1096 lines
27 KiB
C
1096 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2013 Red Hat
|
|
* Author: Rob Clark <robdclark@gmail.com>
|
|
*
|
|
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/ascii85.h>
|
|
#include <linux/interconnect.h>
|
|
#include <linux/qcom_scm.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/soc/qcom/mdt_loader.h>
|
|
#include <linux/nvmem-consumer.h>
|
|
#include <soc/qcom/ocmem.h>
|
|
#include "adreno_gpu.h"
|
|
#include "a6xx_gpu.h"
|
|
#include "msm_gem.h"
|
|
#include "msm_mmu.h"
|
|
|
|
static u64 address_space_size = 0;
|
|
MODULE_PARM_DESC(address_space_size, "Override for size of processes private GPU address space");
|
|
module_param(address_space_size, ullong, 0600);
|
|
|
|
static bool zap_available = true;
|
|
|
|
static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname,
|
|
u32 pasid)
|
|
{
|
|
struct device *dev = &gpu->pdev->dev;
|
|
const struct firmware *fw;
|
|
const char *signed_fwname = NULL;
|
|
struct device_node *np, *mem_np;
|
|
struct resource r;
|
|
phys_addr_t mem_phys;
|
|
ssize_t mem_size;
|
|
void *mem_region = NULL;
|
|
int ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_ARCH_QCOM)) {
|
|
zap_available = false;
|
|
return -EINVAL;
|
|
}
|
|
|
|
np = of_get_child_by_name(dev->of_node, "zap-shader");
|
|
if (!np) {
|
|
zap_available = false;
|
|
return -ENODEV;
|
|
}
|
|
|
|
mem_np = of_parse_phandle(np, "memory-region", 0);
|
|
of_node_put(np);
|
|
if (!mem_np) {
|
|
zap_available = false;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = of_address_to_resource(mem_np, 0, &r);
|
|
of_node_put(mem_np);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mem_phys = r.start;
|
|
|
|
/*
|
|
* Check for a firmware-name property. This is the new scheme
|
|
* to handle firmware that may be signed with device specific
|
|
* keys, allowing us to have a different zap fw path for different
|
|
* devices.
|
|
*
|
|
* If the firmware-name property is found, we bypass the
|
|
* adreno_request_fw() mechanism, because we don't need to handle
|
|
* the /lib/firmware/qcom/... vs /lib/firmware/... case.
|
|
*
|
|
* If the firmware-name property is not found, for backwards
|
|
* compatibility we fall back to the fwname from the gpulist
|
|
* table.
|
|
*/
|
|
of_property_read_string_index(np, "firmware-name", 0, &signed_fwname);
|
|
if (signed_fwname) {
|
|
fwname = signed_fwname;
|
|
ret = request_firmware_direct(&fw, fwname, gpu->dev->dev);
|
|
if (ret)
|
|
fw = ERR_PTR(ret);
|
|
} else if (fwname) {
|
|
/* Request the MDT file from the default location: */
|
|
fw = adreno_request_fw(to_adreno_gpu(gpu), fwname);
|
|
} else {
|
|
/*
|
|
* For new targets, we require the firmware-name property,
|
|
* if a zap-shader is required, rather than falling back
|
|
* to a firmware name specified in gpulist.
|
|
*
|
|
* Because the firmware is signed with a (potentially)
|
|
* device specific key, having the name come from gpulist
|
|
* was a bad idea, and is only provided for backwards
|
|
* compatibility for older targets.
|
|
*/
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (IS_ERR(fw)) {
|
|
DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname);
|
|
return PTR_ERR(fw);
|
|
}
|
|
|
|
/* Figure out how much memory we need */
|
|
mem_size = qcom_mdt_get_size(fw);
|
|
if (mem_size < 0) {
|
|
ret = mem_size;
|
|
goto out;
|
|
}
|
|
|
|
if (mem_size > resource_size(&r)) {
|
|
DRM_DEV_ERROR(dev,
|
|
"memory region is too small to load the MDT\n");
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
/* Allocate memory for the firmware image */
|
|
mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC);
|
|
if (!mem_region) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load the rest of the MDT
|
|
*
|
|
* Note that we could be dealing with two different paths, since
|
|
* with upstream linux-firmware it would be in a qcom/ subdir..
