linuxdebug/drivers/gpu/drm/amd/amdgpu/amdgpu_ras_eeprom.c

1165 lines
33 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu_ras_eeprom.h"
#include "amdgpu.h"
#include "amdgpu_ras.h"
#include <linux/bits.h>
#include "atom.h"
#include "amdgpu_eeprom.h"
#include "amdgpu_atomfirmware.h"
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include "amdgpu_reset.h"
#define EEPROM_I2C_MADDR_VEGA20 0x0
#define EEPROM_I2C_MADDR_ARCTURUS 0x40000
#define EEPROM_I2C_MADDR_ARCTURUS_D342 0x0
#define EEPROM_I2C_MADDR_SIENNA_CICHLID 0x0
#define EEPROM_I2C_MADDR_ALDEBARAN 0x0
#define EEPROM_I2C_MADDR_SMU_13_0_0 (0x54UL << 16)
/*
* The 2 macros bellow represent the actual size in bytes that
* those entities occupy in the EEPROM memory.
* RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
* uses uint64 to store 6b fields such as retired_page.
*/
#define RAS_TABLE_HEADER_SIZE 20
#define RAS_TABLE_RECORD_SIZE 24
/* Table hdr is 'AMDR' */
#define RAS_TABLE_HDR_VAL 0x414d4452
#define RAS_TABLE_VER 0x00010000
/* Bad GPU tag BADG */
#define RAS_TABLE_HDR_BAD 0x42414447
/* Assume 2-Mbit size EEPROM and take up the whole space. */
#define RAS_TBL_SIZE_BYTES (256 * 1024)
#define RAS_TABLE_START 0
#define RAS_HDR_START RAS_TABLE_START
#define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
#define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
/ RAS_TABLE_RECORD_SIZE)
/* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
* offset off of RAS_TABLE_START. That is, this is something you can
* add to control->i2c_address, and then tell I2C layer to read
* from/write to there. _N is the so called absolute index,
* because it starts right after the table header.
*/
#define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
(_N) * RAS_TABLE_RECORD_SIZE)
#define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
(_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
/* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
* of "fri", return the absolute record index off of the end of
* the table header.
*/
#define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
(_C)->ras_max_record_count)
#define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \
RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
{
return adev->asic_type == CHIP_VEGA20 ||
adev->asic_type == CHIP_ARCTURUS ||
adev->asic_type == CHIP_SIENNA_CICHLID ||
adev->asic_type == CHIP_ALDEBARAN;
}
static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
struct amdgpu_ras_eeprom_control *control)
{
struct atom_context *atom_ctx = adev->mode_info.atom_context;
if (!control || !atom_ctx)
return false;
if (strnstr(atom_ctx->vbios_version,
"D342",
sizeof(atom_ctx->vbios_version)))
control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS_D342;
else
control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS;
return true;
}
static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
struct amdgpu_ras_eeprom_control *control)
{
u8 i2c_addr;
if (!control)
return false;
if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
/* The address given by VBIOS is an 8-bit, wire-format
* address, i.e. the most significant byte.
*
* Normalize it to a 19-bit EEPROM address. Remove the
* device type identifier and make it a 7-bit address;
* then make it a 19-bit EEPROM address. See top of
* amdgpu_eeprom.c.
