3237 lines
94 KiB
C
3237 lines
94 KiB
C
/*
|
|
* Copyright 2006 Dave Airlie <airlied@linux.ie>
|
|
* Copyright © 2006-2009 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Jesse Barnes <jesse.barnes@intel.com>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/hdmi.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string_helpers.h>
|
|
|
|
#include <drm/display/drm_hdcp_helper.h>
|
|
#include <drm/display/drm_hdmi_helper.h>
|
|
#include <drm/display/drm_scdc_helper.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/intel_lpe_audio.h>
|
|
|
|
#include "i915_debugfs.h"
|
|
#include "i915_drv.h"
|
|
#include "intel_atomic.h"
|
|
#include "intel_connector.h"
|
|
#include "intel_ddi.h"
|
|
#include "intel_de.h"
|
|
#include "intel_display_types.h"
|
|
#include "intel_dp.h"
|
|
#include "intel_gmbus.h"
|
|
#include "intel_hdcp.h"
|
|
#include "intel_hdcp_regs.h"
|
|
#include "intel_hdmi.h"
|
|
#include "intel_lspcon.h"
|
|
#include "intel_panel.h"
|
|
#include "intel_snps_phy.h"
|
|
|
|
static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
|
|
{
|
|
return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
|
|
}
|
|
|
|
static void
|
|
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
|
|
u32 enabled_bits;
|
|
|
|
enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
|
|
|
|
drm_WARN(&dev_priv->drm,
|
|
intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
|
|
"HDMI port enabled, expecting disabled\n");
|
|
}
|
|
|
|
static void
|
|
assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
drm_WARN(&dev_priv->drm,
|
|
intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
|
|
TRANS_DDI_FUNC_ENABLE,
|
|
"HDMI transcoder function enabled, expecting disabled\n");
|
|
}
|
|
|
|
static u32 g4x_infoframe_index(unsigned int type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_PACKET_TYPE_GAMUT_METADATA:
|
|
return VIDEO_DIP_SELECT_GAMUT;
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_SELECT_AVI;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_SELECT_SPD;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_SELECT_VENDOR;
|
|
default:
|
|
MISSING_CASE(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 g4x_infoframe_enable(unsigned int type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_PACKET_TYPE_GENERAL_CONTROL:
|
|
return VIDEO_DIP_ENABLE_GCP;
|
|
case HDMI_PACKET_TYPE_GAMUT_METADATA:
|
|
return VIDEO_DIP_ENABLE_GAMUT;
|
|
case DP_SDP_VSC:
|
|
return 0;
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_ENABLE_AVI;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_ENABLE_SPD;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_ENABLE_VENDOR;
|
|
case HDMI_INFOFRAME_TYPE_DRM:
|
|
return 0;
|
|
default:
|
|
MISSING_CASE(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 hsw_infoframe_enable(unsigned int type)
|
|
{
|
|
switch (type) {
|
|
case HDMI_PACKET_TYPE_GENERAL_CONTROL:
|
|
return VIDEO_DIP_ENABLE_GCP_HSW;
|
|
case HDMI_PACKET_TYPE_GAMUT_METADATA:
|
|
return VIDEO_DIP_ENABLE_GMP_HSW;
|
|
case DP_SDP_VSC:
|
|
return VIDEO_DIP_ENABLE_VSC_HSW;
|
|
case DP_SDP_PPS:
|
|
return VDIP_ENABLE_PPS;
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return VIDEO_DIP_ENABLE_AVI_HSW;
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return VIDEO_DIP_ENABLE_SPD_HSW;
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return VIDEO_DIP_ENABLE_VS_HSW;
|
|
case HDMI_INFOFRAME_TYPE_DRM:
|
|
return VIDEO_DIP_ENABLE_DRM_GLK;
|
|
default:
|
|
MISSING_CASE(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static i915_reg_t
|
|
hsw_dip_data_reg(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder,
|
|
unsigned int type,
|
|
int i)
|
|
{
|
|
switch (type) {
|
|
case HDMI_PACKET_TYPE_GAMUT_METADATA:
|
|
return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
|
|
case DP_SDP_VSC:
|
|
return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
|
|
case DP_SDP_PPS:
|
|
return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
|
return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_SPD:
|
|
return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_VENDOR:
|
|
return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
|
|
case HDMI_INFOFRAME_TYPE_DRM:
|
|
return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
|
|
default:
|
|
MISSING_CASE(type);
|
|
return INVALID_MMIO_REG;
|
|
}
|
|
}
|
|
|
|
static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
|
|
unsigned int type)
|
|
{
|
|
switch (type) {
|
|
case DP_SDP_VSC:
|
|
return VIDEO_DIP_VSC_DATA_SIZE;
|
|
case DP_SDP_PPS:
|
|
return VIDEO_DIP_PPS_DATA_SIZE;
|
|
case HDMI_PACKET_TYPE_GAMUT_METADATA:
|
|
if (DISPLAY_VER(dev_priv) >= 11)
|
|
return VIDEO_DIP_GMP_DATA_SIZE;
|
|
else
|
|
return VIDEO_DIP_DATA_SIZE;
|
|
default:
|
|
return VIDEO_DIP_DATA_SIZE;
|
|
}
|
|
}
|
|
|
|
static void g4x_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const u32 *data = frame;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
|
|
int i;
|
|
|
|
drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
|
|
"Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
|
|
intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
|
|
}
|
|
|
|
static void g4x_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
void *frame, ssize_t len)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 val, *data = frame;
|
|
int i;
|
|
|
|
val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
|
|
|
|
for (i = 0; i < len; i += 4)
|
|
*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
|
|
}
|
|
|
|
static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return 0;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
|
|
return 0;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
}
|
|
|
|
static void ibx_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const u32 *data = frame;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
int i;
|
|
|
|
drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
|
|
"Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
|
|
*data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
}
|
|
|
|
static void ibx_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
void *frame, ssize_t len)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
u32 val, *data = frame;
|
|
int i;
|
|
|
|
val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
|
|
|
|
for (i = 0; i < len; i += 4)
|
|
*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
|
|
}
|
|
|
|
static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
|
|
i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return 0;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
|
|
return 0;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
static void cpt_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const u32 *data = frame;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
int i;
|
|
|
|
drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
|
|
"Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
/* The DIP control register spec says that we need to update the AVI
|
|
* infoframe without clearing its enable bit */
|
|
if (type != HDMI_INFOFRAME_TYPE_AVI)
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
|
|
*data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
}
|
|
|
|
static void cpt_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
void *frame, ssize_t len)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
u32 val, *data = frame;
|
|
int i;
|
|
|
|
val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
|
|
|
|
for (i = 0; i < len; i += 4)
|
|
*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
|
|
}
|
|
|
|
static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
|
|
u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return 0;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
static void vlv_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const u32 *data = frame;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
int i;
|
|
|
|
drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
|
|
"Writing DIP with CTL reg disabled\n");
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
val &= ~g4x_infoframe_enable(type);
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
intel_de_write(dev_priv,
|
|
VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
|
|
intel_de_write(dev_priv,
|
|
VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
|
|
|
|
val |= g4x_infoframe_enable(type);
|
|
val &= ~VIDEO_DIP_FREQ_MASK;
|
|
val |= VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
}
|
|
|
|
static void vlv_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
void *frame, ssize_t len)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
u32 val, *data = frame;
|
|
int i;
|
|
|
|
val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
|
|
|
|
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
|
|
val |= g4x_infoframe_index(type);
|
|
|
|
intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
|
|
|
|
for (i = 0; i < len; i += 4)
|
|
*data++ = intel_de_read(dev_priv,
|
|
VLV_TVIDEO_DIP_DATA(crtc->pipe));
|
|
}
|
|
|
|
static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
|
|
u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
|
|
|
|
if ((val & VIDEO_DIP_ENABLE) == 0)
|
|
return 0;
|
|
|
|
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
|
|
return 0;
|
|
|
|
return val & (VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
}
|
|
|
|
void hsw_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type,
|
|
const void *frame, ssize_t len)
|
|
{
|
|
const u32 *data = frame;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
|
i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
|
|
int data_size;
|
|
int i;
|
|
u32 val = intel_de_read(dev_priv, ctl_reg);
|
|
|
|
data_size = hsw_dip_data_size(dev_priv, type);
|
|
|
|
drm_WARN_ON(&dev_priv->drm, len > data_size);
|
|
|
|
val &= ~hsw_infoframe_enable(type);
|
|
intel_de_write(dev_priv, ctl_reg, val);
|
|
|
|
for (i = 0; i < len; i += 4) {
|
|
intel_de_write(dev_priv,
|
|
hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
|
|
*data);
|
|
data++;
|
|
}
|
|
/* Write every possible data byte to force correct ECC calculation. */
|
|
for (; i < data_size; i += 4)
|
|
intel_de_write(dev_priv,
|
|
hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
|
|
0);
|
|
|
|
/* Wa_14013475917 */
|
|
if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
|
|
type == DP_SDP_VSC)
|
|
return;
|
|
|
|
val |= hsw_infoframe_enable(type);
|
|
intel_de_write(dev_priv, ctl_reg, val);
|
|
intel_de_posting_read(dev_priv, ctl_reg);
|
|
}
|
|
|
|
void hsw_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
unsigned int type, void *frame, ssize_t len)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
|
u32 *data = frame;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i += 4)
|
|
*data++ = intel_de_read(dev_priv,
|
|
hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
|
|
}
|
|
|
|
static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 val = intel_de_read(dev_priv,
|
|
HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
|
|
u32 mask;
|
|
|
|
mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
|
|
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
|
|
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 10)
|
|
mask |= VIDEO_DIP_ENABLE_DRM_GLK;
|
|
|
|
return val & mask;
|
|
}
|
|
|
|
static const u8 infoframe_type_to_idx[] = {
|
|
HDMI_PACKET_TYPE_GENERAL_CONTROL,
|
|
HDMI_PACKET_TYPE_GAMUT_METADATA,
|
|
DP_SDP_VSC,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
HDMI_INFOFRAME_TYPE_DRM,
|
|
};
|
|
|
|
u32 intel_hdmi_infoframe_enable(unsigned int type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
|
|
if (infoframe_type_to_idx[i] == type)
|
|
return BIT(i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
|
|
u32 val, ret = 0;
|
|
int i;
|
|
|
|
val = dig_port->infoframes_enabled(encoder, crtc_state);
|
|
|
|
/* map from hardware bits to dip idx */
|
|
for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
|
|
unsigned int type = infoframe_type_to_idx[i];
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
if (val & hsw_infoframe_enable(type))
|
|
ret |= BIT(i);
|
|
} else {
|
|
if (val & g4x_infoframe_enable(type))
|
|
ret |= BIT(i);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The data we write to the DIP data buffer registers is 1 byte bigger than the
|
|
* HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
|
|
* at 0). It's also a byte used by DisplayPort so the same DIP registers can be
|
|
* used for both technologies.
