916 lines
25 KiB
C
916 lines
25 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014-2019 Intel Corporation
|
|
*/
|
|
|
|
#include "gem/i915_gem_lmem.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_irq.h"
|
|
#include "gt/intel_gt_pm_irq.h"
|
|
#include "gt/intel_gt_regs.h"
|
|
#include "intel_guc.h"
|
|
#include "intel_guc_ads.h"
|
|
#include "intel_guc_capture.h"
|
|
#include "intel_guc_slpc.h"
|
|
#include "intel_guc_submission.h"
|
|
#include "i915_drv.h"
|
|
#include "i915_irq.h"
|
|
|
|
/**
|
|
* DOC: GuC
|
|
*
|
|
* The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
|
|
* designed to offload some of the functionality usually performed by the host
|
|
* driver; currently the main operations it can take care of are:
|
|
*
|
|
* - Authentication of the HuC, which is required to fully enable HuC usage.
|
|
* - Low latency graphics context scheduling (a.k.a. GuC submission).
|
|
* - GT Power management.
|
|
*
|
|
* The enable_guc module parameter can be used to select which of those
|
|
* operations to enable within GuC. Note that not all the operations are
|
|
* supported on all gen9+ platforms.
|
|
*
|
|
* Enabling the GuC is not mandatory and therefore the firmware is only loaded
|
|
* if at least one of the operations is selected. However, not loading the GuC
|
|
* might result in the loss of some features that do require the GuC (currently
|
|
* just the HuC, but more are expected to land in the future).
|
|
*/
|
|
|
|
void intel_guc_notify(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
/*
|
|
* On Gen11+, the value written to the register is passes as a payload
|
|
* to the FW. However, the FW currently treats all values the same way
|
|
* (H2G interrupt), so we can just write the value that the HW expects
|
|
* on older gens.
|
|
*/
|
|
intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
|
|
}
|
|
|
|
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
|
|
{
|
|
GEM_BUG_ON(!guc->send_regs.base);
|
|
GEM_BUG_ON(!guc->send_regs.count);
|
|
GEM_BUG_ON(i >= guc->send_regs.count);
|
|
|
|
return _MMIO(guc->send_regs.base + 4 * i);
|
|
}
|
|
|
|
void intel_guc_init_send_regs(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
enum forcewake_domains fw_domains = 0;
|
|
unsigned int i;
|
|
|
|
GEM_BUG_ON(!guc->send_regs.base);
|
|
GEM_BUG_ON(!guc->send_regs.count);
|
|
|
|
for (i = 0; i < guc->send_regs.count; i++) {
|
|
fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
|
|
guc_send_reg(guc, i),
|
|
FW_REG_READ | FW_REG_WRITE);
|
|
}
|
|
guc->send_regs.fw_domains = fw_domains;
|
|
}
|
|
|
|
static void gen9_reset_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
|
|
spin_unlock_irq(gt->irq_lock);
|
|
}
|
|
|
|
static void gen9_enable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
|
|
gt->pm_guc_events);
|
|
gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
|
|
spin_unlock_irq(gt->irq_lock);
|
|
}
|
|
|
|
static void gen9_disable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
assert_rpm_wakelock_held(>->i915->runtime_pm);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
|
|
gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
|
|
|
|
spin_unlock_irq(gt->irq_lock);
|
|
intel_synchronize_irq(gt->i915);
|
|
|
|
gen9_reset_guc_interrupts(guc);
|
|
}
|
|
|
|
static void gen11_reset_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
|
|
spin_unlock_irq(gt->irq_lock);
|
|
}
|
|
|
|
static void gen11_enable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
|
|
intel_uncore_write(gt->uncore,
|
|
GEN11_GUC_SG_INTR_ENABLE, events);
|
|
intel_uncore_write(gt->uncore,
|
|
GEN11_GUC_SG_INTR_MASK, ~events);
|
|
spin_unlock_irq(gt->irq_lock);
|
|
}
|
|
|
|
static void gen11_disable_guc_interrupts(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
spin_lock_irq(gt->irq_lock);
|
|
|
|
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
|
|
intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
|
|
|
|
spin_unlock_irq(gt->irq_lock);
|
|
intel_synchronize_irq(gt->i915);
|
|
|
|
gen11_reset_guc_interrupts(guc);
|
|
}