*/
i2c_addr = (i2c_addr & 0x0F) >> 1;
control->i2c_address = ((u32) i2c_addr) << 16;
return true;
}
switch (adev->asic_type) {
case CHIP_VEGA20:
control->i2c_address = EEPROM_I2C_MADDR_VEGA20;
break;
case CHIP_ARCTURUS:
return __get_eeprom_i2c_addr_arct(adev, control);
case CHIP_SIENNA_CICHLID:
control->i2c_address = EEPROM_I2C_MADDR_SIENNA_CICHLID;
break;
case CHIP_ALDEBARAN:
control->i2c_address = EEPROM_I2C_MADDR_ALDEBARAN;
break;
default:
return false;
}
switch (adev->ip_versions[MP1_HWIP][0]) {
case IP_VERSION(13, 0, 0):
control->i2c_address = EEPROM_I2C_MADDR_SMU_13_0_0;
break;
default:
break;
}
return true;
}
static void
__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
pp[0] = cpu_to_le32(hdr->header);
pp[1] = cpu_to_le32(hdr->version);
pp[2] = cpu_to_le32(hdr->first_rec_offset);
pp[3] = cpu_to_le32(hdr->tbl_size);
pp[4] = cpu_to_le32(hdr->checksum);
}
static void
__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buf)
{
u32 *pp = (uint32_t *)buf;
hdr->header = le32_to_cpu(pp[0]);
hdr->version = le32_to_cpu(pp[1]);
hdr->first_rec_offset = le32_to_cpu(pp[2]);
hdr->tbl_size = le32_to_cpu(pp[3]);
hdr->checksum = le32_to_cpu(pp[4]);
}
static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
{
u8 buf[RAS_TABLE_HEADER_SIZE];
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
memset(buf, 0, sizeof(buf));
__encode_table_header_to_buf(&control->tbl_hdr, buf);
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_header_offset,
buf, RAS_TABLE_HEADER_SIZE);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Failed to write EEPROM table header:%d", res);
} else if (res < RAS_TABLE_HEADER_SIZE) {
DRM_ERROR("Short write:%d out of %d\n",
res, RAS_TABLE_HEADER_SIZE);
res = -EIO;
} else {
res = 0;
}
return res;
}
static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
{
int ii;
u8 *pp, csum;
size_t sz;
/* Header checksum, skip checksum field in the calculation */
sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
pp = (u8 *) &control->tbl_hdr;
csum = 0;
for (ii = 0; ii < sz; ii++, pp++)
csum += *pp;
return csum;
}
static int amdgpu_ras_eeprom_correct_header_tag(
struct amdgpu_ras_eeprom_control *control,
uint32_t header)
{
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
u8 *hh;
int res;
u8 csum;
csum = -hdr->checksum;
hh = (void *) &hdr->header;
csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
hh = (void *) &header;
csum += hh[0] + hh[1] + hh[2] + hh[3];
csum = -csum;
mutex_lock(&control->ras_tbl_mutex);
hdr->header = header;
hdr->checksum = csum;
res = __write_table_header(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
/**
* amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
* @control: pointer to control structure
*
* Reset the contents of the header of the RAS EEPROM table.
* Return 0 on success, -errno on error.
*/
int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
u8 csum;
int res;
mutex_lock(&control->ras_tbl_mutex);
hdr->header = RAS_TABLE_HDR_VAL;
hdr->version = RAS_TABLE_VER;
hdr->first_rec_offset = RAS_RECORD_START;
hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
csum = __calc_hdr_byte_sum(control);
csum = -csum;
hdr->checksum = csum;
res = __write_table_header(control);
control->ras_num_recs = 0;
control->ras_fri = 0;
amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
control->bad_channel_bitmap = 0;
amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
con->update_channel_flag = false;
amdgpu_ras_debugfs_set_ret_size(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
static void
__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buf)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
buf[i++] = record->err_type;
buf[i++] = record->bank;
tmp = cpu_to_le64(record->ts);
memcpy(buf + i, &tmp, 8);
i += 8;
tmp = cpu_to_le64((record->offset & 0xffffffffffff));
memcpy(buf + i, &tmp, 6);
i += 6;
buf[i++] = record->mem_channel;
buf[i++] = record->mcumc_id;
tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
memcpy(buf + i, &tmp, 6);
}
static void
__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buf)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
record->err_type = buf[i++];
record->bank = buf[i++];
memcpy(&tmp, buf + i, 8);
record->ts = le64_to_cpu(tmp);
i += 8;
memcpy(&tmp, buf + i, 6);
record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
i += 6;
record->mem_channel = buf[i++];
record->mcumc_id = buf[i++];
memcpy(&tmp, buf + i, 6);
record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
}
bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!__is_ras_eeprom_supported(adev))
return false;
/* skip check eeprom table for VEGA20 Gaming */
if (!con)
return false;
else
if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
return false;
if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
dev_warn(adev->dev, "This GPU is in BAD status.");
dev_warn(adev->dev, "Please retire it or set a larger "
"threshold value when reloading driver.\n");
return true;
}
return false;
}
/**
* __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
* @control: pointer to control structure
* @buf: pointer to buffer containing data to write
* @fri: start writing at this index
* @num: number of records to write
*
* The caller must hold the table mutex in @control.