|
|
* adreno_request_fw() handles this, but qcom_mdt_load() does
|
|
* not. But since we've already gotten through adreno_request_fw()
|
|
* we know which of the two cases it is:
|
|
*/
|
|
if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) {
|
|
ret = qcom_mdt_load(dev, fw, fwname, pasid,
|
|
mem_region, mem_phys, mem_size, NULL);
|
|
} else {
|
|
char *newname;
|
|
|
|
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
|
|
|
|
ret = qcom_mdt_load(dev, fw, newname, pasid,
|
|
mem_region, mem_phys, mem_size, NULL);
|
|
kfree(newname);
|
|
}
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Send the image to the secure world */
|
|
ret = qcom_scm_pas_auth_and_reset(pasid);
|
|
|
|
/*
|
|
* If the scm call returns -EOPNOTSUPP we assume that this target
|
|
* doesn't need/support the zap shader so quietly fail
|
|
*/
|
|
if (ret == -EOPNOTSUPP)
|
|
zap_available = false;
|
|
else if (ret)
|
|
DRM_DEV_ERROR(dev, "Unable to authorize the image\n");
|
|
|
|
out:
|
|
if (mem_region)
|
|
memunmap(mem_region);
|
|
|
|
release_firmware(fw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
struct platform_device *pdev = gpu->pdev;
|
|
|
|
/* Short cut if we determine the zap shader isn't available/needed */
|
|
if (!zap_available)
|
|
return -ENODEV;
|
|
|
|
/* We need SCM to be able to load the firmware */
|
|
if (!qcom_scm_is_available()) {
|
|
DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n");
|
|
return -EPROBE_DEFER;
|
|
}
|
|
|
|
return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid);
|
|
}
|
|
|
|
void adreno_set_llc_attributes(struct iommu_domain *iommu)
|
|
{
|
|
iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA);
|
|
}
|
|
|
|
struct msm_gem_address_space *
|
|
adreno_iommu_create_address_space(struct msm_gpu *gpu,
|
|
struct platform_device *pdev)
|
|
{
|
|
struct iommu_domain *iommu;
|
|
struct msm_mmu *mmu;
|
|
struct msm_gem_address_space *aspace;
|
|
u64 start, size;
|
|
|
|
iommu = iommu_domain_alloc(&platform_bus_type);
|
|
if (!iommu)
|
|
return NULL;
|
|
|
|
mmu = msm_iommu_new(&pdev->dev, iommu);
|
|
if (IS_ERR(mmu)) {
|
|
iommu_domain_free(iommu);
|
|
return ERR_CAST(mmu);
|
|
}
|
|
|
|
/*
|
|
* Use the aperture start or SZ_16M, whichever is greater. This will
|
|
* ensure that we align with the allocated pagetable range while still
|
|
* allowing room in the lower 32 bits for GMEM and whatnot
|
|
*/
|
|
start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
|
|
size = iommu->geometry.aperture_end - start + 1;
|
|
|
|
aspace = msm_gem_address_space_create(mmu, "gpu",
|
|
start & GENMASK_ULL(48, 0), size);
|
|
|
|
if (IS_ERR(aspace) && !IS_ERR(mmu))
|
|
mmu->funcs->destroy(mmu);
|
|
|
|
return aspace;
|
|
}
|
|
|
|
u64 adreno_private_address_space_size(struct msm_gpu *gpu)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
|
|
if (address_space_size)
|
|
return address_space_size;
|
|
|
|
if (adreno_gpu->info->address_space_size)
|
|
return adreno_gpu->info->address_space_size;
|
|
|
|
return SZ_4G;
|
|
}
|
|
|
|
int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx,
|
|
uint32_t param, uint64_t *value, uint32_t *len)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
|
|
/* No pointer params yet */
|
|
if (*len != 0)
|
|
return -EINVAL;
|
|
|
|
switch (param) {
|
|
case MSM_PARAM_GPU_ID:
|
|
*value = adreno_gpu->info->revn;
|
|
return 0;
|
|
case MSM_PARAM_GMEM_SIZE:
|
|
*value = adreno_gpu->gmem;
|
|
return 0;
|
|
case MSM_PARAM_GMEM_BASE:
|
|
*value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0;
|
|
return 0;
|
|
case MSM_PARAM_CHIP_ID:
|
|
*value = (uint64_t)adreno_gpu->rev.patchid |