|
|
*
|
|
* DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
|
|
* DW1: DB3 | DB2 | DB1 | DB0
|
|
* DW2: DB7 | DB6 | DB5 | DB4
|
|
* DW3: ...
|
|
*
|
|
* (HB is Header Byte, DB is Data Byte)
|
|
*
|
|
* The hdmi pack() functions don't know about that hardware specific hole so we
|
|
* trick them by giving an offset into the buffer and moving back the header
|
|
* bytes by one.
|
|
*/
|
|
static void intel_write_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
enum hdmi_infoframe_type type,
|
|
const union hdmi_infoframe *frame)
|
|
{
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
|
|
u8 buffer[VIDEO_DIP_DATA_SIZE];
|
|
ssize_t len;
|
|
|
|
if ((crtc_state->infoframes.enable &
|
|
intel_hdmi_infoframe_enable(type)) == 0)
|
|
return;
|
|
|
|
if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
|
|
return;
|
|
|
|
/* see comment above for the reason for this offset */
|
|
len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
|
|
if (drm_WARN_ON(encoder->base.dev, len < 0))
|
|
return;
|
|
|
|
/* Insert the 'hole' (see big comment above) at position 3 */
|
|
memmove(&buffer[0], &buffer[1], 3);
|
|
buffer[3] = 0;
|
|
len++;
|
|
|
|
dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
|
|
}
|
|
|
|
void intel_read_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
enum hdmi_infoframe_type type,
|
|
union hdmi_infoframe *frame)
|
|
{
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
|
|
u8 buffer[VIDEO_DIP_DATA_SIZE];
|
|
int ret;
|
|
|
|
if ((crtc_state->infoframes.enable &
|
|
intel_hdmi_infoframe_enable(type)) == 0)
|
|
return;
|
|
|
|
dig_port->read_infoframe(encoder, crtc_state,
|
|
type, buffer, sizeof(buffer));
|
|
|
|
/* Fill the 'hole' (see big comment above) at position 3 */
|
|
memmove(&buffer[1], &buffer[0], 3);
|
|
|
|
/* see comment above for the reason for this offset */
|
|
ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
|
|
if (ret) {
|
|
drm_dbg_kms(encoder->base.dev,
|
|
"Failed to unpack infoframe type 0x%02x\n", type);
|
|
return;
|
|
}
|
|
|
|
if (frame->any.type != type)
|
|
drm_dbg_kms(encoder->base.dev,
|
|
"Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
|
|
frame->any.type, type);
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->hw.adjusted_mode;
|
|
struct drm_connector *connector = conn_state->connector;
|
|
int ret;
|
|
|
|
if (!crtc_state->has_infoframe)
|
|
return true;
|
|
|
|
crtc_state->infoframes.enable |=
|
|
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
|
|
|
|
ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
|
|
adjusted_mode);
|
|
if (ret)
|
|
return false;
|
|
|
|
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
|
|
frame->colorspace = HDMI_COLORSPACE_YUV420;
|
|
else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
|
|
frame->colorspace = HDMI_COLORSPACE_YUV444;
|
|
else
|
|
frame->colorspace = HDMI_COLORSPACE_RGB;
|
|
|
|
drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
|
|
|
|
/* nonsense combination */
|
|
drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
|
|
crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
|
|
|
|
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
|
|
drm_hdmi_avi_infoframe_quant_range(frame, connector,
|
|
adjusted_mode,
|
|
crtc_state->limited_color_range ?
|
|
HDMI_QUANTIZATION_RANGE_LIMITED :
|
|
HDMI_QUANTIZATION_RANGE_FULL);
|
|
} else {
|
|
frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
|
|
frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
|
|
}
|
|
|
|
drm_hdmi_avi_infoframe_content_type(frame, conn_state);
|
|
|
|
/* TODO: handle pixel repetition for YCBCR420 outputs */
|
|
|
|
ret = hdmi_avi_infoframe_check(frame);
|
|
if (drm_WARN_ON(encoder->base.dev, ret))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
|
|
int ret;
|
|
|
|
if (!crtc_state->has_infoframe)
|
|
return true;
|
|
|
|
crtc_state->infoframes.enable |=
|
|
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
|
|
|
|
ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
|
|
if (drm_WARN_ON(encoder->base.dev, ret))
|
|
return false;
|
|
|
|
frame->sdi = HDMI_SPD_SDI_PC;
|
|
|
|
ret = hdmi_spd_infoframe_check(frame);
|
|
if (drm_WARN_ON(encoder->base.dev, ret))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct hdmi_vendor_infoframe *frame =
|
|
&crtc_state->infoframes.hdmi.vendor.hdmi;
|
|
const struct drm_display_info *info =
|
|
&conn_state->connector->display_info;
|
|
int ret;
|
|
|
|
if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
|
|
return true;
|
|
|
|
crtc_state->infoframes.enable |=
|
|
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
|
|
|
|
ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
|
|
conn_state->connector,
|
|
&crtc_state->hw.adjusted_mode);
|
|
if (drm_WARN_ON(encoder->base.dev, ret))
|
|
return false;
|
|
|
|
ret = hdmi_vendor_infoframe_check(frame);
|
|
if (drm_WARN_ON(encoder->base.dev, ret))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
int ret;
|
|
|
|
if (DISPLAY_VER(dev_priv) < 10)
|
|
return true;
|
|
|
|
if (!crtc_state->has_infoframe)
|
|
return true;
|
|
|
|
if (!conn_state->hdr_output_metadata)
|
|
return true;
|
|
|
|
crtc_state->infoframes.enable |=
|
|
intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
|
|
|
|
ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
|
|
if (ret < 0) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"couldn't set HDR metadata in infoframe\n");
|
|
return false;
|
|
}
|
|
|
|
ret = hdmi_drm_infoframe_check(frame);
|
|
if (drm_WARN_ON(&dev_priv->drm, ret))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void g4x_set_infoframes(struct intel_encoder *encoder,
|
|
bool enable,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
|
|
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
|
|
i915_reg_t reg = VIDEO_DIP_CTL;
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
u32 port = VIDEO_DIP_PORT(encoder->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* If the registers were not initialized yet, they might be zeroes,
|
|
* which means we're selecting the AVI DIP and we're setting its
|
|
* frequency to once. This seems to really confuse the HW and make
|
|
* things stop working (the register spec says the AVI always needs to
|
|
* be sent every VSync). So here we avoid writing to the register more
|
|
* than we need and also explicitly select the AVI DIP and explicitly
|
|
* set its frequency to every VSync. Avoiding to write it twice seems to
|
|
* be enough to solve the problem, but being defensive shouldn't hurt us
|
|
* either. */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"video DIP still enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
return;
|
|
}
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
if (val & VIDEO_DIP_ENABLE) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"video DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
return;
|
|
}
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
&crtc_state->infoframes.avi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
&crtc_state->infoframes.spd);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
&crtc_state->infoframes.hdmi);
|
|
}
|
|
|
|
/*
|
|
* Determine if default_phase=1 can be indicated in the GCP infoframe.
