QIB_LRH_GRH,
qp,
be32_to_cpu(ohdr->bth[0]));
if (ruc_res)
goto unlock;
/* Only deal with RDMA Writes for now */
if (opcode <
IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) {
diff = qib_cmp24(psn, qp->r_psn);
if (!qp->r_nak_state && diff >= 0) {
ibp->rvp.n_rc_seqnak++;
qp->r_nak_state =
IB_NAK_PSN_ERROR;
/* Use the expected PSN. */
qp->r_ack_psn = qp->r_psn;
/*
* Wait to send the sequence
* NAK until all packets
* in the receive queue have
* been processed.
* Otherwise, we end up
* propagating congestion.
*/
if (list_empty(&qp->rspwait)) {
qp->r_flags |=
RVT_R_RSP_NAK;
rvt_get_qp(qp);
list_add_tail(
&qp->rspwait,
&rcd->qp_wait_list);
}
} /* Out of sequence NAK */
} /* QP Request NAKs */
break;
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
case IB_QPT_UC:
default:
/* For now don't handle any other QP types */
break;
}
unlock:
spin_unlock(&qp->r_lock);
rcu_read_unlock();
} /* Unicast QP */
} /* Valid packet with TIDErr */
drop:
return ret;
}
/*
* qib_kreceive - receive a packet
* @rcd: the qlogic_ib context
* @llic: gets count of good packets needed to clear lli,
* (used with chips that need need to track crcs for lli)
*
* called from interrupt handler for errors or receive interrupt
* Returns number of CRC error packets, needed by some chips for
* local link integrity tracking. crcs are adjusted down by following
* good packets, if any, and count of good packets is also tracked.
*/
u32 qib_kreceive(struct qib_ctxtdata *rcd, u32 *llic, u32 *npkts)
{
struct qib_devdata *dd = rcd->dd;
struct qib_pportdata *ppd = rcd->ppd;
__le32 *rhf_addr;
void *ebuf;
const u32 rsize = dd->rcvhdrentsize; /* words */
const u32 maxcnt = dd->rcvhdrcnt * rsize; /* words */
u32 etail = -1, l, hdrqtail;
struct qib_message_header *hdr;
u32 eflags, etype, tlen, i = 0, updegr = 0, crcs = 0;
int last;
u64 lval;
struct rvt_qp *qp, *nqp;
l = rcd->head;
rhf_addr = (__le32 *) rcd->rcvhdrq + l + dd->rhf_offset;
if (dd->flags & QIB_NODMA_RTAIL) {
u32 seq = qib_hdrget_seq(rhf_addr);
if (seq != rcd->seq_cnt)
goto bail;
hdrqtail = 0;
} else {
hdrqtail = qib_get_rcvhdrtail(rcd);
if (l == hdrqtail)
goto bail;
smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
}
for (last = 0, i = 1; !last; i += !last) {
hdr = dd->f_get_msgheader(dd, rhf_addr);
eflags = qib_hdrget_err_flags(rhf_addr);
etype = qib_hdrget_rcv_type(rhf_addr);
/* total length */
tlen = qib_hdrget_length_in_bytes(rhf_addr);
ebuf = NULL;
if ((dd->flags & QIB_NODMA_RTAIL) ?
qib_hdrget_use_egr_buf(rhf_addr) :
(etype != RCVHQ_RCV_TYPE_EXPECTED)) {
etail = qib_hdrget_index(rhf_addr);
updegr = 1;
if (tlen > sizeof(*hdr) ||
etype >= RCVHQ_RCV_TYPE_NON_KD) {
ebuf = qib_get_egrbuf(rcd, etail);
prefetch_range(ebuf, tlen - sizeof(*hdr));
}
}
if (!eflags) {
u16 lrh_len = be16_to_cpu(hdr->lrh[2]) << 2;
if (lrh_len != tlen) {
qib_stats.sps_lenerrs++;
goto move_along;
}
}
if (etype == RCVHQ_RCV_TYPE_NON_KD && !eflags &&
ebuf == NULL &&
tlen > (dd->rcvhdrentsize - 2 + 1 -
qib_hdrget_offset(rhf_addr)) << 2) {
goto move_along;
}
/*
* Both tiderr and qibhdrerr are set for all plain IB
* packets; only qibhdrerr should be set.