|
|
((uint64_t)adreno_gpu->rev.minor << 8) |
|
|
((uint64_t)adreno_gpu->rev.major << 16) |
|
|
((uint64_t)adreno_gpu->rev.core << 24);
|
|
if (!adreno_gpu->info->revn)
|
|
*value |= ((uint64_t) adreno_gpu->speedbin) << 32;
|
|
return 0;
|
|
case MSM_PARAM_MAX_FREQ:
|
|
*value = adreno_gpu->base.fast_rate;
|
|
return 0;
|
|
case MSM_PARAM_TIMESTAMP:
|
|
if (adreno_gpu->funcs->get_timestamp) {
|
|
int ret;
|
|
|
|
pm_runtime_get_sync(&gpu->pdev->dev);
|
|
ret = adreno_gpu->funcs->get_timestamp(gpu, value);
|
|
pm_runtime_put_autosuspend(&gpu->pdev->dev);
|
|
|
|
return ret;
|
|
}
|
|
return -EINVAL;
|
|
case MSM_PARAM_PRIORITIES:
|
|
*value = gpu->nr_rings * NR_SCHED_PRIORITIES;
|
|
return 0;
|
|
case MSM_PARAM_PP_PGTABLE:
|
|
*value = 0;
|
|
return 0;
|
|
case MSM_PARAM_FAULTS:
|
|
if (ctx->aspace)
|
|
*value = gpu->global_faults + ctx->aspace->faults;
|
|
else
|
|
*value = gpu->global_faults;
|
|
return 0;
|
|
case MSM_PARAM_SUSPENDS:
|
|
*value = gpu->suspend_count;
|
|
return 0;
|
|
case MSM_PARAM_VA_START:
|
|
if (ctx->aspace == gpu->aspace)
|
|
return -EINVAL;
|
|
*value = ctx->aspace->va_start;
|
|
return 0;
|
|
case MSM_PARAM_VA_SIZE:
|
|
if (ctx->aspace == gpu->aspace)
|
|
return -EINVAL;
|
|
*value = ctx->aspace->va_size;
|
|
return 0;
|
|
default:
|
|
DBG("%s: invalid param: %u", gpu->name, param);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx,
|
|
uint32_t param, uint64_t value, uint32_t len)
|
|
{
|
|
switch (param) {
|
|
case MSM_PARAM_COMM:
|
|
case MSM_PARAM_CMDLINE:
|
|
/* kstrdup_quotable_cmdline() limits to PAGE_SIZE, so
|
|
* that should be a reasonable upper bound
|
|
*/
|
|
if (len > PAGE_SIZE)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
if (len != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (param) {
|
|
case MSM_PARAM_COMM:
|
|
case MSM_PARAM_CMDLINE: {
|
|
char *str, **paramp;
|
|
|
|
str = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!str)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(str, u64_to_user_ptr(value), len)) {
|
|
kfree(str);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Ensure string is null terminated: */
|
|
str[len] = '\0';
|
|
|
|
mutex_lock(&gpu->lock);
|
|
|
|
if (param == MSM_PARAM_COMM) {
|
|
paramp = &ctx->comm;
|
|
} else {
|
|
paramp = &ctx->cmdline;
|
|
}
|
|
|
|
kfree(*paramp);
|
|
*paramp = str;
|
|
|
|
mutex_unlock(&gpu->lock);
|
|
|
|
return 0;
|
|
}
|
|
case MSM_PARAM_SYSPROF:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return msm_file_private_set_sysprof(ctx, gpu, value);
|
|
default:
|
|
DBG("%s: invalid param: %u", gpu->name, param);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
const struct firmware *
|
|
adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname)
|
|
{
|
|
struct drm_device *drm = adreno_gpu->base.dev;
|
|
const struct firmware *fw = NULL;
|
|
char *newname;
|
|
int ret;
|
|
|
|
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
|
|
if (!newname)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Try first to load from qcom/$fwfile using a direct load (to avoid
|
|
* a potential timeout waiting for usermode helper)
|
|
*/
|
|
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
|
|
(adreno_gpu->fwloc == FW_LOCATION_NEW)) {
|
|
|
|
ret = request_firmware_direct(&fw, newname, drm->dev);
|
|
if (!ret) {
|
|
DRM_DEV_INFO(drm->dev, "loaded %s from new location\n",
|
|
newname);
|
|
adreno_gpu->fwloc = FW_LOCATION_NEW;
|
|
goto out;
|
|
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
|
|
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
|
|
newname, ret);
|
|