|
|
|
|
void intel_guc_init_early(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
|
|
intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
|
|
intel_guc_ct_init_early(&guc->ct);
|
|
intel_guc_log_init_early(&guc->log);
|
|
intel_guc_submission_init_early(guc);
|
|
intel_guc_slpc_init_early(&guc->slpc);
|
|
intel_guc_rc_init_early(guc);
|
|
|
|
mutex_init(&guc->send_mutex);
|
|
spin_lock_init(&guc->irq_lock);
|
|
if (GRAPHICS_VER(i915) >= 11) {
|
|
guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
|
|
guc->interrupts.reset = gen11_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen11_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen11_disable_guc_interrupts;
|
|
guc->send_regs.base =
|
|
i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
|
|
|
|
} else {
|
|
guc->notify_reg = GUC_SEND_INTERRUPT;
|
|
guc->interrupts.reset = gen9_reset_guc_interrupts;
|
|
guc->interrupts.enable = gen9_enable_guc_interrupts;
|
|
guc->interrupts.disable = gen9_disable_guc_interrupts;
|
|
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
|
|
guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
|
|
BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
|
|
}
|
|
|
|
intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
|
|
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
|
|
}
|
|
|
|
void intel_guc_init_late(struct intel_guc *guc)
|
|
{
|
|
intel_guc_ads_init_late(guc);
|
|
}
|
|
|
|
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
|
|
{
|
|
u32 level = intel_guc_log_get_level(&guc->log);
|
|
u32 flags = 0;
|
|
|
|
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
|
|
flags |= GUC_LOG_DISABLED;
|
|
else
|
|
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
|
|
GUC_LOG_VERBOSITY_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
|
|
{
|
|
u32 flags = 0;
|
|
|
|
if (!intel_guc_submission_is_used(guc))
|
|
flags |= GUC_CTL_DISABLE_SCHEDULER;
|
|
|
|
if (intel_guc_slpc_is_used(guc))
|
|
flags |= GUC_CTL_ENABLE_SLPC;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
|
|
{
|
|
struct intel_guc_log *log = &guc->log;
|
|
u32 offset, flags;
|
|
|
|
GEM_BUG_ON(!log->sizes_initialised);
|
|
|
|
offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
|
|
|
|
flags = GUC_LOG_VALID |
|
|
GUC_LOG_NOTIFY_ON_HALF_FULL |
|
|
log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
|
|
log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
|
|
(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
|
|
(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
|
|
(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
|
|
(offset << GUC_LOG_BUF_ADDR_SHIFT);
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_ads_flags(struct intel_guc *guc)
|
|
{
|
|
u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
|
|
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_wa_flags(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
u32 flags = 0;
|
|
|
|
/* Wa_22012773006:gen11,gen12 < XeHP */
|
|
if (GRAPHICS_VER(gt->i915) >= 11 &&
|
|
GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
|
|
flags |= GUC_WA_POLLCS;
|
|
|
|
/* Wa_16011759253:dg2_g10:a0 */
|
|
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
|
|
flags |= GUC_WA_GAM_CREDITS;
|
|
|
|
/* Wa_14014475959:dg2 */
|
|
if (IS_DG2(gt->i915))
|
|
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
|
|
|
|
/*
|
|
* Wa_14012197797:dg2_g10:a0,dg2_g11:a0
|
|
* Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
|
|
*
|
|
* The same WA bit is used for both and 22011391025 is applicable to
|
|
* all DG2.
|
|
*/
|
|
if (IS_DG2(gt->i915))
|
|
flags |= GUC_WA_DUAL_QUEUE;
|
|
|
|
/* Wa_22011802037: graphics version 11/12 */
|
|
if (IS_GRAPHICS_VER(gt->i915, 11, 12))
|
|
flags |= GUC_WA_PRE_PARSER;
|
|
|
|
/* Wa_16011777198:dg2 */
|
|
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
|
|
IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
|
|
flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
|
|
|
|
/*
|
|
* Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
|
|
* Wa_22012727685:dg2_g11[a0..)