|
|
*
|
|
* From HDMI specification 1.4a:
|
|
* - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
|
|
* - The first pixel following each Video Data Period shall have a pixel packing phase of 0
|
|
* - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
|
|
* - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
|
|
* phase of 0
|
|
*/
|
|
static bool gcp_default_phase_possible(int pipe_bpp,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
unsigned int pixels_per_group;
|
|
|
|
switch (pipe_bpp) {
|
|
case 30:
|
|
/* 4 pixels in 5 clocks */
|
|
pixels_per_group = 4;
|
|
break;
|
|
case 36:
|
|
/* 2 pixels in 3 clocks */
|
|
pixels_per_group = 2;
|
|
break;
|
|
case 48:
|
|
/* 1 pixel in 2 clocks */
|
|
pixels_per_group = 1;
|
|
break;
|
|
default:
|
|
/* phase information not relevant for 8bpc */
|
|
return false;
|
|
}
|
|
|
|
return mode->crtc_hdisplay % pixels_per_group == 0 &&
|
|
mode->crtc_htotal % pixels_per_group == 0 &&
|
|
mode->crtc_hblank_start % pixels_per_group == 0 &&
|
|
mode->crtc_hblank_end % pixels_per_group == 0 &&
|
|
mode->crtc_hsync_start % pixels_per_group == 0 &&
|
|
mode->crtc_hsync_end % pixels_per_group == 0 &&
|
|
((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
|
|
mode->crtc_htotal/2 % pixels_per_group == 0);
|
|
}
|
|
|
|
static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
i915_reg_t reg;
|
|
|
|
if ((crtc_state->infoframes.enable &
|
|
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
|
|
return false;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
reg = TVIDEO_DIP_GCP(crtc->pipe);
|
|
else
|
|
return false;
|
|
|
|
intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
i915_reg_t reg;
|
|
|
|
if ((crtc_state->infoframes.enable &
|
|
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
|
|
return;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
reg = TVIDEO_DIP_GCP(crtc->pipe);
|
|
else
|
|
return;
|
|
|
|
crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
|
|
}
|
|
|
|
static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
|
|
return;
|
|
|
|
crtc_state->infoframes.enable |=
|
|
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
|
|
|
|
/* Indicate color indication for deep color mode */
|
|
if (crtc_state->pipe_bpp > 24)
|
|
crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
|
|
|
|
/* Enable default_phase whenever the display mode is suitably aligned */
|
|
if (gcp_default_phase_possible(crtc_state->pipe_bpp,
|
|
&crtc_state->hw.adjusted_mode))
|
|
crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
|
|
}
|
|
|
|
static void ibx_set_infoframes(struct intel_encoder *encoder,
|
|
bool enable,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
|
|
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
|
|
i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
u32 port = VIDEO_DIP_PORT(encoder->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
|
|
"DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
&crtc_state->infoframes.avi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
&crtc_state->infoframes.spd);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
&crtc_state->infoframes.hdmi);
|
|
}
|
|
|
|
static void cpt_set_infoframes(struct intel_encoder *encoder,
|
|
bool enable,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
return;
|
|
}
|
|
|
|
/* Set both together, unset both together: see the spec. */
|
|
val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
|
|
val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
&crtc_state->infoframes.avi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
&crtc_state->infoframes.spd);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
&crtc_state->infoframes.hdmi);
|
|
}
|
|
|
|
static void vlv_set_infoframes(struct intel_encoder *encoder,
|
|
bool enable,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
u32 port = VIDEO_DIP_PORT(encoder->port);
|
|
|
|
assert_hdmi_port_disabled(intel_hdmi);
|
|
|
|
/* See the big comment in g4x_set_infoframes() */
|
|
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
|
|
|
|
if (!enable) {
|
|
if (!(val & VIDEO_DIP_ENABLE))
|
|
return;
|
|
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
return;
|
|
}
|
|
|
|
if (port != (val & VIDEO_DIP_PORT_MASK)) {
|
|
drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
|
|
"DIP already enabled on port %c\n",
|
|
(val & VIDEO_DIP_PORT_MASK) >> 29);
|
|
val &= ~VIDEO_DIP_PORT_MASK;
|
|
val |= port;
|
|
}
|
|
|
|
val |= VIDEO_DIP_ENABLE;
|
|
val &= ~(VIDEO_DIP_ENABLE_AVI |
|
|
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
|
|
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
|
|
val |= VIDEO_DIP_ENABLE_GCP;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
&crtc_state->infoframes.avi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
&crtc_state->infoframes.spd);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
&crtc_state->infoframes.hdmi);
|
|
}
|
|
|
|
static void hsw_set_infoframes(struct intel_encoder *encoder,
|
|
bool enable,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
|
|
u32 val = intel_de_read(dev_priv, reg);
|
|
|
|
assert_hdmi_transcoder_func_disabled(dev_priv,
|
|
crtc_state->cpu_transcoder);
|
|
|
|
val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
|
|
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
|
|
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
|
|
VIDEO_DIP_ENABLE_DRM_GLK);
|
|
|
|
if (!enable) {
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
return;
|
|
}
|
|
|
|
if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
|
|
val |= VIDEO_DIP_ENABLE_GCP_HSW;
|
|
|
|
intel_de_write(dev_priv, reg, val);
|
|
intel_de_posting_read(dev_priv, reg);
|
|
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_AVI,
|
|
&crtc_state->infoframes.avi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_SPD,
|
|
&crtc_state->infoframes.spd);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_VENDOR,
|
|
&crtc_state->infoframes.hdmi);
|
|
intel_write_infoframe(encoder, crtc_state,
|
|
HDMI_INFOFRAME_TYPE_DRM,
|
|
&crtc_state->infoframes.drm);
|
|
}
|
|
|
|
void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
|
|
struct i2c_adapter *adapter;
|
|
|
|
if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
|
|
return;
|
|
|
|
adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
|
|
|
|
drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
|
|
enable ? "Enabling" : "Disabling");
|
|
|
|
drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
|
|
}
|
|
|
|
static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
|
|
unsigned int offset, void *buffer, size_t size)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
struct intel_hdmi *hdmi = &dig_port->hdmi;
|
|
struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
|
|
hdmi->ddc_bus);
|
|
int ret;
|
|
u8 start = offset & 0xff;
|
|
struct i2c_msg msgs[] = {
|
|
{
|
|
.addr = DRM_HDCP_DDC_ADDR,
|
|
.flags = 0,
|
|
.len = 1,
|
|
.buf = &start,
|
|
},
|
|
{
|
|
.addr = DRM_HDCP_DDC_ADDR,
|
|
.flags = I2C_M_RD,
|
|
.len = size,
|
|
.buf = buffer
|
|
}
|
|
};
|
|
ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
|
|
if (ret == ARRAY_SIZE(msgs))
|
|
return 0;
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
|
|
static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
|
|
unsigned int offset, void *buffer, size_t size)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
struct intel_hdmi *hdmi = &dig_port->hdmi;
|
|
struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
|
|
hdmi->ddc_bus);
|
|
int ret;
|
|
u8 *write_buf;
|
|
struct i2c_msg msg;
|
|
|
|
write_buf = kzalloc(size + 1, GFP_KERNEL);
|
|
if (!write_buf)
|
|
return -ENOMEM;
|
|
|
|
write_buf[0] = offset & 0xff;
|
|
memcpy(&write_buf[1], buffer, size);
|
|
|
|
msg.addr = DRM_HDCP_DDC_ADDR;
|
|
msg.flags = 0,
|
|
msg.len = size + 1,
|
|
msg.buf = write_buf;
|
|
|
|
ret = i2c_transfer(adapter, &msg, 1);
|
|
if (ret == 1)
|
|
ret = 0;
|
|
else if (ret >= 0)
|
|
ret = -EIO;
|
|
|
|
kfree(write_buf);
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
|
|
u8 *an)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
struct intel_hdmi *hdmi = &dig_port->hdmi;
|
|
struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
|
|
hdmi->ddc_bus);
|
|
int ret;
|
|
|
|
ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
|
|
DRM_HDCP_AN_LEN);
|
|
if (ret) {
|
|
drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = intel_gmbus_output_aksv(adapter);
|
|
if (ret < 0) {
|
|
drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
|
|
u8 *bksv)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
|
|
int ret;
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
|
|
DRM_HDCP_KSV_LEN);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
|
|
u8 *bstatus)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
|
|
int ret;
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
|
|
bstatus, DRM_HDCP_BSTATUS_LEN);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
|
|
bool *repeater_present)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
|
|
if (ret) {
|
|
drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
|
|
u8 *ri_prime)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
|
|
int ret;
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
|
|
ri_prime, DRM_HDCP_RI_LEN);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
|
|
bool *ksv_ready)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
int ret;
|
|
u8 val;
|
|
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
|
|
if (ret) {
|
|
drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
|
|
int num_downstream, u8 *ksv_fifo)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
int ret;
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
|
|
ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
|
|
if (ret) {
|
|
drm_dbg_kms(&i915->drm,
|
|
"Read ksv fifo over DDC failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
|
|
int i, u32 *part)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
int ret;
|
|
|
|
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
|
|
return -EINVAL;
|
|
|
|
ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
|
|
part, DRM_HDCP_V_PRIME_PART_LEN);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
|
|
i, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
|
|
struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
|
|
struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
|
|
u32 scanline;
|
|
int ret;
|
|
|
|
for (;;) {
|
|
scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
|
|
if (scanline > 100 && scanline < 200)
|
|
break;
|
|
usleep_range(25, 50);
|
|
}
|
|
|
|
ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
|
|
false, TRANS_DDI_HDCP_SIGNALLING);
|
|
if (ret) {
|
|
drm_err(&dev_priv->drm,
|
|
"Disable HDCP signalling failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
|
|
true, TRANS_DDI_HDCP_SIGNALLING);
|
|
if (ret) {
|
|
drm_err(&dev_priv->drm,
|
|
"Enable HDCP signalling failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
|
|
enum transcoder cpu_transcoder,
|
|
bool enable)
|
|
{
|
|
struct intel_hdmi *hdmi = &dig_port->hdmi;
|
|
struct intel_connector *connector = hdmi->attached_connector;
|
|
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
|
|
int ret;
|
|
|
|
if (!enable)
|
|
usleep_range(6, 60); /* Bspec says >= 6us */
|
|
|
|
ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
|
|
cpu_transcoder, enable,
|
|
TRANS_DDI_HDCP_SIGNALLING);
|
|
if (ret) {
|
|
drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
|
|
enable ? "Enable" : "Disable", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* WA: To fix incorrect positioning of the window of
|
|
* opportunity and enc_en signalling in KABYLAKE.