fw = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Then try the legacy location without qcom/ prefix
|
|
*/
|
|
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
|
|
(adreno_gpu->fwloc == FW_LOCATION_LEGACY)) {
|
|
|
|
ret = request_firmware_direct(&fw, fwname, drm->dev);
|
|
if (!ret) {
|
|
DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n",
|
|
newname);
|
|
adreno_gpu->fwloc = FW_LOCATION_LEGACY;
|
|
goto out;
|
|
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
|
|
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
|
|
fwname, ret);
|
|
fw = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally fall back to request_firmware() for cases where the
|
|
* usermode helper is needed (I think mainly android)
|
|
*/
|
|
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
|
|
(adreno_gpu->fwloc == FW_LOCATION_HELPER)) {
|
|
|
|
ret = request_firmware(&fw, newname, drm->dev);
|
|
if (!ret) {
|
|
DRM_DEV_INFO(drm->dev, "loaded %s with helper\n",
|
|
newname);
|
|
adreno_gpu->fwloc = FW_LOCATION_HELPER;
|
|
goto out;
|
|
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
|
|
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
|
|
newname, ret);
|
|
fw = ERR_PTR(ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname);
|
|
fw = ERR_PTR(-ENOENT);
|
|
out:
|
|
kfree(newname);
|
|
return fw;
|
|
}
|
|
|
|
int adreno_load_fw(struct adreno_gpu *adreno_gpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) {
|
|
const struct firmware *fw;
|
|
|
|
if (!adreno_gpu->info->fw[i])
|
|
continue;
|
|
|
|
/* Skip if the firmware has already been loaded */
|
|
if (adreno_gpu->fw[i])
|
|
continue;
|
|
|
|
fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]);
|
|
if (IS_ERR(fw))
|
|
return PTR_ERR(fw);
|
|
|
|
adreno_gpu->fw[i] = fw;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu,
|
|
const struct firmware *fw, u64 *iova)
|
|
{
|
|
struct drm_gem_object *bo;
|
|
void *ptr;
|
|
|
|
ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4,
|
|
MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova);
|
|
|
|
if (IS_ERR(ptr))
|
|
return ERR_CAST(ptr);
|
|
|
|
memcpy(ptr, &fw->data[4], fw->size - 4);
|
|
|
|
msm_gem_put_vaddr(bo);
|
|
|
|
return bo;
|
|
}
|
|
|
|
int adreno_hw_init(struct msm_gpu *gpu)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
int ret, i;
|
|
|
|
VERB("%s", gpu->name);
|
|
|
|
ret = adreno_load_fw(adreno_gpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < gpu->nr_rings; i++) {
|
|
struct msm_ringbuffer *ring = gpu->rb[i];
|
|
|
|
if (!ring)
|
|
continue;
|
|
|
|
ring->cur = ring->start;
|
|
ring->next = ring->start;
|
|
ring->memptrs->rptr = 0;
|
|
|
|
/* Detect and clean up an impossible fence, ie. if GPU managed
|
|
* to scribble something invalid, we don't want that to confuse
|
|
* us into mistakingly believing that submits have completed.
|
|
*/
|
|
if (fence_before(ring->fctx->last_fence, ring->memptrs->fence)) {
|
|
ring->memptrs->fence = ring->fctx->last_fence;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Use this helper to read rptr, since a430 doesn't update rptr in memory */
|
|
static uint32_t get_rptr(struct adreno_gpu *adreno_gpu,
|
|
struct msm_ringbuffer *ring)
|
|
{
|
|
struct msm_gpu *gpu = &adreno_gpu->base;
|
|
|
|
return gpu->funcs->get_rptr(gpu, ring);
|
|
}
|
|
|
|
struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu)
|
|
{
|
|
return gpu->rb[0];
|
|
}
|
|
|
|
void adreno_recover(struct msm_gpu *gpu)
|
|
{
|
|
struct drm_device *dev = gpu->dev;
|
|
int ret;
|
|
|
|
// XXX pm-runtime?? we *need* the device to be off after this
|
|
// so maybe continuing to call ->pm_suspend/resume() is better?