|
|
*/
|
|
if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
|
|
IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
|
|
flags |= GUC_WA_CONTEXT_ISOLATION;
|
|
|
|
/* Wa_16015675438 */
|
|
if (!RCS_MASK(gt))
|
|
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
|
|
|
|
return flags;
|
|
}
|
|
|
|
static u32 guc_ctl_devid(struct intel_guc *guc)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
|
|
return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
static void guc_init_params(struct intel_guc *guc)
|
|
{
|
|
u32 *params = guc->params;
|
|
int i;
|
|
|
|
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
|
|
|
|
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
|
|
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
|
|
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
|
|
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
|
|
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
|
|
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
|
|
}
|
|
|
|
/*
|
|
* Initialise the GuC parameter block before starting the firmware
|
|
* transfer. These parameters are read by the firmware on startup
|
|
* and cannot be changed thereafter.
|
|
*/
|
|
void intel_guc_write_params(struct intel_guc *guc)
|
|
{
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
int i;
|
|
|
|
/*
|
|
* All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
|
|
* they are power context saved so it's ok to release forcewake
|
|
* when we are done here and take it again at xfer time.
|
|
*/
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
|
|
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
|
|
|
|
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
|
|
intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
|
|
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
|
|
}
|
|
|
|
void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
intel_wakeref_t wakeref;
|
|
u32 stamp = 0;
|
|
u64 ktime;
|
|
|
|
with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
|
|
stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
|
|
ktime = ktime_get_boottime_ns();
|
|
|
|
drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
|
|
drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
|
|
drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
|
|
gt->clock_frequency, gt->clock_period_ns);
|
|
}
|
|
|
|
int intel_guc_init(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
int ret;
|
|
|
|
ret = intel_uc_fw_init(&guc->fw);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = intel_guc_log_create(&guc->log);
|
|
if (ret)
|
|
goto err_fw;
|
|
|
|
ret = intel_guc_capture_init(guc);
|
|
if (ret)
|
|
goto err_log;
|
|
|
|
ret = intel_guc_ads_create(guc);
|
|
if (ret)
|
|
goto err_capture;
|
|
|
|
GEM_BUG_ON(!guc->ads_vma);
|
|
|
|
ret = intel_guc_ct_init(&guc->ct);
|
|
if (ret)
|
|
goto err_ads;
|
|
|
|
if (intel_guc_submission_is_used(guc)) {
|
|
/*
|
|
* This is stuff we need to have available at fw load time
|
|
* if we are planning to enable submission later
|
|
*/
|
|
ret = intel_guc_submission_init(guc);
|
|
if (ret)
|
|
goto err_ct;
|
|
}
|
|
|
|
if (intel_guc_slpc_is_used(guc)) {
|
|
ret = intel_guc_slpc_init(&guc->slpc);
|
|
if (ret)
|
|
goto err_submission;
|
|
}
|
|
|
|
/* now that everything is perma-pinned, initialize the parameters */
|
|
guc_init_params(guc);
|
|
|
|
/* We need to notify the guc whenever we change the GGTT */
|
|
i915_ggtt_enable_guc(gt->ggtt);
|
|
|
|
intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
|
|
|
|
return 0;
|
|
|
|
err_submission:
|
|
intel_guc_submission_fini(guc);
|
|
err_ct:
|
|
intel_guc_ct_fini(&guc->ct);
|
|
err_ads:
|
|
intel_guc_ads_destroy(guc);
|
|
err_capture:
|
|
intel_guc_capture_destroy(guc);
|
|
err_log:
|
|
intel_guc_log_destroy(&guc->log);
|
|
err_fw:
|
|
intel_uc_fw_fini(&guc->fw);
|
|
out:
|
|
i915_probe_error(gt->i915, "failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
void intel_guc_fini(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
if (!intel_uc_fw_is_loadable(&guc->fw))
|
|
return;
|
|
|
|
i915_ggtt_disable_guc(gt->ggtt);
|
|
|
|
if (intel_guc_slpc_is_used(guc))
|
|
intel_guc_slpc_fini(&guc->slpc);
|
|
|
|
if (intel_guc_submission_is_used(guc))
|
|
intel_guc_submission_fini(guc);
|
|
|
|
intel_guc_ct_fini(&guc->ct);
|
|
|
|
intel_guc_ads_destroy(guc);
|
|
intel_guc_capture_destroy(guc);
|
|
intel_guc_log_destroy(&guc->log);
|
|
intel_uc_fw_fini(&guc->fw);
|
|
}
|
|
|
|
/*
|
|
* This function implements the MMIO based host to GuC interface.