* Return 0 on success, -errno otherwise.
*/
static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
u8 *buf, const u32 fri, const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
u32 buf_size;
int res;
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
buf_size = num * RAS_TABLE_RECORD_SIZE;
res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
RAS_INDEX_TO_OFFSET(control, fri),
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Writing %d EEPROM table records error:%d",
num, res);
} else if (res < buf_size) {
/* Short write, return error.
*/
DRM_ERROR("Wrote %d records out of %d",
res / RAS_TABLE_RECORD_SIZE, num);
res = -EIO;
} else {
res = 0;
}
return res;
}
static int
amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
u32 a, b, i;
u8 *buf, *pp;
int res;
buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Encode all of them in one go.
*/
pp = buf;
for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
__encode_table_record_to_buf(control, &record[i], pp);
/* update bad channel bitmap */
if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
control->bad_channel_bitmap |= 1 << record[i].mem_channel;
con->update_channel_flag = true;
}
}
/* a, first record index to write into.
* b, last record index to write into.
* a = first index to read (fri) + number of records in the table,
* b = a + @num - 1.
* Let N = control->ras_max_num_record_count, then we have,
* case 0: 0 <= a <= b < N,
* just append @num records starting at a;
* case 1: 0 <= a < N <= b,
* append (N - a) records starting at a, and
* append the remainder, b % N + 1, starting at 0.
* case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
* case 2a: 0 <= a <= b < N
* append num records starting at a; and fix fri if b overwrote it,
* and since a <= b, if b overwrote it then a must've also,
* and if b didn't overwrite it, then a didn't also.
* case 2b: 0 <= b < a < N
* write num records starting at a, which wraps around 0=N
* and overwrite fri unconditionally. Now from case 2a,
* this means that b eclipsed fri to overwrite it and wrap
* around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
* set fri = b + 1 (mod N).
* Now, since fri is updated in every case, except the trivial case 0,
* the number of records present in the table after writing, is,
* num_recs - 1 = b - fri (mod N), and we take the positive value,
* by adding an arbitrary multiple of N before taking the modulo N
* as shown below.
*/
a = control->ras_fri + control->ras_num_recs;
b = a + num - 1;
if (b < control->ras_max_record_count) {
res = __amdgpu_ras_eeprom_write(control, buf, a, num);
} else if (a < control->ras_max_record_count) {
u32 g0, g1;
g0 = control->ras_max_record_count - a;
g1 = b % control->ras_max_record_count + 1;
res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
if (res)
goto Out;
res = __amdgpu_ras_eeprom_write(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
if (g1 > control->ras_fri)
control->ras_fri = g1 % control->ras_max_record_count;
} else {
a %= control->ras_max_record_count;
b %= control->ras_max_record_count;
if (a <= b) {
/* Note that, b - a + 1 = num. */
res = __amdgpu_ras_eeprom_write(control, buf, a, num);
if (res)
goto Out;
if (b >= control->ras_fri)
control->ras_fri = (b + 1) % control->ras_max_record_count;
} else {
u32 g0, g1;
/* b < a, which means, we write from
* a to the end of the table, and from
* the start of the table to b.
*/
g0 = control->ras_max_record_count - a;
g1 = b + 1;
res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
if (res)
goto Out;
res = __amdgpu_ras_eeprom_write(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
control->ras_fri = g1 % control->ras_max_record_count;
}
}
control->ras_num_recs = 1 + (control->ras_max_record_count + b
- control->ras_fri)
% control->ras_max_record_count;
Out:
kfree(buf);
return res;
}
static int
amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
u8 *buf, *pp, csum;
u32 buf_size;
int res;
/* Modify the header if it exceeds.