|
|
|
|
gpu->funcs->pm_suspend(gpu);
|
|
gpu->funcs->pm_resume(gpu);
|
|
|
|
ret = msm_gpu_hw_init(gpu);
|
|
if (ret) {
|
|
DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret);
|
|
/* hmm, oh well? */
|
|
}
|
|
}
|
|
|
|
void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg)
|
|
{
|
|
uint32_t wptr;
|
|
|
|
/* Copy the shadow to the actual register */
|
|
ring->cur = ring->next;
|
|
|
|
/*
|
|
* Mask wptr value that we calculate to fit in the HW range. This is
|
|
* to account for the possibility that the last command fit exactly into
|
|
* the ringbuffer and rb->next hasn't wrapped to zero yet
|
|
*/
|
|
wptr = get_wptr(ring);
|
|
|
|
/* ensure writes to ringbuffer have hit system memory: */
|
|
mb();
|
|
|
|
gpu_write(gpu, reg, wptr);
|
|
}
|
|
|
|
bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
uint32_t wptr = get_wptr(ring);
|
|
|
|
/* wait for CP to drain ringbuffer: */
|
|
if (!spin_until(get_rptr(adreno_gpu, ring) == wptr))
|
|
return true;
|
|
|
|
/* TODO maybe we need to reset GPU here to recover from hang? */
|
|
DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n",
|
|
gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr);
|
|
|
|
return false;
|
|
}
|
|
|
|
int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
int i, count = 0;
|
|
|
|
WARN_ON(!mutex_is_locked(&gpu->lock));
|
|
|
|
kref_init(&state->ref);
|
|
|
|
ktime_get_real_ts64(&state->time);
|
|
|
|
for (i = 0; i < gpu->nr_rings; i++) {
|
|
int size = 0, j;
|
|
|
|
state->ring[i].fence = gpu->rb[i]->memptrs->fence;
|
|
state->ring[i].iova = gpu->rb[i]->iova;
|
|
state->ring[i].seqno = gpu->rb[i]->fctx->last_fence;
|
|
state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]);
|
|
state->ring[i].wptr = get_wptr(gpu->rb[i]);
|
|
|
|
/* Copy at least 'wptr' dwords of the data */
|
|
size = state->ring[i].wptr;
|
|
|
|
/* After wptr find the last non zero dword to save space */
|
|
for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++)
|
|
if (gpu->rb[i]->start[j])
|
|
size = j + 1;
|
|
|
|
if (size) {
|
|
state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL);
|
|
if (state->ring[i].data) {
|
|
memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2);
|
|
state->ring[i].data_size = size << 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Some targets prefer to collect their own registers */
|
|
if (!adreno_gpu->registers)
|
|
return 0;
|
|
|
|
/* Count the number of registers */
|
|
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2)
|
|
count += adreno_gpu->registers[i + 1] -
|
|
adreno_gpu->registers[i] + 1;
|
|
|
|
state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL);
|
|
if (state->registers) {
|
|
int pos = 0;
|
|
|
|
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
|
|
u32 start = adreno_gpu->registers[i];
|
|
u32 end = adreno_gpu->registers[i + 1];
|
|
u32 addr;
|
|
|
|
for (addr = start; addr <= end; addr++) {
|
|
state->registers[pos++] = addr;
|
|
state->registers[pos++] = gpu_read(gpu, addr);
|
|
}
|
|
}
|
|
|
|
state->nr_registers = count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void adreno_gpu_state_destroy(struct msm_gpu_state *state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(state->ring); i++)
|
|
kvfree(state->ring[i].data);
|
|
|
|
for (i = 0; state->bos && i < state->nr_bos; i++)
|
|
kvfree(state->bos[i].data);
|
|
|
|
kfree(state->bos);
|
|
kfree(state->comm);
|
|
kfree(state->cmd);
|
|
kfree(state->registers);
|
|
}
|
|
|
|
static void adreno_gpu_state_kref_destroy(struct kref *kref)
|
|
{
|
|
struct msm_gpu_state *state = container_of(kref,
|
|
struct msm_gpu_state, ref);
|
|
|
|
adreno_gpu_state_destroy(state);
|
|
kfree(state);
|
|
}
|
|
|
|
int adreno_gpu_state_put(struct msm_gpu_state *state)
|
|
{
|
|
if (IS_ERR_OR_NULL(state))
|
|
return 1;
|
|
|
|
return kref_put(&state->ref, adreno_gpu_state_kref_destroy);
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
|
|
|
|
static char *adreno_gpu_ascii85_encode(u32 *src, size_t len)
|
|
{
|
|
void *buf;
|
|
size_t buf_itr = 0, buffer_size;
|
|
char out[ASCII85_BUFSZ];
|
|
long l;
|
|
int i;
|
|
|
|
if (!src || !len)
|
|
return NULL;
|
|
|
|
l = ascii85_encode_len(len);
|
|
|
|
/*
|
|
* Ascii85 outputs either a 5 byte string or a 1 byte string. So we
|
|
* account for the worst case of 5 bytes per dword plus the 1 for '\0'
|
|
*/
|
|
buffer_size = (l * 5) + 1;
|
|
|
|
buf = kvmalloc(buffer_size, GFP_KERNEL);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
for (i = 0; i < l; i++)
|
|
buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s",
|
|
ascii85_encode(src[i], out));
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* len is expected to be in bytes
|
|
*
|
|
* WARNING: *ptr should be allocated with kvmalloc or friends. It can be free'd
|
|
* with kvfree() and replaced with a newly kvmalloc'd buffer on the first call
|
|
* when the unencoded raw data is encoded
|
|
*/
|
|
void adreno_show_object(struct drm_printer *p, void **ptr, int len,
|
|
bool *encoded)
|
|
{
|
|
if (!*ptr || !len)
|
|
return;
|
|
|
|
if (!*encoded) {
|
|
long datalen, i;
|
|
u32 *buf = *ptr;
|
|
|
|
/*
|
|
* Only dump the non-zero part of the buffer - rarely will
|
|
* any data completely fill the entire allocated size of
|
|
* the buffer.