|
|
*/
|
|
if (IS_KABYLAKE(dev_priv) && enable)
|
|
return kbl_repositioning_enc_en_signal(connector,
|
|
cpu_transcoder);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
|
|
struct intel_connector *connector)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
enum port port = dig_port->base.port;
|
|
enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
|
|
int ret;
|
|
union {
|
|
u32 reg;
|
|
u8 shim[DRM_HDCP_RI_LEN];
|
|
} ri;
|
|
|
|
ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
|
|
if (ret)
|
|
return false;
|
|
|
|
intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
|
|
|
|
/* Wait for Ri prime match */
|
|
if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
|
|
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
|
|
(HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
|
|
drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
|
|
intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
|
|
port)));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static
|
|
bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
|
|
struct intel_connector *connector)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
int retry;
|
|
|
|
for (retry = 0; retry < 3; retry++)
|
|
if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
|
|
return true;
|
|
|
|
drm_err(&i915->drm, "Link check failed\n");
|
|
return false;
|
|
}
|
|
|
|
struct hdcp2_hdmi_msg_timeout {
|
|
u8 msg_id;
|
|
u16 timeout;
|
|
};
|
|
|
|
static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
|
|
{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
|
|
{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
|
|
{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
|
|
{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
|
|
{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
|
|
};
|
|
|
|
static
|
|
int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
|
|
u8 *rx_status)
|
|
{
|
|
return intel_hdmi_hdcp_read(dig_port,
|
|
HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
|
|
rx_status,
|
|
HDCP_2_2_HDMI_RXSTATUS_LEN);
|
|
}
|
|
|
|
static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
|
|
{
|
|
int i;
|
|
|
|
if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
|
|
if (is_paired)
|
|
return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
|
|
else
|
|
return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
|
|
if (hdcp2_msg_timeout[i].msg_id == msg_id)
|
|
return hdcp2_msg_timeout[i].timeout;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
|
|
u8 msg_id, bool *msg_ready,
|
|
ssize_t *msg_sz)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
|
|
int ret;
|
|
|
|
ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
|
|
if (ret < 0) {
|
|
drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
|
|
rx_status[0]);
|
|
|
|
if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
|
|
*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
|
|
*msg_sz);
|
|
else
|
|
*msg_ready = *msg_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
|
|
u8 msg_id, bool paired)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
bool msg_ready = false;
|
|
int timeout, ret;
|
|
ssize_t msg_sz = 0;
|
|
|
|
timeout = get_hdcp2_msg_timeout(msg_id, paired);
|
|
if (timeout < 0)
|
|
return timeout;
|
|
|
|
ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
|
|
msg_id, &msg_ready,
|
|
&msg_sz),
|
|
!ret && msg_ready && msg_sz, timeout * 1000,
|
|
1000, 5 * 1000);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
|
|
msg_id, ret, timeout);
|
|
|
|
return ret ? ret : msg_sz;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
|
|
void *buf, size_t size)
|
|
{
|
|
unsigned int offset;
|
|
|
|
offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
|
|
return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
|
|
u8 msg_id, void *buf, size_t size)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
|
|
struct intel_hdmi *hdmi = &dig_port->hdmi;
|
|
struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
|
|
unsigned int offset;
|
|
ssize_t ret;
|
|
|
|
ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
|
|
hdcp->is_paired);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Available msg size should be equal to or lesser than the
|
|
* available buffer.
|
|
*/
|
|
if (ret > size) {
|
|
drm_dbg_kms(&i915->drm,
|
|
"msg_sz(%zd) is more than exp size(%zu)\n",
|
|
ret, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
|
|
ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
|
|
if (ret)
|
|
drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
|
|
msg_id, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
|
|
struct intel_connector *connector)
|
|
{
|
|
u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
|
|
int ret;
|
|
|
|
ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Re-auth request and Link Integrity Failures are represented by
|
|
* same bit. i.e reauth_req.
|
|
*/
|
|
if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
|
|
ret = HDCP_REAUTH_REQUEST;
|
|
else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
|
|
ret = HDCP_TOPOLOGY_CHANGE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
|
|
bool *capable)
|
|
{
|
|
u8 hdcp2_version;
|
|
int ret;
|
|
|
|
*capable = false;
|
|
ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
|
|
&hdcp2_version, sizeof(hdcp2_version));
|
|
if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
|
|
*capable = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
|
|
.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
|
|
.read_bksv = intel_hdmi_hdcp_read_bksv,
|
|
.read_bstatus = intel_hdmi_hdcp_read_bstatus,
|
|
.repeater_present = intel_hdmi_hdcp_repeater_present,
|
|
.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
|
|
.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
|
|
.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
|
|
.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
|
|
.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
|
|
.check_link = intel_hdmi_hdcp_check_link,
|
|
.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
|
|
.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
|
|
.check_2_2_link = intel_hdmi_hdcp2_check_link,
|
|
.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
|
|
.protocol = HDCP_PROTOCOL_HDMI,
|
|
};
|
|
|
|
static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
int max_tmds_clock, vbt_max_tmds_clock;
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 10)
|
|
max_tmds_clock = 594000;
|
|
else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
|
|
max_tmds_clock = 300000;
|
|
else if (DISPLAY_VER(dev_priv) >= 5)
|
|
max_tmds_clock = 225000;
|
|
else
|
|
max_tmds_clock = 165000;
|
|
|
|
vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
|
|
if (vbt_max_tmds_clock)
|
|
max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
|
|
|
|
return max_tmds_clock;
|
|
}
|
|
|
|
static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
return hdmi->has_hdmi_sink &&
|
|
READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
|
|
}
|
|
|
|
static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
|
|
}
|
|
|
|
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
|
|
bool respect_downstream_limits,
|
|
bool has_hdmi_sink)
|
|
{
|
|
struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
|
|
int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
|
|
|
|
if (respect_downstream_limits) {
|
|
struct intel_connector *connector = hdmi->attached_connector;
|
|
const struct drm_display_info *info = &connector->base.display_info;
|
|
|
|
if (hdmi->dp_dual_mode.max_tmds_clock)
|
|
max_tmds_clock = min(max_tmds_clock,
|
|
hdmi->dp_dual_mode.max_tmds_clock);
|
|
|
|
if (info->max_tmds_clock)
|
|
max_tmds_clock = min(max_tmds_clock,
|
|
info->max_tmds_clock);
|
|
else if (!has_hdmi_sink)
|
|
max_tmds_clock = min(max_tmds_clock, 165000);
|
|
}
|
|
|
|
return max_tmds_clock;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
|
|
int clock, bool respect_downstream_limits,
|
|
bool has_hdmi_sink)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
|
|
enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
|
|
|
|
if (clock < 25000)
|
|
return MODE_CLOCK_LOW;
|
|
if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
|
|
has_hdmi_sink))
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
/* GLK DPLL can't generate 446-480 MHz */
|
|
if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/* BXT/GLK DPLL can't generate 223-240 MHz */
|
|
if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
|
|
clock > 223333 && clock < 240000)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/* CHV DPLL can't generate 216-240 MHz */
|
|
if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
|
|
if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
|
|
if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
|
|
return MODE_CLOCK_RANGE;
|
|
|
|
/*
|
|
* SNPS PHYs' MPLLB table-based programming can only handle a fixed
|
|
* set of link rates.
|
|
*
|
|
* FIXME: We will hopefully get an algorithmic way of programming
|
|
* the MPLLB for HDMI in the future.