*/
if (unlikely(eflags))
crcs += qib_rcv_hdrerr(rcd, ppd, rcd->ctxt, eflags, l,
etail, rhf_addr, hdr);
else if (etype == RCVHQ_RCV_TYPE_NON_KD) {
qib_ib_rcv(rcd, hdr, ebuf, tlen);
if (crcs)
crcs--;
else if (llic && *llic)
--*llic;
}
move_along:
l += rsize;
if (l >= maxcnt)
l = 0;
if (i == QIB_MAX_PKT_RECV)
last = 1;
rhf_addr = (__le32 *) rcd->rcvhdrq + l + dd->rhf_offset;
if (dd->flags & QIB_NODMA_RTAIL) {
u32 seq = qib_hdrget_seq(rhf_addr);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (seq != rcd->seq_cnt)
last = 1;
} else if (l == hdrqtail)
last = 1;
/*
* Update head regs etc., every 16 packets, if not last pkt,
* to help prevent rcvhdrq overflows, when many packets
* are processed and queue is nearly full.
* Don't request an interrupt for intermediate updates.
*/
lval = l;
if (!last && !(i & 0xf)) {
dd->f_update_usrhead(rcd, lval, updegr, etail, i);
updegr = 0;
}
}
rcd->head = l;
/*
* Iterate over all QPs waiting to respond.
* The list won't change since the IRQ is only run on one CPU.
*/
list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
list_del_init(&qp->rspwait);
if (qp->r_flags & RVT_R_RSP_NAK) {
qp->r_flags &= ~RVT_R_RSP_NAK;
qib_send_rc_ack(qp);
}
if (qp->r_flags & RVT_R_RSP_SEND) {
unsigned long flags;
qp->r_flags &= ~RVT_R_RSP_SEND;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] &
RVT_PROCESS_OR_FLUSH_SEND)
qib_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
rvt_put_qp(qp);
}
bail:
/* Report number of packets consumed */
if (npkts)
*npkts = i;
/*
* Always write head at end, and setup rcv interrupt, even
* if no packets were processed.
*/
lval = (u64)rcd->head | dd->rhdrhead_intr_off;
dd->f_update_usrhead(rcd, lval, updegr, etail, i);
return crcs;
}
/**
* qib_set_mtu - set the MTU
* @ppd: the perport data
* @arg: the new MTU
*
* We can handle "any" incoming size, the issue here is whether we
* need to restrict our outgoing size. For now, we don't do any
* sanity checking on this, and we don't deal with what happens to
* programs that are already running when the size changes.
* NOTE: changing the MTU will usually cause the IBC to go back to
* link INIT state...
*/
int qib_set_mtu(struct qib_pportdata *ppd, u16 arg)
{
u32 piosize;
int ret, chk;
if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 &&
arg != 4096) {
ret = -EINVAL;
goto bail;
}
chk = ib_mtu_enum_to_int(qib_ibmtu);
if (chk > 0 && arg > chk) {
ret = -EINVAL;
goto bail;
}
piosize = ppd->ibmaxlen;
ppd->ibmtu = arg;
if (arg >= (piosize - QIB_PIO_MAXIBHDR)) {
/* Only if it's not the initial value (or reset to it) */
if (piosize != ppd->init_ibmaxlen) {
if (arg > piosize && arg <= ppd->init_ibmaxlen)
piosize = ppd->init_ibmaxlen - 2 * sizeof(u32);
ppd->ibmaxlen = piosize;
}
} else if ((arg + QIB_PIO_MAXIBHDR) != ppd->ibmaxlen) {
piosize = arg + QIB_PIO_MAXIBHDR - 2 * sizeof(u32);
ppd->ibmaxlen = piosize;
}
ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_MTU, 0);
ret = 0;
bail:
return ret;
}
int qib_set_lid(struct qib_pportdata *ppd, u32 lid, u8 lmc)
{
struct qib_devdata *dd = ppd->dd;
ppd->lid = lid;
ppd->lmc = lmc;
dd->f_set_ib_cfg(ppd, QIB_IB_CFG_LIDLMC,
lid | (~((1U << lmc) - 1)) << 16);
qib_devinfo(dd->pcidev, "IB%u:%u got a lid: 0x%x\n",
dd->unit, ppd->port, lid);
return 0;
}
/*
* Following deal with the "obviously simple" task of overriding the state
* of the LEDS, which normally indicate link physical and logical status.