|
|
*/
|
|
for (datalen = 0, i = 0; i < len >> 2; i++)
|
|
if (buf[i])
|
|
datalen = ((i + 1) << 2);
|
|
|
|
/*
|
|
* If we reach here, then the originally captured binary buffer
|
|
* will be replaced with the ascii85 encoded string
|
|
*/
|
|
*ptr = adreno_gpu_ascii85_encode(buf, datalen);
|
|
|
|
kvfree(buf);
|
|
|
|
*encoded = true;
|
|
}
|
|
|
|
if (!*ptr)
|
|
return;
|
|
|
|
drm_puts(p, " data: !!ascii85 |\n");
|
|
drm_puts(p, " ");
|
|
|
|
drm_puts(p, *ptr);
|
|
|
|
drm_puts(p, "\n");
|
|
}
|
|
|
|
void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
|
|
struct drm_printer *p)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
int i;
|
|
|
|
if (IS_ERR_OR_NULL(state))
|
|
return;
|
|
|
|
drm_printf(p, "revision: %d (%d.%d.%d.%d)\n",
|
|
adreno_gpu->info->revn, adreno_gpu->rev.core,
|
|
adreno_gpu->rev.major, adreno_gpu->rev.minor,
|
|
adreno_gpu->rev.patchid);
|
|
/*
|
|
* If this is state collected due to iova fault, so fault related info
|
|
*
|
|
* TTBR0 would not be zero, so this is a good way to distinguish
|
|
*/
|
|
if (state->fault_info.ttbr0) {
|
|
const struct msm_gpu_fault_info *info = &state->fault_info;
|
|
|
|
drm_puts(p, "fault-info:\n");
|
|
drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0);
|
|
drm_printf(p, " - iova=%.16lx\n", info->iova);
|
|
drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ");
|
|
drm_printf(p, " - type=%s\n", info->type);
|
|
drm_printf(p, " - source=%s\n", info->block);
|
|
}
|
|
|
|
drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status);
|
|
|
|
drm_puts(p, "ringbuffer:\n");
|
|
|
|
for (i = 0; i < gpu->nr_rings; i++) {
|
|
drm_printf(p, " - id: %d\n", i);
|
|
drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova);
|
|
drm_printf(p, " last-fence: %u\n", state->ring[i].seqno);
|
|
drm_printf(p, " retired-fence: %u\n", state->ring[i].fence);
|
|
drm_printf(p, " rptr: %u\n", state->ring[i].rptr);
|
|
drm_printf(p, " wptr: %u\n", state->ring[i].wptr);
|
|
drm_printf(p, " size: %u\n", MSM_GPU_RINGBUFFER_SZ);
|
|
|
|
adreno_show_object(p, &state->ring[i].data,
|
|
state->ring[i].data_size, &state->ring[i].encoded);
|
|
}
|
|
|
|
if (state->bos) {
|
|
drm_puts(p, "bos:\n");
|
|
|
|
for (i = 0; i < state->nr_bos; i++) {
|
|
drm_printf(p, " - iova: 0x%016llx\n",
|
|
state->bos[i].iova);
|
|
drm_printf(p, " size: %zd\n", state->bos[i].size);
|
|
drm_printf(p, " name: %-32s\n", state->bos[i].name);
|
|
|
|
adreno_show_object(p, &state->bos[i].data,
|
|
state->bos[i].size, &state->bos[i].encoded);
|
|
}
|
|
}
|
|
|
|
if (state->nr_registers) {
|
|
drm_puts(p, "registers:\n");
|
|
|
|
for (i = 0; i < state->nr_registers; i++) {
|
|
drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n",
|
|
state->registers[i * 2] << 2,
|
|
state->registers[(i * 2) + 1]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Dump common gpu status and scratch registers on any hang, to make
|
|
* the hangcheck logs more useful. The scratch registers seem always
|
|
* safe to read when GPU has hung (unlike some other regs, depending
|
|
* on how the GPU hung), and they are useful to match up to cmdstream
|
|
* dumps when debugging hangs:
|
|
*/
|
|
void adreno_dump_info(struct msm_gpu *gpu)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
int i;
|
|