|
|
*/
|
|
if (IS_DG2(dev_priv))
|
|
return intel_snps_phy_check_hdmi_link_rate(clock);
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
|
|
{
|
|
/* YCBCR420 TMDS rate requirement is half the pixel clock */
|
|
if (ycbcr420_output)
|
|
clock /= 2;
|
|
|
|
/*
|
|
* Need to adjust the port link by:
|
|
* 1.5x for 12bpc
|
|
* 1.25x for 10bpc
|
|
*/
|
|
return DIV_ROUND_CLOSEST(clock * bpc, 8);
|
|
}
|
|
|
|
static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
|
|
{
|
|
switch (bpc) {
|
|
case 12:
|
|
return !HAS_GMCH(i915);
|
|
case 10:
|
|
return DISPLAY_VER(i915) >= 11;
|
|
case 8:
|
|
return true;
|
|
default:
|
|
MISSING_CASE(bpc);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
|
|
int bpc, bool has_hdmi_sink, bool ycbcr420_output)
|
|
{
|
|
const struct drm_display_info *info = &connector->display_info;
|
|
const struct drm_hdmi_info *hdmi = &info->hdmi;
|
|
|
|
switch (bpc) {
|
|
case 12:
|
|
if (!has_hdmi_sink)
|
|
return false;
|
|
|
|
if (ycbcr420_output)
|
|
return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
|
|
else
|
|
return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
|
|
case 10:
|
|
if (!has_hdmi_sink)
|
|
return false;
|
|
|
|
if (ycbcr420_output)
|
|
return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
|
|
else
|
|
return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
|
|
case 8:
|
|
return true;
|
|
default:
|
|
MISSING_CASE(bpc);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
|
|
bool has_hdmi_sink, bool ycbcr420_output)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(connector->dev);
|
|
struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
enum drm_mode_status status = MODE_OK;
|
|
int bpc;
|
|
|
|
/*
|
|
* Try all color depths since valid port clock range
|
|
* can have holes. Any mode that can be used with at
|
|
* least one color depth is accepted.
|
|
*/
|
|
for (bpc = 12; bpc >= 8; bpc -= 2) {
|
|
int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
|
|
|
|
if (!intel_hdmi_source_bpc_possible(i915, bpc))
|
|
continue;
|
|
|
|
if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
|
|
continue;
|
|
|
|
status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
|
|
if (status == MODE_OK)
|
|
return MODE_OK;
|
|
}
|
|
|
|
/* can never happen */
|
|
drm_WARN_ON(&i915->drm, status == MODE_OK);
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
intel_hdmi_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
|
|
enum drm_mode_status status;
|
|
int clock = mode->clock;
|
|
int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
|
|
bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
|
|
bool ycbcr_420_only;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
|
|
return MODE_NO_DBLESCAN;
|
|
|
|
if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
|
|
clock *= 2;
|
|
|
|
if (clock > max_dotclk)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
|
|
if (!has_hdmi_sink)
|
|
return MODE_CLOCK_LOW;
|
|
clock *= 2;
|
|
}
|
|
|
|
/*
|
|
* HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
|
|
* enumerated only if FRL is supported. Current platforms do not support
|
|
* FRL so prune the higher resolution modes that require doctclock more
|
|
* than 600MHz.
|
|
*/
|
|
if (clock > 600000)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
|
|
|
|
status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
|
|
if (status != MODE_OK) {
|
|
if (ycbcr_420_only ||
|
|
!connector->ycbcr_420_allowed ||
|
|
!drm_mode_is_420_also(&connector->display_info, mode))
|
|
return status;
|
|
|
|
status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
|
|
if (status != MODE_OK)
|
|
return status;
|
|
}
|
|
|
|
return intel_mode_valid_max_plane_size(dev_priv, mode, false);
|
|
}
|
|
|
|
bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
|
|
int bpc, bool has_hdmi_sink, bool ycbcr420_output)
|
|
{
|
|
struct drm_atomic_state *state = crtc_state->uapi.state;
|
|
struct drm_connector_state *connector_state;
|
|
struct drm_connector *connector;
|
|
int i;
|
|
|
|
for_each_new_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != crtc_state->uapi.crtc)
|
|
continue;
|
|
|
|
if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(crtc_state->uapi.crtc->dev);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->hw.adjusted_mode;
|
|
|
|
if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
|
|
return false;
|
|
|
|
/*
|
|
* HDMI deep color affects the clocks, so it's only possible
|
|
* when not cloning with other encoder types.
|
|
*/
|
|
if (bpc > 8 && crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
|
|
return false;
|
|
|
|
/* Display Wa_1405510057:icl,ehl */
|
|
if (intel_hdmi_is_ycbcr420(crtc_state) &&
|
|
bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
|
|
(adjusted_mode->crtc_hblank_end -
|
|
adjusted_mode->crtc_hblank_start) % 8 == 2)
|
|
return false;
|
|
|
|
return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink,
|
|
intel_hdmi_is_ycbcr420(crtc_state));
|
|
}
|
|
|
|
static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
int clock, bool respect_downstream_limits)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
|
|
int bpc;
|
|
|
|
/*
|
|
* pipe_bpp could already be below 8bpc due to FDI
|
|
* bandwidth constraints. HDMI minimum is 8bpc however.
|
|
*/
|
|
bpc = max(crtc_state->pipe_bpp / 3, 8);
|
|
|
|
/*
|
|
* We will never exceed downstream TMDS clock limits while
|
|
* attempting deep color. If the user insists on forcing an
|
|
* out of spec mode they will have to be satisfied with 8bpc.
|
|
*/
|
|
if (!respect_downstream_limits)
|
|
bpc = 8;
|
|
|
|
for (; bpc >= 8; bpc -= 2) {
|
|
int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
|
|
|
|
if (hdmi_bpc_possible(crtc_state, bpc) &&
|
|
hdmi_port_clock_valid(intel_hdmi, tmds_clock,
|
|
respect_downstream_limits,
|
|
crtc_state->has_hdmi_sink) == MODE_OK)
|
|
return bpc;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
bool respect_downstream_limits)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->hw.adjusted_mode;
|
|
int bpc, clock = adjusted_mode->crtc_clock;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
clock *= 2;
|
|
|
|
bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
|
|
respect_downstream_limits);
|
|
if (bpc < 0)
|
|
return bpc;
|
|
|
|
crtc_state->port_clock =
|
|
intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state));
|
|
|
|
/*
|
|
* pipe_bpp could already be below 8bpc due to
|
|
* FDI bandwidth constraints. We shouldn't bump it
|
|
* back up to the HDMI minimum 8bpc in that case.
|
|
*/
|
|
crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
|
|
|
|
drm_dbg_kms(&i915->drm,
|
|
"picking %d bpc for HDMI output (pipe bpp: %d)\n",
|
|
bpc, crtc_state->pipe_bpp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
const struct intel_digital_connector_state *intel_conn_state =
|
|
to_intel_digital_connector_state(conn_state);
|
|
const struct drm_display_mode *adjusted_mode =
|
|
&crtc_state->hw.adjusted_mode;
|
|
|
|
/*
|
|
* Our YCbCr output is always limited range.
|
|
* crtc_state->limited_color_range only applies to RGB,
|
|
* and it must never be set for YCbCr or we risk setting
|
|
* some conflicting bits in PIPECONF which will mess up
|
|
* the colors on the monitor.
|
|
*/
|
|
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
|
|
return false;
|
|
|
|
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
|
|
/* See CEA-861-E - 5.1 Default Encoding Parameters */
|
|
return crtc_state->has_hdmi_sink &&
|
|
drm_default_rgb_quant_range(adjusted_mode) ==
|
|
HDMI_QUANTIZATION_RANGE_LIMITED;
|
|
} else {
|
|
return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
|
|
}
|
|
}
|
|
|
|
static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
const struct intel_digital_connector_state *intel_conn_state =
|
|
to_intel_digital_connector_state(conn_state);
|
|
|
|
if (!crtc_state->has_hdmi_sink)
|
|
return false;
|
|
|
|
if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
|
|
return intel_hdmi->has_audio;
|
|
else
|
|
return intel_conn_state->force_audio == HDMI_AUDIO_ON;
|
|
}
|
|
|
|
static enum intel_output_format
|
|
intel_hdmi_output_format(struct intel_connector *connector,
|
|
bool ycbcr_420_output)
|
|
{
|
|
if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
|
|
return INTEL_OUTPUT_FORMAT_YCBCR420;
|
|
else
|
|
return INTEL_OUTPUT_FORMAT_RGB;
|
|
}
|
|
|
|
static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state,
|
|
bool respect_downstream_limits)
|
|
{
|
|
struct intel_connector *connector = to_intel_connector(conn_state->connector);
|
|
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
|
|
const struct drm_display_info *info = &connector->base.display_info;
|
|
struct drm_i915_private *i915 = to_i915(connector->base.dev);
|
|
bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
|
|
int ret;
|
|
|
|
crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only);
|
|
|
|
if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
|
|
drm_dbg_kms(&i915->drm,
|
|
"YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
|
|
crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
|
|
}
|
|
|
|
ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
|
|
if (ret) {
|
|
if (intel_hdmi_is_ycbcr420(crtc_state) ||
|
|
!connector->base.ycbcr_420_allowed ||
|
|
!drm_mode_is_420_also(info, adjusted_mode))
|
|
return ret;
|
|
|
|
crtc_state->output_format = intel_hdmi_output_format(connector, true);
|
|
ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int intel_hdmi_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
|
|
struct drm_connector *connector = conn_state->connector;
|
|
struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
|
|
int ret;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
|
|
return -EINVAL;
|
|
|
|
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
|
|
pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
|
|
conn_state);
|
|
|
|
if (pipe_config->has_hdmi_sink)
|
|
pipe_config->has_infoframe = true;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
pipe_config->pixel_multiplier = 2;
|
|
|
|
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
pipe_config->has_audio =
|
|
intel_hdmi_has_audio(encoder, pipe_config, conn_state);
|
|
|
|
/*
|
|
* Try to respect downstream TMDS clock limits first, if
|
|
* that fails assume the user might know something we don't.