* The complications arise in dealing with different hardware mappings
* and the board-dependent routine being called from interrupts.
* and then there's the requirement to _flash_ them.
*/
#define LED_OVER_FREQ_SHIFT 8
#define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
/* Below is "non-zero" to force override, but both actual LEDs are off */
#define LED_OVER_BOTH_OFF (8)
static void qib_run_led_override(struct timer_list *t)
{
struct qib_pportdata *ppd = from_timer(ppd, t,
led_override_timer);
struct qib_devdata *dd = ppd->dd;
int timeoff;
int ph_idx;
if (!(dd->flags & QIB_INITTED))
return;
ph_idx = ppd->led_override_phase++ & 1;
ppd->led_override = ppd->led_override_vals[ph_idx];
timeoff = ppd->led_override_timeoff;
dd->f_setextled(ppd, 1);
/*
* don't re-fire the timer if user asked for it to be off; we let
* it fire one more time after they turn it off to simplify
*/
if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
mod_timer(&ppd->led_override_timer, jiffies + timeoff);
}
void qib_set_led_override(struct qib_pportdata *ppd, unsigned int val)
{
struct qib_devdata *dd = ppd->dd;
int timeoff, freq;
if (!(dd->flags & QIB_INITTED))
return;
/* First check if we are blinking. If not, use 1HZ polling */
timeoff = HZ;
freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
if (freq) {
/* For blink, set each phase from one nybble of val */
ppd->led_override_vals[0] = val & 0xF;
ppd->led_override_vals[1] = (val >> 4) & 0xF;
timeoff = (HZ << 4)/freq;
} else {
/* Non-blink set both phases the same. */
ppd->led_override_vals[0] = val & 0xF;
ppd->led_override_vals[1] = val & 0xF;
}
ppd->led_override_timeoff = timeoff;
/*
* If the timer has not already been started, do so. Use a "quick"
* timeout so the function will be called soon, to look at our request.
*/
if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
/* Need to start timer */
timer_setup(&ppd->led_override_timer, qib_run_led_override, 0);
ppd->led_override_timer.expires = jiffies + 1;
add_timer(&ppd->led_override_timer);
} else {
if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
mod_timer(&ppd->led_override_timer, jiffies + 1);
atomic_dec(&ppd->led_override_timer_active);
}
}
/**
* qib_reset_device - reset the chip if possible
* @unit: the device to reset
*
* Whether or not reset is successful, we attempt to re-initialize the chip
* (that is, much like a driver unload/reload). We clear the INITTED flag
* so that the various entry points will fail until we reinitialize. For
* now, we only allow this if no user contexts are open that use chip resources
*/
int qib_reset_device(int unit)
{
int ret, i;
struct qib_devdata *dd = qib_lookup(unit);
struct qib_pportdata *ppd;
unsigned long flags;
int pidx;
if (!dd) {
ret = -ENODEV;
goto bail;
}
qib_devinfo(dd->pcidev, "Reset on unit %u requested\n", unit);
if (!dd->kregbase || !(dd->flags & QIB_PRESENT)) {
qib_devinfo(dd->pcidev,
"Invalid unit number %u or not initialized or not present\n",
unit);
ret = -ENXIO;
goto bail;
}
spin_lock_irqsave(&dd->uctxt_lock, flags);
if (dd->rcd)
for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) {
if (!dd->rcd[i] || !dd->rcd[i]->cnt)
continue;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
ret = -EBUSY;
goto bail;
}
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (atomic_read(&ppd->led_override_timer_active)) {
/* Need to stop LED timer, _then_ shut off LEDs */
del_timer_sync(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 0);
}
/* Shut off LEDs after we are sure timer is not running */
ppd->led_override = LED_OVER_BOTH_OFF;
dd->f_setextled(ppd, 0);
if (dd->flags & QIB_HAS_SEND_DMA)
qib_teardown_sdma(ppd);
}
ret = dd->f_reset(dd);
if (ret == 1)
ret = qib_init(dd, 1);
else
ret = -EAGAIN;
if (ret)
qib_dev_err(dd,
"Reinitialize unit %u after reset failed with %d\n",
unit, ret);
else
qib_devinfo(dd->pcidev,
"Reinitialized unit %u after resetting\n",
unit);
bail:
return ret;
}