|
|
printk("revision: %d (%d.%d.%d.%d)\n",
|
|
adreno_gpu->info->revn, adreno_gpu->rev.core,
|
|
adreno_gpu->rev.major, adreno_gpu->rev.minor,
|
|
adreno_gpu->rev.patchid);
|
|
|
|
for (i = 0; i < gpu->nr_rings; i++) {
|
|
struct msm_ringbuffer *ring = gpu->rb[i];
|
|
|
|
printk("rb %d: fence: %d/%d\n", i,
|
|
ring->memptrs->fence,
|
|
ring->fctx->last_fence);
|
|
|
|
printk("rptr: %d\n", get_rptr(adreno_gpu, ring));
|
|
printk("rb wptr: %d\n", get_wptr(ring));
|
|
}
|
|
}
|
|
|
|
/* would be nice to not have to duplicate the _show() stuff with printk(): */
|
|
void adreno_dump(struct msm_gpu *gpu)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
|
|
int i;
|
|
|
|
if (!adreno_gpu->registers)
|
|
return;
|
|
|
|
/* dump these out in a form that can be parsed by demsm: */
|
|
printk("IO:region %s 00000000 00020000\n", gpu->name);
|
|
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
|
|
uint32_t start = adreno_gpu->registers[i];
|
|
uint32_t end = adreno_gpu->registers[i+1];
|
|
uint32_t addr;
|
|
|
|
for (addr = start; addr <= end; addr++) {
|
|
uint32_t val = gpu_read(gpu, addr);
|
|
printk("IO:R %08x %08x\n", addr<<2, val);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t ring_freewords(struct msm_ringbuffer *ring)
|
|
{
|
|
struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu);
|
|
uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2;
|
|
/* Use ring->next to calculate free size */
|
|
uint32_t wptr = ring->next - ring->start;
|
|
uint32_t rptr = get_rptr(adreno_gpu, ring);
|
|
return (rptr + (size - 1) - wptr) % size;
|
|
}
|
|
|
|
void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords)
|
|
{
|
|
if (spin_until(ring_freewords(ring) >= ndwords))
|
|
DRM_DEV_ERROR(ring->gpu->dev->dev,
|
|
"timeout waiting for space in ringbuffer %d\n",
|
|
ring->id);
|
|
}
|
|
|
|
/* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */
|
|
static int adreno_get_legacy_pwrlevels(struct device *dev)
|
|
{
|
|
struct device_node *child, *node;
|
|
int ret;
|
|
|
|
node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels");
|
|
if (!node) {
|
|
DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
for_each_child_of_node(node, child) {
|
|
unsigned int val;
|
|
|
|
ret = of_property_read_u32(child, "qcom,gpu-freq", &val);
|
|
if (ret)
|
|
continue;
|
|
|
|
/*
|
|
* Skip the intentionally bogus clock value found at the bottom
|
|
* of most legacy frequency tables
|
|
*/
|
|
if (val != 27000000)
|
|
dev_pm_opp_add(dev, val, 0);
|
|
}
|
|
|
|
of_node_put(node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void adreno_get_pwrlevels(struct device *dev,
|
|
struct msm_gpu *gpu)
|
|
{
|
|
unsigned long freq = ULONG_MAX;
|
|
struct dev_pm_opp *opp;
|
|
int ret;
|
|
|
|
gpu->fast_rate = 0;
|
|
|
|
/* You down with OPP? */
|
|
if (!of_find_property(dev->of_node, "operating-points-v2", NULL))
|
|
ret = adreno_get_legacy_pwrlevels(dev);
|
|
else {
|
|
ret = devm_pm_opp_of_add_table(dev);
|
|
if (ret)
|
|
DRM_DEV_ERROR(dev, "Unable to set the OPP table\n");
|
|
}
|
|
|
|
if (!ret) {
|
|
/* Find the fastest defined rate */
|
|
opp = dev_pm_opp_find_freq_floor(dev, &freq);
|
|
if (!IS_ERR(opp)) {
|
|
gpu->fast_rate = freq;
|
|
dev_pm_opp_put(opp);
|
|
}
|
|
}
|
|
|
|
if (!gpu->fast_rate) {
|
|