|
|
*/
|
|
ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
|
|
if (ret)
|
|
ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
|
|
if (ret) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"unsupported HDMI clock (%d kHz), rejecting mode\n",
|
|
pipe_config->hw.adjusted_mode.crtc_clock);
|
|
return ret;
|
|
}
|
|
|
|
if (intel_hdmi_is_ycbcr420(pipe_config)) {
|
|
ret = intel_panel_fitting(pipe_config, conn_state);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
pipe_config->limited_color_range =
|
|
intel_hdmi_limited_color_range(pipe_config, conn_state);
|
|
|
|
if (conn_state->picture_aspect_ratio)
|
|
adjusted_mode->picture_aspect_ratio =
|
|
conn_state->picture_aspect_ratio;
|
|
|
|
pipe_config->lane_count = 4;
|
|
|
|
if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
|
|
if (scdc->scrambling.low_rates)
|
|
pipe_config->hdmi_scrambling = true;
|
|
|
|
if (pipe_config->port_clock > 340000) {
|
|
pipe_config->hdmi_scrambling = true;
|
|
pipe_config->hdmi_high_tmds_clock_ratio = true;
|
|
}
|
|
}
|
|
|
|
intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
|
|
conn_state);
|
|
|
|
if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
|
|
drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
|
|
drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
|
|
drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
|
|
drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
|
|
/*
|
|
* Give a hand to buggy BIOSen which forget to turn
|
|
* the TMDS output buffers back on after a reboot.
|
|
*/
|
|
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_unset_edid(struct drm_connector *connector)
|
|
{
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
|
|
intel_hdmi->has_hdmi_sink = false;
|
|
intel_hdmi->has_audio = false;
|
|
|
|
intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
|
|
intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
|
|
|
|
kfree(to_intel_connector(connector)->detect_edid);
|
|
to_intel_connector(connector)->detect_edid = NULL;
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
enum port port = hdmi_to_dig_port(hdmi)->base.port;
|
|
struct i2c_adapter *adapter =
|
|
intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
|
|
enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
|
|
|
|
/*
|
|
* Type 1 DVI adaptors are not required to implement any
|
|
* registers, so we can't always detect their presence.
|
|
* Ideally we should be able to check the state of the
|
|
* CONFIG1 pin, but no such luck on our hardware.
|
|
*
|
|
* The only method left to us is to check the VBT to see
|
|
* if the port is a dual mode capable DP port. But let's
|
|
* only do that when we sucesfully read the EDID, to avoid
|
|
* confusing log messages about DP dual mode adaptors when
|
|
* there's nothing connected to the port.
|
|
*/
|
|
if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
|
|
/* An overridden EDID imply that we want this port for testing.
|
|
* Make sure not to set limits for that port.
|
|
*/
|
|
if (has_edid && !connector->override_edid &&
|
|
intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Assuming DP dual mode adaptor presence based on VBT\n");
|
|
type = DRM_DP_DUAL_MODE_TYPE1_DVI;
|
|
} else {
|
|
type = DRM_DP_DUAL_MODE_NONE;
|
|
}
|
|
}
|
|
|
|
if (type == DRM_DP_DUAL_MODE_NONE)
|
|
return;
|
|
|
|
hdmi->dp_dual_mode.type = type;
|
|
hdmi->dp_dual_mode.max_tmds_clock =
|
|
drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
|
|
drm_dp_get_dual_mode_type_name(type),
|
|
hdmi->dp_dual_mode.max_tmds_clock);
|
|
|
|
/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
|
|
if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
|
|
!intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
|
|
hdmi->dp_dual_mode.max_tmds_clock = 0;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
intel_hdmi_set_edid(struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
intel_wakeref_t wakeref;
|
|
struct edid *edid;
|
|
bool connected = false;
|
|
struct i2c_adapter *i2c;
|
|
|
|
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
|
|
|
|
i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
|
|
|
|
edid = drm_get_edid(connector, i2c);
|
|
|
|
if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
|
|
intel_gmbus_force_bit(i2c, true);
|
|
edid = drm_get_edid(connector, i2c);
|
|
intel_gmbus_force_bit(i2c, false);
|
|
}
|
|
|
|
intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
|
|
|
|
to_intel_connector(connector)->detect_edid = edid;
|
|
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
|
|
intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
|
|
intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
|
|
|
|
connected = true;
|
|
}
|
|
|
|
cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
|
|
|
|
return connected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
intel_hdmi_detect(struct drm_connector *connector, bool force)
|
|
{
|
|
enum drm_connector_status status = connector_status_disconnected;
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
|
|
intel_wakeref_t wakeref;
|
|
|
|
drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
|
|
if (!INTEL_DISPLAY_ENABLED(dev_priv))
|
|
return connector_status_disconnected;
|
|
|
|
wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 11 &&
|
|
!intel_digital_port_connected(encoder))
|
|
goto out;
|
|
|
|
intel_hdmi_unset_edid(connector);
|
|
|
|
if (intel_hdmi_set_edid(connector))
|
|
status = connector_status_connected;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
|
|
|
|
if (status != connector_status_connected)
|
|
cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
|
|
|
|
/*
|
|
* Make sure the refs for power wells enabled during detect are
|
|
* dropped to avoid a new detect cycle triggered by HPD polling.
|
|
*/
|
|
intel_display_power_flush_work(dev_priv);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
intel_hdmi_force(struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(connector->dev);
|
|
|
|
drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
|
|
intel_hdmi_unset_edid(connector);
|
|
|
|
if (connector->status != connector_status_connected)
|
|
return;
|
|
|
|
intel_hdmi_set_edid(connector);
|
|
}
|
|
|
|
static int intel_hdmi_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct edid *edid;
|
|
|
|
edid = to_intel_connector(connector)->detect_edid;
|
|
if (edid == NULL)
|
|
return 0;
|
|
|
|
return intel_connector_update_modes(connector, edid);
|
|
}
|
|
|
|
static struct i2c_adapter *
|
|
intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
|
|
|
|
return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
|
|
}
|
|
|
|
static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(connector->dev);
|
|
struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
|
|
struct kobject *i2c_kobj = &adapter->dev.kobj;
|
|
struct kobject *connector_kobj = &connector->kdev->kobj;
|
|
int ret;
|
|
|
|
ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
|
|
if (ret)
|
|
drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
|
|
}
|
|
|
|
static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
|
|
{
|
|
struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
|
|
struct kobject *i2c_kobj = &adapter->dev.kobj;
|
|
struct kobject *connector_kobj = &connector->kdev->kobj;
|
|
|
|
sysfs_remove_link(connector_kobj, i2c_kobj->name);
|
|
}
|
|
|
|
static int
|
|
intel_hdmi_connector_register(struct drm_connector *connector)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_connector_register(connector);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_hdmi_create_i2c_symlink(connector);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_hdmi_connector_unregister(struct drm_connector *connector)
|
|
{
|
|
struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
|
|
|
|
cec_notifier_conn_unregister(n);
|
|
|
|
intel_hdmi_remove_i2c_symlink(connector);
|
|
intel_connector_unregister(connector);
|
|
}
|
|
|
|
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
|
|
.detect = intel_hdmi_detect,
|
|
.force = intel_hdmi_force,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.atomic_get_property = intel_digital_connector_atomic_get_property,
|
|
.atomic_set_property = intel_digital_connector_atomic_set_property,
|
|
.late_register = intel_hdmi_connector_register,
|
|
.early_unregister = intel_hdmi_connector_unregister,
|
|
.destroy = intel_connector_destroy,
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
|
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
|
|
.get_modes = intel_hdmi_get_modes,
|
|
.mode_valid = intel_hdmi_mode_valid,
|
|
.atomic_check = intel_digital_connector_atomic_check,
|
|
};
|
|
|
|
static void
|
|
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
|
|
intel_attach_force_audio_property(connector);
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
intel_attach_aspect_ratio_property(connector);
|
|
|
|
intel_attach_hdmi_colorspace_property(connector);
|
|
drm_connector_attach_content_type_property(connector);
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 10)
|
|
drm_connector_attach_hdr_output_metadata_property(connector);
|
|
|
|
if (!HAS_GMCH(dev_priv))
|
|
drm_connector_attach_max_bpc_property(connector, 8, 12);
|
|
}
|
|
|
|
/*
|
|
* intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
|
|
* @encoder: intel_encoder
|
|
* @connector: drm_connector
|
|
* @high_tmds_clock_ratio = bool to indicate if the function needs to set
|
|
* or reset the high tmds clock ratio for scrambling
|
|
* @scrambling: bool to Indicate if the function needs to set or reset
|
|
* sink scrambling
|
|
*
|
|
* This function handles scrambling on HDMI 2.0 capable sinks.
|
|
* If required clock rate is > 340 Mhz && scrambling is supported by sink
|
|
* it enables scrambling. This should be called before enabling the HDMI
|
|
* 2.0 port, as the sink can choose to disable the scrambling if it doesn't
|
|
* detect a scrambled clock within 100 ms.
|
|
*
|
|
* Returns:
|
|
* True on success, false on failure.