|
|
*/
|
|
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
|
|
u32 *response_buf, u32 response_buf_size)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
|
|
u32 header;
|
|
int i;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!len);
|
|
GEM_BUG_ON(len > guc->send_regs.count);
|
|
|
|
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
|
|
GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
|
|
|
|
mutex_lock(&guc->send_mutex);
|
|
intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
|
|
|
|
retry:
|
|
for (i = 0; i < len; i++)
|
|
intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
|
|
|
|
intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
|
|
|
|
intel_guc_notify(guc);
|
|
|
|
/*
|
|
* No GuC command should ever take longer than 10ms.
|
|
* Fast commands should still complete in 10us.
|
|
*/
|
|
ret = __intel_wait_for_register_fw(uncore,
|
|
guc_send_reg(guc, 0),
|
|
GUC_HXG_MSG_0_ORIGIN,
|
|
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
|
|
GUC_HXG_ORIGIN_GUC),
|
|
10, 10, &header);
|
|
if (unlikely(ret)) {
|
|
timeout:
|
|
drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
|
|
request[0], header);
|
|
goto out;
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
|
|
#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
|
|
FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
|
|
FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
|
|
|
|
ret = wait_for(done, 1000);
|
|
if (unlikely(ret))
|
|
goto timeout;
|
|
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
|
|
GUC_HXG_ORIGIN_GUC))
|
|
goto proto;
|
|
#undef done
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
|
|
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
|
|
|
|
drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
|
|
request[0], reason);
|
|
goto retry;
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
|
|
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
|
|
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
|
|
|
|
drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
|
|
request[0], error, hint);
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
|
|
proto:
|
|
drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
|
|
request[0], header);
|
|
ret = -EPROTO;
|
|
goto out;
|
|
}
|
|
|
|
if (response_buf) {
|
|
int count = min(response_buf_size, guc->send_regs.count);
|
|
|
|
GEM_BUG_ON(!count);
|
|
|
|
response_buf[0] = header;
|
|
|
|
for (i = 1; i < count; i++)
|
|
response_buf[i] = intel_uncore_read(uncore,
|
|
guc_send_reg(guc, i));
|
|
|
|
/* Use number of copied dwords as our return value */
|
|
ret = count;
|
|
} else {
|
|
/* Use data from the GuC response as our return value */
|
|
ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
|
|
}
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
|
|
mutex_unlock(&guc->send_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
|
|
const u32 *payload, u32 len)
|
|
{
|
|
u32 msg;
|
|
|
|
if (unlikely(!len))
|
|
return -EPROTO;
|
|
|
|
/* Make sure to handle only enabled messages */
|
|
msg = payload[0] & guc->msg_enabled_mask;
|
|
|
|
if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
|
|
drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
|
|
if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
|
|
drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
|
|
* @guc: intel_guc structure
|
|
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
|
|
*
|
|
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
|
|
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
|
|
* intel_huc_auth().
|
|
*
|
|
* Return: non-zero code on error
|
|
*/
|
|
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
|
|
rsa_offset
|
|
};
|
|
|
|
return intel_guc_send(guc, action, ARRAY_SIZE(action));
|
|
}
|
|
|
|
/**
|
|
* intel_guc_suspend() - notify GuC entering suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_suspend(struct intel_guc *guc)
|
|
{
|
|
int ret;
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
|
|
};
|
|
|
|
if (!intel_guc_is_ready(guc))
|
|
return 0;
|
|
|
|
if (intel_guc_submission_is_used(guc)) {
|
|
/*
|
|
* This H2G MMIO command tears down the GuC in two steps. First it will
|
|
* generate a G2H CTB for every active context indicating a reset. In
|
|
* practice the i915 shouldn't ever get a G2H as suspend should only be
|
|
* called when the GPU is idle. Next, it tears down the CTBs and this
|
|
* H2G MMIO command completes.