dev_warn(dev,
|
|
"Could not find a clock rate. Using a reasonable default\n");
|
|
/* Pick a suitably safe clock speed for any target */
|
|
gpu->fast_rate = 200000000;
|
|
}
|
|
|
|
DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate);
|
|
}
|
|
|
|
int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu,
|
|
struct adreno_ocmem *adreno_ocmem)
|
|
{
|
|
struct ocmem_buf *ocmem_hdl;
|
|
struct ocmem *ocmem;
|
|
|
|
ocmem = of_get_ocmem(dev);
|
|
if (IS_ERR(ocmem)) {
|
|
if (PTR_ERR(ocmem) == -ENODEV) {
|
|
/*
|
|
* Return success since either the ocmem property was
|
|
* not specified in device tree, or ocmem support is
|
|
* not compiled into the kernel.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return PTR_ERR(ocmem);
|
|
}
|
|
|
|
ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem);
|
|
if (IS_ERR(ocmem_hdl))
|
|
return PTR_ERR(ocmem_hdl);
|
|
|
|
adreno_ocmem->ocmem = ocmem;
|
|
adreno_ocmem->base = ocmem_hdl->addr;
|
|
adreno_ocmem->hdl = ocmem_hdl;
|
|
adreno_gpu->gmem = ocmem_hdl->len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem)
|
|
{
|
|
if (adreno_ocmem && adreno_ocmem->base)
|
|
ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS,
|
|
adreno_ocmem->hdl);
|
|
}
|
|
|
|
int adreno_read_speedbin(struct device *dev, u32 *speedbin)
|
|
{
|
|
return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin);
|
|
}
|
|
|
|
int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev,
|
|
struct adreno_gpu *adreno_gpu,
|
|
const struct adreno_gpu_funcs *funcs, int nr_rings)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct adreno_platform_config *config = dev->platform_data;
|
|
struct msm_gpu_config adreno_gpu_config = { 0 };
|
|
struct msm_gpu *gpu = &adreno_gpu->base;
|
|
struct adreno_rev *rev = &config->rev;
|
|
const char *gpu_name;
|
|
u32 speedbin;
|
|
|
|
adreno_gpu->funcs = funcs;
|
|
adreno_gpu->info = adreno_info(config->rev);
|
|
adreno_gpu->gmem = adreno_gpu->info->gmem;
|
|
adreno_gpu->revn = adreno_gpu->info->revn;
|
|
adreno_gpu->rev = *rev;
|
|
|
|
if (adreno_read_speedbin(dev, &speedbin) || !speedbin)
|
|
speedbin = 0xffff;
|
|
adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin);
|
|
|
|
gpu_name = adreno_gpu->info->name;
|
|
if (!gpu_name) {
|
|
gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d",
|
|
rev->core, rev->major, rev->minor,
|
|
rev->patchid);
|
|
if (!gpu_name)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
adreno_gpu_config.ioname = "kgsl_3d0_reg_memory";
|
|
|
|
adreno_gpu_config.nr_rings = nr_rings;
|
|
|
|
adreno_get_pwrlevels(dev, gpu);
|
|
|
|
pm_runtime_set_autosuspend_delay(dev,
|
|
adreno_gpu->info->inactive_period);
|
|
pm_runtime_use_autosuspend(dev);
|
|
|
|
return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base,
|
|
gpu_name, &adreno_gpu_config);
|
|
}
|
|
|
|
void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu)
|
|
{
|
|
struct msm_gpu *gpu = &adreno_gpu->base;
|
|
struct msm_drm_private *priv = gpu->dev ? gpu->dev->dev_private : NULL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++)
|
|
release_firmware(adreno_gpu->fw[i]);
|
|
|
|
if (priv && pm_runtime_enabled(&priv->gpu_pdev->dev))
|
|
pm_runtime_disable(&priv->gpu_pdev->dev);
|
|
|
|
msm_gpu_cleanup(&adreno_gpu->base);
|
|
}
|