|
|
*/
|
|
bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
|
|
struct drm_connector *connector,
|
|
bool high_tmds_clock_ratio,
|
|
bool scrambling)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
struct drm_scrambling *sink_scrambling =
|
|
&connector->display_info.hdmi.scdc.scrambling;
|
|
struct i2c_adapter *adapter =
|
|
intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
|
|
|
|
if (!sink_scrambling->supported)
|
|
return true;
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
|
|
connector->base.id, connector->name,
|
|
str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
|
|
|
|
/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
|
|
return drm_scdc_set_high_tmds_clock_ratio(adapter,
|
|
high_tmds_clock_ratio) &&
|
|
drm_scdc_set_scrambling(adapter, scrambling);
|
|
}
|
|
|
|
static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
u8 ddc_pin;
|
|
|
|
switch (port) {
|
|
case PORT_B:
|
|
ddc_pin = GMBUS_PIN_DPB;
|
|
break;
|
|
case PORT_C:
|
|
ddc_pin = GMBUS_PIN_DPC;
|
|
break;
|
|
case PORT_D:
|
|
ddc_pin = GMBUS_PIN_DPD_CHV;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
ddc_pin = GMBUS_PIN_DPB;
|
|
break;
|
|
}
|
|
return ddc_pin;
|
|
}
|
|
|
|
static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
u8 ddc_pin;
|
|
|
|
switch (port) {
|
|
case PORT_B:
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
case PORT_C:
|
|
ddc_pin = GMBUS_PIN_2_BXT;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
}
|
|
return ddc_pin;
|
|
}
|
|
|
|
static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
u8 ddc_pin;
|
|
|
|
switch (port) {
|
|
case PORT_B:
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
case PORT_C:
|
|
ddc_pin = GMBUS_PIN_2_BXT;
|
|
break;
|
|
case PORT_D:
|
|
ddc_pin = GMBUS_PIN_4_CNP;
|
|
break;
|
|
case PORT_F:
|
|
ddc_pin = GMBUS_PIN_3_BXT;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
}
|
|
return ddc_pin;
|
|
}
|
|
|
|
static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
enum phy phy = intel_port_to_phy(dev_priv, port);
|
|
|
|
if (intel_phy_is_combo(dev_priv, phy))
|
|
return GMBUS_PIN_1_BXT + port;
|
|
else if (intel_phy_is_tc(dev_priv, phy))
|
|
return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
|
|
|
|
drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
|
|
return GMBUS_PIN_2_BXT;
|
|
}
|
|
|
|
static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
enum phy phy = intel_port_to_phy(dev_priv, port);
|
|
u8 ddc_pin;
|
|
|
|
switch (phy) {
|
|
case PHY_A:
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
case PHY_B:
|
|
ddc_pin = GMBUS_PIN_2_BXT;
|
|
break;
|
|
case PHY_C:
|
|
ddc_pin = GMBUS_PIN_9_TC1_ICP;
|
|
break;
|
|
default:
|
|
MISSING_CASE(phy);
|
|
ddc_pin = GMBUS_PIN_1_BXT;
|
|
break;
|
|
}
|
|
return ddc_pin;
|
|
}
|
|
|
|
static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
enum phy phy = intel_port_to_phy(dev_priv, port);
|
|
|
|
WARN_ON(port == PORT_C);
|
|
|
|
/*
|
|
* Pin mapping for RKL depends on which PCH is present. With TGP, the
|
|
* final two outputs use type-c pins, even though they're actually
|
|
* combo outputs. With CMP, the traditional DDI A-D pins are used for
|
|
* all outputs.
|
|
*/
|
|
if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
|
|
return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
|
|
|
|
return GMBUS_PIN_1_BXT + phy;
|
|
}
|
|
|
|
static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
|
|
{
|
|
enum phy phy = intel_port_to_phy(i915, port);
|
|
|
|
drm_WARN_ON(&i915->drm, port == PORT_A);
|
|
|
|
/*
|
|
* Pin mapping for GEN9 BC depends on which PCH is present. With TGP,
|
|
* final two outputs use type-c pins, even though they're actually
|
|
* combo outputs. With CMP, the traditional DDI A-D pins are used for
|
|
* all outputs.
|
|
*/
|
|
if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
|
|
return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
|
|
|
|
return GMBUS_PIN_1_BXT + phy;
|
|
}
|
|
|
|
static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
return intel_port_to_phy(dev_priv, port) + 1;
|
|
}
|
|
|
|
static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
enum phy phy = intel_port_to_phy(dev_priv, port);
|
|
|
|
WARN_ON(port == PORT_B || port == PORT_C);
|
|
|
|
/*
|
|
* Pin mapping for ADL-S requires TC pins for all combo phy outputs
|
|
* except first combo output.
|
|
*/
|
|
if (phy == PHY_A)
|
|
return GMBUS_PIN_1_BXT;
|
|
|
|
return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
|
|
}
|
|
|
|
static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
u8 ddc_pin;
|
|
|
|
switch (port) {
|
|
case PORT_B:
|
|
ddc_pin = GMBUS_PIN_DPB;
|
|
break;
|
|
case PORT_C:
|
|
ddc_pin = GMBUS_PIN_DPC;
|
|
break;
|
|
case PORT_D:
|
|
ddc_pin = GMBUS_PIN_DPD;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
ddc_pin = GMBUS_PIN_DPB;
|
|
break;
|
|
}
|
|
return ddc_pin;
|
|
}
|
|
|
|
static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum port port = encoder->port;
|
|
u8 ddc_pin;
|
|
|
|
ddc_pin = intel_bios_alternate_ddc_pin(encoder);
|
|
if (ddc_pin) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Using DDC pin 0x%x for port %c (VBT)\n",
|
|
ddc_pin, port_name(port));
|
|
return ddc_pin;
|
|
}
|
|
|
|
if (IS_ALDERLAKE_S(dev_priv))
|
|
ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
|
|
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
|
|
ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
|
|
else if (IS_ROCKETLAKE(dev_priv))
|
|
ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
|
|
else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
|
|
ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
|
|
else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv))
|
|
ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
|
|
else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
|
|
ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
|
|
else if (HAS_PCH_CNP(dev_priv))
|
|
ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
|
|
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
|
|
ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
|
|
else
|
|
ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Using DDC pin 0x%x for port %c (platform default)\n",
|
|
ddc_pin, port_name(port));
|
|
|
|
return ddc_pin;
|
|
}
|
|
|
|
void intel_infoframe_init(struct intel_digital_port *dig_port)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(dig_port->base.base.dev);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
dig_port->write_infoframe = vlv_write_infoframe;
|
|
dig_port->read_infoframe = vlv_read_infoframe;
|
|
dig_port->set_infoframes = vlv_set_infoframes;
|
|
dig_port->infoframes_enabled = vlv_infoframes_enabled;
|
|
} else if (IS_G4X(dev_priv)) {
|
|
dig_port->write_infoframe = g4x_write_infoframe;
|
|
dig_port->read_infoframe = g4x_read_infoframe;
|
|
dig_port->set_infoframes = g4x_set_infoframes;
|
|
dig_port->infoframes_enabled = g4x_infoframes_enabled;
|
|
} else if (HAS_DDI(dev_priv)) {
|
|
if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
|
|
dig_port->write_infoframe = lspcon_write_infoframe;
|
|
dig_port->read_infoframe = lspcon_read_infoframe;
|
|
dig_port->set_infoframes = lspcon_set_infoframes;
|
|
dig_port->infoframes_enabled = lspcon_infoframes_enabled;
|
|
} else {
|
|
dig_port->write_infoframe = hsw_write_infoframe;
|
|
dig_port->read_infoframe = hsw_read_infoframe;
|
|
dig_port->set_infoframes = hsw_set_infoframes;
|
|
dig_port->infoframes_enabled = hsw_infoframes_enabled;
|
|
}
|
|
} else if (HAS_PCH_IBX(dev_priv)) {
|
|
dig_port->write_infoframe = ibx_write_infoframe;
|
|
dig_port->read_infoframe = ibx_read_infoframe;
|
|
dig_port->set_infoframes = ibx_set_infoframes;
|
|
dig_port->infoframes_enabled = ibx_infoframes_enabled;
|
|
} else {
|
|
dig_port->write_infoframe = cpt_write_infoframe;
|
|
dig_port->read_infoframe = cpt_read_infoframe;
|
|
dig_port->set_infoframes = cpt_set_infoframes;
|
|
dig_port->infoframes_enabled = cpt_infoframes_enabled;
|
|
}
|
|
}
|
|
|
|
void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
|
|
struct intel_encoder *intel_encoder = &dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct i2c_adapter *ddc;
|
|
enum port port = intel_encoder->port;
|
|
struct cec_connector_info conn_info;
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Adding HDMI connector on [ENCODER:%d:%s]\n",
|
|
intel_encoder->base.base.id, intel_encoder->base.name);
|
|
|
|
if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
|
|
return;
|
|
|
|
if (drm_WARN(dev, dig_port->max_lanes < 4,
|
|
"Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
|
|
dig_port->max_lanes, intel_encoder->base.base.id,
|
|
intel_encoder->base.name))
|
|
return;
|
|
|
|
intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
|
|
ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
|
|
|
|
drm_connector_init_with_ddc(dev, connector,
|
|
&intel_hdmi_connector_funcs,
|
|
DRM_MODE_CONNECTOR_HDMIA,
|
|
ddc);
|
|
drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
|
|
|
|
connector->interlace_allowed = 1;
|
|
connector->doublescan_allowed = 0;
|
|
connector->stereo_allowed = 1;
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 10)
|
|
connector->ycbcr_420_allowed = true;
|
|
|
|
intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
|
|
else
|
|
intel_connector->get_hw_state = intel_connector_get_hw_state;
|
|
|
|
intel_hdmi_add_properties(intel_hdmi, connector);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
intel_hdmi->attached_connector = intel_connector;
|
|
|
|
if (is_hdcp_supported(dev_priv, port)) {
|
|
int ret = intel_hdcp_init(intel_connector, dig_port,
|
|
&intel_hdmi_hdcp_shim);
|
|
if (ret)
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"HDCP init failed, skipping.\n");
|
|
}
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G45(dev_priv)) {
|
|
u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
|
|
intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
|
|
(temp & ~0xf) | 0xd);
|
|
}
|
|
|
|
cec_fill_conn_info_from_drm(&conn_info, connector);
|
|
|
|
intel_hdmi->cec_notifier =
|
|
cec_notifier_conn_register(dev->dev, port_identifier(port),
|
|
&conn_info);
|
|
if (!intel_hdmi->cec_notifier)
|
|
drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
|
|
}
|
|
|
|
/*
|
|
* intel_hdmi_dsc_get_slice_height - get the dsc slice_height
|
|
* @vactive: Vactive of a display mode
|
|
*
|
|
* @return: appropriate dsc slice height for a given mode.