|
|
*
|
|
* Don't abort on a failure code from the GuC. Keep going and do the
|
|
* clean up in santize() and re-initialisation on resume and hopefully
|
|
* the error here won't be problematic.
|
|
*/
|
|
ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
|
|
if (ret)
|
|
DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
|
|
}
|
|
|
|
/* Signal that the GuC isn't running. */
|
|
intel_guc_sanitize(guc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_resume() - notify GuC resuming from suspend state
|
|
* @guc: the guc
|
|
*/
|
|
int intel_guc_resume(struct intel_guc *guc)
|
|
{
|
|
/*
|
|
* NB: This function can still be called even if GuC submission is
|
|
* disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
|
|
* if any code is later added here, it must be support doing nothing
|
|
* if submission is disabled (as per intel_guc_suspend).
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* DOC: GuC Memory Management
|
|
*
|
|
* GuC can't allocate any memory for its own usage, so all the allocations must
|
|
* be handled by the host driver. GuC accesses the memory via the GGTT, with the
|
|
* exception of the top and bottom parts of the 4GB address space, which are
|
|
* instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
|
|
* or other parts of the HW. The driver must take care not to place objects that
|
|
* the GuC is going to access in these reserved ranges. The layout of the GuC
|
|
* address space is shown below:
|
|
*
|
|
* ::
|
|
*
|
|
* +===========> +====================+ <== FFFF_FFFF
|
|
* ^ | Reserved |
|
|
* | +====================+ <== GUC_GGTT_TOP
|
|
* | | |
|
|
* | | DRAM |
|
|
* GuC | |
|
|
* Address +===> +====================+ <== GuC ggtt_pin_bias
|
|
* Space ^ | |
|
|
* | | | |
|
|
* | GuC | GuC |
|
|
* | WOPCM | WOPCM |
|
|
* | Size | |
|
|
* | | | |
|
|
* v v | |
|
|
* +=======+===> +====================+ <== 0000_0000
|
|
*
|
|
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
|
|
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
|
|
* to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
|
|
*/
|
|
|
|
/**
|
|
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
|
|
* @guc: the guc
|
|
* @size: size of area to allocate (both virtual space and memory)
|
|
*
|
|
* This is a wrapper to create an object for use with the GuC. In order to
|
|
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
|
|
* both some backing storage and a range inside the Global GTT. We must pin
|
|
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
|
|
* range is reserved inside GuC.
|
|
*
|
|
* Return: A i915_vma if successful, otherwise an ERR_PTR.
|
|
*/
|
|
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
u64 flags;
|
|
int ret;
|
|
|
|
if (HAS_LMEM(gt->i915))
|
|
obj = i915_gem_object_create_lmem(gt->i915, size,
|
|
I915_BO_ALLOC_CPU_CLEAR |
|
|
I915_BO_ALLOC_CONTIGUOUS |
|
|
I915_BO_ALLOC_PM_EARLY);
|
|
else
|
|
obj = i915_gem_object_create_shmem(gt->i915, size);
|
|
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
|
|
if (IS_ERR(vma))
|
|
goto err;
|
|
|
|
flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
|
|
ret = i915_ggtt_pin(vma, NULL, 0, flags);
|
|
if (ret) {
|
|
vma = ERR_PTR(ret);
|
|
goto err;
|
|
}
|
|
|
|
return i915_vma_make_unshrinkable(vma);
|
|
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
/**
|
|
* intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
|
|
* @guc: the guc
|
|
* @size: size of area to allocate (both virtual space and memory)
|
|
* @out_vma: return variable for the allocated vma pointer
|
|
* @out_vaddr: return variable for the obj mapping
|
|
*
|
|
* This wrapper calls intel_guc_allocate_vma() and then maps the allocated
|
|
* object with I915_MAP_WB.
|
|
*
|
|
* Return: 0 if successful, a negative errno code otherwise.