*/
if (amdgpu_bad_page_threshold != 0 &&
control->ras_num_recs >= ras->bad_page_cnt_threshold) {
dev_warn(adev->dev,
"Saved bad pages %d reaches threshold value %d\n",
control->ras_num_recs, ras->bad_page_cnt_threshold);
control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
}
control->tbl_hdr.version = RAS_TABLE_VER;
control->tbl_hdr.first_rec_offset = RAS_INDEX_TO_OFFSET(control, control->ras_fri);
control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
control->tbl_hdr.checksum = 0;
buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf) {
DRM_ERROR("allocating memory for table of size %d bytes failed\n",
control->tbl_hdr.tbl_size);
res = -ENOMEM;
goto Out;
}
down_read(&adev->reset_domain->sem);
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_record_offset,
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("EEPROM failed reading records:%d\n",
res);
goto Out;
} else if (res < buf_size) {
DRM_ERROR("EEPROM read %d out of %d bytes\n",
res, buf_size);
res = -EIO;
goto Out;
}
/* Recalc the checksum.
*/
csum = 0;
for (pp = buf; pp < buf + buf_size; pp++)
csum += *pp;
csum += __calc_hdr_byte_sum(control);
/* avoid sign extension when assigning to "checksum" */
csum = -csum;
control->tbl_hdr.checksum = csum;
res = __write_table_header(control);
Out:
kfree(buf);
return res;
}
/**
* amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
* @control: pointer to control structure
* @record: array of records to append
* @num: number of records in @record array
*
* Append @num records to the table, calculate the checksum and write
* the table back to EEPROM. The maximum number of records that
* can be appended is between 1 and control->ras_max_record_count,
* regardless of how many records are already stored in the table.
*
* Return 0 on success or if EEPROM is not supported, -errno on error.
*/
int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
if (!__is_ras_eeprom_supported(adev))
return 0;
if (num == 0) {
DRM_ERROR("will not append 0 records\n");
return -EINVAL;
} else if (num > control->ras_max_record_count) {
DRM_ERROR("cannot append %d records than the size of table %d\n",
num, control->ras_max_record_count);
return -EINVAL;
}
mutex_lock(&control->ras_tbl_mutex);
res = amdgpu_ras_eeprom_append_table(control, record, num);
if (!res)
res = amdgpu_ras_eeprom_update_header(control);
if (!res)
amdgpu_ras_debugfs_set_ret_size(control);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
/**
* __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
* @control: pointer to control structure
* @buf: pointer to buffer to read into
* @fri: first record index, start reading at this index, absolute index
* @num: number of records to read
*
* The caller must hold the table mutex in @control.
* Return 0 on success, -errno otherwise.
*/
static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
u8 *buf, const u32 fri, const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
u32 buf_size;
int res;
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_domain->sem);
buf_size = num * RAS_TABLE_RECORD_SIZE;
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
RAS_INDEX_TO_OFFSET(control, fri),
buf, buf_size);
up_read(&adev->reset_domain->sem);
if (res < 0) {
DRM_ERROR("Reading %d EEPROM table records error:%d",
num, res);
} else if (res < buf_size) {
/* Short read, return error.
*/
DRM_ERROR("Read %d records out of %d",
res / RAS_TABLE_RECORD_SIZE, num);
res = -EIO;
} else {
res = 0;
}
return res;
}
/**
* amdgpu_ras_eeprom_read -- read EEPROM
* @control: pointer to control structure
* @record: array of records to read into
* @num: number of records in @record
*
* Reads num records from the RAS table in EEPROM and
* writes the data into @record array.
*
* Returns 0 on success, -errno on error.
*/
int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
const u32 num)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
int i, res;
u8 *buf, *pp;
u32 g0, g1;
if (!__is_ras_eeprom_supported(adev))
return 0;
if (num == 0) {
DRM_ERROR("will not read 0 records\n");
return -EINVAL;
} else if (num > control->ras_num_recs) {
DRM_ERROR("too many records to read:%d available:%d\n",
num, control->ras_num_recs);
return -EINVAL;
}
buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Determine how many records to read, from the first record
* index, fri, to the end of the table, and from the beginning
* of the table, such that the total number of records is
* @num, and we handle wrap around when fri > 0 and
* fri + num > RAS_MAX_RECORD_COUNT.
*
* First we compute the index of the last element
* which would be fetched from each region,
* g0 is in [fri, fri + num - 1], and
* g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
* Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
* the last element to fetch, we set g0 to _the number_
* of elements to fetch, @num, since we know that the last
* indexed to be fetched does not exceed the table.
*
* If, however, g0 >= RAS_MAX_RECORD_COUNT, then
* we set g0 to the number of elements to read
* until the end of the table, and g1 to the number of
* elements to read from the beginning of the table.