|
|
*/
|
|
int intel_hdmi_dsc_get_slice_height(int vactive)
|
|
{
|
|
int slice_height;
|
|
|
|
/*
|
|
* Slice Height determination : HDMI2.1 Section 7.7.5.2
|
|
* Select smallest slice height >=96, that results in a valid PPS and
|
|
* requires minimum padding lines required for final slice.
|
|
*
|
|
* Assumption : Vactive is even.
|
|
*/
|
|
for (slice_height = 96; slice_height <= vactive; slice_height += 2)
|
|
if (vactive % slice_height == 0)
|
|
return slice_height;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
|
|
* and dsc decoder capabilities
|
|
*
|
|
* @crtc_state: intel crtc_state
|
|
* @src_max_slices: maximum slices supported by the DSC encoder
|
|
* @src_max_slice_width: maximum slice width supported by DSC encoder
|
|
* @hdmi_max_slices: maximum slices supported by sink DSC decoder
|
|
* @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
|
|
*
|
|
* @return: num of dsc slices that can be supported by the dsc encoder
|
|
* and decoder.
|
|
*/
|
|
int
|
|
intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
|
|
int src_max_slices, int src_max_slice_width,
|
|
int hdmi_max_slices, int hdmi_throughput)
|
|
{
|
|
/* Pixel rates in KPixels/sec */
|
|
#define HDMI_DSC_PEAK_PIXEL_RATE 2720000
|
|
/*
|
|
* Rates at which the source and sink are required to process pixels in each
|
|
* slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
|
|
*/
|
|
#define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000
|
|
#define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000
|
|
|
|
/* Spec limits the slice width to 2720 pixels */
|
|
#define MAX_HDMI_SLICE_WIDTH 2720
|
|
int kslice_adjust;
|
|
int adjusted_clk_khz;
|
|
int min_slices;
|
|
int target_slices;
|
|
int max_throughput; /* max clock freq. in khz per slice */
|
|
int max_slice_width;
|
|
int slice_width;
|
|
int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
|
|
|
|
if (!hdmi_throughput)
|
|
return 0;
|
|
|
|
/*
|
|
* Slice Width determination : HDMI2.1 Section 7.7.5.1
|
|
* kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
|
|
* for 4:4:4 is 1.0. Multiplying these factors by 10 and later
|
|
* dividing adjusted clock value by 10.
|
|
*/
|
|
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
|
|
crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
|
|
kslice_adjust = 10;
|
|
else
|
|
kslice_adjust = 5;
|
|
|
|
/*
|
|
* As per spec, the rate at which the source and the sink process
|
|
* the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
|
|
* This depends upon the pixel clock rate and output formats
|
|
* (kslice adjust).
|
|
* If pixel clock * kslice adjust >= 2720MHz slices can be processed
|
|
* at max 340MHz, otherwise they can be processed at max 400MHz.
|
|
*/
|
|
|
|
adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
|
|
|
|
if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
|
|
max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
|
|
else
|
|
max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
|
|
|
|
/*
|
|
* Taking into account the sink's capability for maximum
|
|
* clock per slice (in MHz) as read from HF-VSDB.
|
|
*/
|
|
max_throughput = min(max_throughput, hdmi_throughput * 1000);
|
|
|
|
min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
|
|
max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
|
|
|
|
/*
|
|
* Keep on increasing the num of slices/line, starting from min_slices
|
|
* per line till we get such a number, for which the slice_width is
|
|
* just less than max_slice_width. The slices/line selected should be
|
|
* less than or equal to the max horizontal slices that the combination
|
|
* of PCON encoder and HDMI decoder can support.
|
|
*/
|
|
slice_width = max_slice_width;
|
|
|
|
do {
|
|
if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
|
|
target_slices = 1;
|
|
else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
|
|
target_slices = 2;
|
|
else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
|
|
target_slices = 4;
|
|
else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
|
|
target_slices = 8;
|
|
else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
|
|
target_slices = 12;
|
|
else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
|
|
target_slices = 16;
|
|
else
|
|
return 0;
|
|
|
|
slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
|
|
if (slice_width >= max_slice_width)
|
|
min_slices = target_slices + 1;
|
|
} while (slice_width >= max_slice_width);
|
|
|
|
return target_slices;
|
|
}
|
|
|
|
/*
|
|
* intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
|
|
* source and sink capabilities.
|
|
*
|
|
* @src_fraction_bpp: fractional bpp supported by the source
|
|
* @slice_width: dsc slice width supported by the source and sink
|
|
* @num_slices: num of slices supported by the source and sink
|
|
* @output_format: video output format
|
|
* @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
|
|
* @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
|
|
*
|
|
* @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
|
|
*/
|
|
int
|
|
intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
|
|
int output_format, bool hdmi_all_bpp,
|
|
int hdmi_max_chunk_bytes)
|
|
{
|
|
int max_dsc_bpp, min_dsc_bpp;
|
|
int target_bytes;
|
|
bool bpp_found = false;
|
|
int bpp_decrement_x16;
|
|
int bpp_target;
|
|
int bpp_target_x16;
|
|
|
|
/*
|
|
* Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
|
|
* Start with the max bpp and keep on decrementing with
|
|
* fractional bpp, if supported by PCON DSC encoder
|
|
*
|
|
* for each bpp we check if no of bytes can be supported by HDMI sink
|
|
*/
|
|
|
|
/* Assuming: bpc as 8*/
|
|
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
|
|
min_dsc_bpp = 6;
|
|
max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
|
|
} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
|
|
output_format == INTEL_OUTPUT_FORMAT_RGB) {
|
|
min_dsc_bpp = 8;
|
|
max_dsc_bpp = 3 * 8; /* 3*bpc */
|
|
} else {
|
|
/* Assuming 4:2:2 encoding */
|
|
min_dsc_bpp = 7;
|
|
max_dsc_bpp = 2 * 8; /* 2*bpc */
|
|
}
|
|
|
|
/*
|
|
* Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
|
|
* Section 7.7.34 : Source shall not enable compressed Video
|
|
* Transport with bpp_target settings above 12 bpp unless
|
|
* DSC_all_bpp is set to 1.
|
|
*/
|
|
if (!hdmi_all_bpp)
|
|
max_dsc_bpp = min(max_dsc_bpp, 12);
|
|
|
|
/*
|
|
* The Sink has a limit of compressed data in bytes for a scanline,
|
|
* as described in max_chunk_bytes field in HFVSDB block of edid.
|
|
* The no. of bytes depend on the target bits per pixel that the
|
|
* source configures. So we start with the max_bpp and calculate
|
|
* the target_chunk_bytes. We keep on decrementing the target_bpp,
|
|
* till we get the target_chunk_bytes just less than what the sink's
|
|
* max_chunk_bytes, or else till we reach the min_dsc_bpp.
|
|
*
|
|
* The decrement is according to the fractional support from PCON DSC
|
|
* encoder. For fractional BPP we use bpp_target as a multiple of 16.
|
|
*
|
|
* bpp_target_x16 = bpp_target * 16
|
|
* So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
|
|
* {1/16, 1/8, 1/4, 1/2, 1} respectively.
|
|
*/
|
|
|
|
bpp_target = max_dsc_bpp;
|
|
|
|
/* src does not support fractional bpp implies decrement by 16 for bppx16 */
|
|
if (!src_fractional_bpp)
|
|
src_fractional_bpp = 1;
|
|
bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
|
|
bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
|
|
|
|
while (bpp_target_x16 > (min_dsc_bpp * 16)) {
|
|
int bpp;
|
|
|
|
bpp = DIV_ROUND_UP(bpp_target_x16, 16);
|
|
target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
|
|
if (target_bytes <= hdmi_max_chunk_bytes) {
|
|
bpp_found = true;
|
|
break;
|
|
}
|
|
bpp_target_x16 -= bpp_decrement_x16;
|
|
}
|
|
if (bpp_found)
|
|
return bpp_target_x16;
|
|
|
|
return 0;
|
|
}
|