|
|
*/
|
|
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
|
|
struct i915_vma **out_vma, void **out_vaddr)
|
|
{
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
vma = intel_guc_allocate_vma(guc, size);
|
|
if (IS_ERR(vma))
|
|
return PTR_ERR(vma);
|
|
|
|
vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
|
|
i915_coherent_map_type(guc_to_gt(guc)->i915,
|
|
vma->obj, true));
|
|
if (IS_ERR(vaddr)) {
|
|
i915_vma_unpin_and_release(&vma, 0);
|
|
return PTR_ERR(vaddr);
|
|
}
|
|
|
|
*out_vma = vma;
|
|
*out_vaddr = vaddr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
|
|
{
|
|
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
|
|
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
|
|
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
|
|
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
|
|
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
|
|
};
|
|
int ret;
|
|
|
|
GEM_BUG_ON(len > 2);
|
|
GEM_BUG_ON(len == 1 && upper_32_bits(value));
|
|
|
|
/* Self config must go over MMIO */
|
|
ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
|
|
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
if (unlikely(ret > 1))
|
|
return -EPROTO;
|
|
if (unlikely(!ret))
|
|
return -ENOKEY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
|
|
{
|
|
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
|
|
int err = __guc_action_self_cfg(guc, key, len, value);
|
|
|
|
if (unlikely(err))
|
|
i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
|
|
ERR_PTR(err), key, value);
|
|
return err;
|
|
}
|
|
|
|
int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
|
|
{
|
|
return __guc_self_cfg(guc, key, 1, value);
|
|
}
|
|
|
|
int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
|
|
{
|
|
return __guc_self_cfg(guc, key, 2, value);
|
|
}
|
|
|
|
/**
|
|
* intel_guc_load_status - dump information about GuC load status
|
|
* @guc: the GuC
|
|
* @p: the &drm_printer
|
|
*
|
|
* Pretty printer for GuC load status.
|
|
*/
|
|
void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_guc_is_supported(guc)) {
|
|
drm_printf(p, "GuC not supported\n");
|
|
return;
|
|
}
|
|
|
|
if (!intel_guc_is_wanted(guc)) {
|
|
drm_printf(p, "GuC disabled\n");
|
|
return;
|
|
}
|
|
|
|
intel_uc_fw_dump(&guc->fw, p);
|
|
|
|
with_intel_runtime_pm(uncore->rpm, wakeref) {
|
|
u32 status = intel_uncore_read(uncore, GUC_STATUS);
|
|
u32 i;
|
|
|
|
drm_printf(p, "\nGuC status 0x%08x:\n", status);
|
|
drm_printf(p, "\tBootrom status = 0x%x\n",
|
|
(status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
|
|
drm_printf(p, "\tuKernel status = 0x%x\n",
|
|
(status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
|
|
drm_printf(p, "\tMIA Core status = 0x%x\n",
|
|
(status & GS_MIA_MASK) >> GS_MIA_SHIFT);
|
|
drm_puts(p, "\nScratch registers:\n");
|
|
for (i = 0; i < 16; i++) {
|
|
drm_printf(p, "\t%2d: \t0x%x\n",
|
|
i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void intel_guc_write_barrier(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
|
|
if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
|
|
/*
|
|
* Ensure intel_uncore_write_fw can be used rather than
|
|
* intel_uncore_write.
|
|
*/
|
|
GEM_BUG_ON(guc->send_regs.fw_domains);
|
|
|
|
/*
|
|
* This register is used by the i915 and GuC for MMIO based
|
|
* communication. Once we are in this code CTBs are the only
|
|
* method the i915 uses to communicate with the GuC so it is
|
|
* safe to write to this register (a value of 0 is NOP for MMIO
|
|
* communication). If we ever start mixing CTBs and MMIOs a new
|
|
* register will have to be chosen. This function is also used
|
|
* to enforce ordering of a work queue item write and an update
|
|
* to the process descriptor. When a work queue is being used,
|
|
* CTBs are also the only mechanism of communication.
|
|
*/
|
|
intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
|
|
} else {
|
|
/* wmb() sufficient for a barrier if in smem */
|
|
wmb();
|
|
}
|
|
}
|