*/
g0 = control->ras_fri + num - 1;
g1 = g0 % control->ras_max_record_count;
if (g0 < control->ras_max_record_count) {
g0 = num;
g1 = 0;
} else {
g0 = control->ras_max_record_count - control->ras_fri;
g1 += 1;
}
mutex_lock(&control->ras_tbl_mutex);
res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
if (res)
goto Out;
if (g1) {
res = __amdgpu_ras_eeprom_read(control,
buf + g0 * RAS_TABLE_RECORD_SIZE,
0, g1);
if (res)
goto Out;
}
res = 0;
/* Read up everything? Then transform.
*/
pp = buf;
for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
__decode_table_record_from_buf(control, &record[i], pp);
/* update bad channel bitmap */
if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
control->bad_channel_bitmap |= 1 << record[i].mem_channel;
con->update_channel_flag = true;
}
}
Out:
kfree(buf);
mutex_unlock(&control->ras_tbl_mutex);
return res;
}
uint32_t amdgpu_ras_eeprom_max_record_count(void)
{
return RAS_MAX_RECORD_COUNT;
}
static ssize_t
amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
u8 data[50];
int res;
if (!size)
return size;
if (!ras || !control) {
res = snprintf(data, sizeof(data), "Not supported\n");
} else {
res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
}
if (*pos >= res)
return 0;
res -= *pos;
res = min_t(size_t, res, size);
if (copy_to_user(buf, &data[*pos], res))
return -EFAULT;
*pos += res;
return res;
}
const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
.owner = THIS_MODULE,
.read = amdgpu_ras_debugfs_eeprom_size_read,
.write = NULL,
.llseek = default_llseek,
};
static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n";
static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
#define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n";
static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n";
#define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
"ignore",
"re",
"ue",
};
static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
{
return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
}
void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
eeprom_control);
struct dentry *de = ras->de_ras_eeprom_table;
if (de)
d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
}
static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
const size_t orig_size = size;
int res = -EFAULT;
size_t data_len;
mutex_lock(&control->ras_tbl_mutex);
/* We want *pos - data_len > 0, which means there's
* bytes to be printed from data.
*/
data_len = strlen(tbl_hdr_str);
if (*pos < data_len) {
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
if (*pos < data_len && size > 0) {
u8 data[tbl_hdr_fmt_size + 1];
loff_t lpos;
snprintf(data, sizeof(data), tbl_hdr_fmt,
control->tbl_hdr.header,
control->tbl_hdr.version,
control->tbl_hdr.first_rec_offset,
control->tbl_hdr.tbl_size,
control->tbl_hdr.checksum);
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
lpos = *pos - strlen(tbl_hdr_str);
if (copy_to_user(buf, &data[lpos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
if (*pos < data_len && size > 0) {
loff_t lpos;
data_len -= *pos;
data_len = min_t(size_t, data_len, size);
lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
goto Out;
buf += data_len;
size -= data_len;
*pos += data_len;
}
data_len = amdgpu_ras_debugfs_table_size(control);
if (*pos < data_len && size > 0) {
u8 dare[RAS_TABLE_RECORD_SIZE];
u8 data[rec_hdr_fmt_size + 1];
struct eeprom_table_record record;
int s, r;
/* Find the starting record index
*/
s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
strlen(rec_hdr_str);
s = s / rec_hdr_fmt_size;
r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
strlen(rec_hdr_str);
r = r % rec_hdr_fmt_size;
for ( ; size > 0 && s < control->ras_num_recs; s++) {
u32 ai = RAS_RI_TO_AI(control, s);
/* Read a single record
*/
res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
if (res)
goto Out;
__decode_table_record_from_buf(control, &record, dare);
snprintf(data, sizeof(data), rec_hdr_fmt,
s,
RAS_INDEX_TO_OFFSET(control, ai),
record_err_type_str[record.err_type],
record.bank,
record.ts,
record.offset,
record.mem_channel,
record.mcumc_id,
record.retired_page);
data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
if (copy_to_user(buf, &data[r], data_len)) {
res = -EFAULT;
goto Out;
}
buf += data_len;
size -= data_len;
*pos += data_len;
r = 0;
}
}
res = 0;
Out:
mutex_unlock(&control->ras_tbl_mutex);
return res < 0 ? res : orig_size - size;
}
static ssize_t
amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
u8 data[81];
int res;
if (!size)
return size;
if (!ras || !control) {
res = snprintf(data, sizeof(data), "Not supported\n");
if (*pos >= res)
return 0;
res -= *pos;
res = min_t(size_t, res, size);
if (copy_to_user(buf, &data[*pos], res))
return -EFAULT;
*pos += res;
return res;
} else {
return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
}
}
const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
.owner = THIS_MODULE,
.read = amdgpu_ras_debugfs_eeprom_table_read,
.write = NULL,
.llseek = default_llseek,
};
/**
* __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
* @control: pointer to control structure
*
* Check the checksum of the stored in EEPROM RAS table.
*
* Return 0 if the checksum is correct,
* positive if it is not correct, and
* -errno on I/O error.
*/
static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int buf_size, res;
u8 csum, *buf, *pp;
buf_size = RAS_TABLE_HEADER_SIZE +
control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
buf = kzalloc(buf_size, GFP_KERNEL);
if (!buf) {
DRM_ERROR("Out of memory checking RAS table checksum.\n");
return -ENOMEM;
}
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address +
control->ras_header_offset,
buf, buf_size);
if (res < buf_size) {
DRM_ERROR("Partial read for checksum, res:%d\n", res);
/* On partial reads, return -EIO.
*/
if (res >= 0)
res = -EIO;
goto Out;
}
csum = 0;
for (pp = buf; pp < buf + buf_size; pp++)
csum += *pp;
Out:
kfree(buf);
return res < 0 ? res : csum;
}
int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
bool *exceed_err_limit)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
int res;
*exceed_err_limit = false;
if (!__is_ras_eeprom_supported(adev))
return 0;
/* Verify i2c adapter is initialized */
if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
return -ENOENT;
if (!__get_eeprom_i2c_addr(adev, control))
return -EINVAL;
control->ras_header_offset = RAS_HDR_START;
control->ras_record_offset = RAS_RECORD_START;
control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
mutex_init(&control->ras_tbl_mutex);
/* Read the table header from EEPROM address */
res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
control->i2c_address + control->ras_header_offset,
buf, RAS_TABLE_HEADER_SIZE);
if (res < RAS_TABLE_HEADER_SIZE) {
DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
return res >= 0 ? -EIO : res;
}
__decode_table_header_from_buf(hdr, buf);
control->ras_num_recs = RAS_NUM_RECS(hdr);
control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
if (hdr->header == RAS_TABLE_HDR_VAL) {
DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
control->ras_num_recs);
res = __verify_ras_table_checksum(control);
if (res)
DRM_ERROR("RAS table incorrect checksum or error:%d\n",
res);
/* Warn if we are at 90% of the threshold or above
*/
if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
control->ras_num_recs,
ras->bad_page_cnt_threshold);
} else if (hdr->header == RAS_TABLE_HDR_BAD &&
amdgpu_bad_page_threshold != 0) {
res = __verify_ras_table_checksum(control);
if (res)
DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
res);
if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
/* This means that, the threshold was increased since
* the last time the system was booted, and now,
* ras->bad_page_cnt_threshold - control->num_recs > 0,
* so that at least one more record can be saved,
* before the page count threshold is reached.
*/
dev_info(adev->dev,
"records:%d threshold:%d, resetting "
"RAS table header signature",
control->ras_num_recs,
ras->bad_page_cnt_threshold);
res = amdgpu_ras_eeprom_correct_header_tag(control,
RAS_TABLE_HDR_VAL);
} else {
dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
control->ras_num_recs, ras->bad_page_cnt_threshold);
if (amdgpu_bad_page_threshold == -2) {
dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -2.");
res = 0;
} else {
*exceed_err_limit = true;
dev_err(adev->dev,
"RAS records:%d exceed threshold:%d, "
"GPU will not be initialized. Replace this GPU or increase the threshold",
control->ras_num_recs, ras->bad_page_cnt_threshold);
}
}
} else {
DRM_INFO("Creating a new EEPROM table");
res = amdgpu_ras_eeprom_reset_table(control);
}
return res < 0 ? res : 0;
}